Interface Solutions for Structural Testing
Interface products are used in many types of structural tests across industries, including for rockets, aircraft, EV batteries, heavy equipment, and infrastructure projects. Our loads cells provide the accurate and reliable data, which is why our force measurement solutions are a top choice for these complex and highly regulated industries.
Structural testing labs use Interface solutions to perform tensile, compression, bending, fatigue and hardness testing on materials, components, or assemblies. There are a variety of structural tests used for measuring tension of push and pull forces, design proofing, and lifecycle fatigue validation. Each of these tests plays a critical role in verifying the quality and safety of a product, component or materials, and each of these tests relies upon force measurement sensors.
Types of Structural Testing
- Tensile Testing involves applying a pulling force to measure a structure’s strength and resistance. Load cells are used to measure the applied force and resulting tension from elongation or deformation of the material.
- Compression Testing uses compressive force to evaluate the strength and resistance of a structure to crushing. Force measurement sensors are used to measure the magnitude of the applied force and the resulting deformation or failure.
- Torque Testing measures the twisting or rotational forces applied to a structure. Torque transducers are utilized to assess the material’s torsional strength, stiffness, and behavior.
- Load Capacity Testing determines the maximum load that a structure can withstand before failure. Force measurement sensors and load cells are used to gradually increase the load until failure occurs, enabling the determination of the structure’s load-carrying capacity.
- Bending Tests assess the flexural strength and behavior of materials under force. Load cells measure forces applied during bending and to determine the bending moment, stress distribution, and deflection of the material within a structure.
- Fatigue Tests in structural testing labs assess the durability and performance of materials under cyclic loading conditions. Force sensors measure the applied forces or loads helping to analyze the material’s fatigue life through various cycle counts.
- Impact Testing involve subjecting a structure to sudden and high-intensity forces to assess its ability to withstand rapid loading conditions. This is particularly important for environmental condition testing to structures that endure extreme temperatures, winds, moisture. This type of testing is also important for submersible structures.
- Shear Testing evaluates the resistance of a material to forces applied parallel to its surface, causing it to slide or deform. Force measurement devices measure the applied shear forces and determine the shear strength and behavior of the material used in a structure.
During the Testing Lab Essentials Webinar, Interface application experts detail various ways our products serve test labs. During this event, the experts detailed top considerations in selecting Interface products that serve test lab engineers in conducting structural tests.
Structural testing labs use our LowProfile load cells because they are designed to fit into tight spaces and machines, making them ideal for use in small-scale structural applications. High-capacity load cells from Interface are designed to measure large forces and are commonly used in heavy machinery and structural testing. Universal load cells are capable of measuring tension and compression, making them ideal for quality control and structural testing applications.
Multi-axis sensors are valuable force measurement solutions as they provide more data across two, three and six axes during a single structural test. Implementing multi-axis sensors can provide a more complete picture of loads and moments being applied to the DUT providing additional insight for design and verification.
As noted in the webinar, key challenges involved in structural testing include managing and isolating extraneous loads such as off-axis load and bending, understanding which products are most suitable for the type of structural tests you are performing and ensuring the instrumentation you are using is compatible with force solutions. Equally, it is important to define your systems for optimal data collection in the planning phase of any project.
Structural Testing Applications
Performance Structural Loading
Performers and entertainers have special stages built to perform in concerts for their fans. From the largest sports events half-time shows to other complex staging, a force measurement system is needed to ensure the safety for all performers, equipment, and scenery on stage. The stage needs to hold all weight, and also maintain during dynamic movements, such as performers walking on stage. For this challenge, Interface’s A4200 Zinc Plated or A4600 Stainless Steel WeighCheck Load Cells paired with the 1280 Programmable Weight Indicator and Controller is able to measure the individual loads on each load cell, or the entire weight of the performance stage. Results from the 1280 Programmable Weight Indicator and Controller was sent to the customer’s control center. Using Interface’s A4200 Zinc Plated or A4600 Stainless Steel WeighCheck Load Cells as a customizable solution, the customer was able to monitor and weigh the performance stage.
Rocket Structural Test
NASA’s Space Launch System (SLS) core stage will be the largest ever built at 27 feet in diameter and 200+ feet tall. Core components including liquid hydrogen and oxygen tanks must withstand launch loads up to 9 million pounds-force (lbf). Interface load cells attached to hydraulic cylinders at various locations along test stands to provide precise test forces. Strain gages bonded to rocket structure surface and connected to data acquisition system for stress analysis. Using this solution, Engineers are able to measure loads applied at various areas on the rocket structure, verifying the structural performance under simulated launch conditions.
EV Battery Structural Testing
As electric vehicles push advancements in efficiency gains, structural battery packaging is at the forefront for optimization. This drives the need to validate structural battery pack design, both in terms of life expectancy against design targets as well as crash test compliance and survivability. Interface’s solution includes 1100 Ultra-Precision LowProfile Load Cells in-line with hydraulic or electromechanical actuators in customer’s test stand. Also utilized are 6A Series 6-Axis Load Cells to capture reactive forces transmitting through pack structure. Multi-axis measurement brings greater system level insight and improved product success.
Interface is a valued partner to test labs for providing solutions for structural testing.
Additional Resources
Modernizing Infrastructure with Interface Sensor Technologies