Posts

Interface Solutions for Structural Testing

Interface products are used in many types of structural tests across industries, including for rockets, aircraft, EV batteries, heavy equipment, and infrastructure projects. Our loads cells provide the accurate and reliable data, which is why our force measurement solutions are a top choice for these complex and highly regulated industries.

Structural testing labs use Interface solutions to perform tensile, compression, bending, fatigue and hardness testing on materials, components, or assemblies. There are a variety of structural tests used for measuring tension of push and pull forces, design proofing, and lifecycle fatigue validation. Each of these tests plays a critical role in verifying the quality and safety of a product, component or materials, and each of these tests relies upon force measurement sensors.

Types of Structural Testing

  • Tensile Testing involves applying a pulling force to measure a structure’s strength and resistance. Load cells are used to measure the applied force and resulting tension from elongation or deformation of the material.
  • Compression Testing uses compressive force to evaluate the strength and resistance of a structure to crushing. Force measurement sensors are used to measure the magnitude of the applied force and the resulting deformation or failure.
  • Torque Testing measures the twisting or rotational forces applied to a structure. Torque transducers are utilized to assess the material’s torsional strength, stiffness, and behavior.
  • Load Capacity Testing determines the maximum load that a structure can withstand before failure. Force measurement sensors and load cells are used to gradually increase the load until failure occurs, enabling the determination of the structure’s load-carrying capacity.
  • Bending Tests assess the flexural strength and behavior of materials under force. Load cells measure forces applied during bending and to determine the bending moment, stress distribution, and deflection of the material within a structure.
  • Fatigue Tests in structural testing labs assess the durability and performance of materials under cyclic loading conditions. Force sensors measure the applied forces or loads helping to analyze the material’s fatigue life through various cycle counts.
  • Impact Testing involve subjecting a structure to sudden and high-intensity forces to assess its ability to withstand rapid loading conditions. This is particularly important for environmental condition testing to structures that endure extreme temperatures, winds, moisture. This type of testing is also important for submersible structures.
  • Shear Testing evaluates the resistance of a material to forces applied parallel to its surface, causing it to slide or deform. Force measurement devices measure the applied shear forces and determine the shear strength and behavior of the material used in a structure.

During the Testing Lab Essentials Webinar, Interface application experts detail various ways our products serve test labs. During this event, the experts detailed top considerations in selecting Interface products that serve test lab engineers in conducting structural tests. 

Structural testing labs use our LowProfile load cells because they are designed to fit into tight spaces and machines, making them ideal for use in small-scale structural applications. High-capacity load cells from Interface are designed to measure large forces and are commonly used in heavy machinery and structural testing. Universal load cells are capable of measuring tension and compression, making them ideal for quality control and structural testing applications.

Multi-axis sensors are valuable force measurement solutions as they provide more data across two, three and six axes during a single structural test. Implementing multi-axis sensors can provide a more complete picture of loads and moments being applied to the DUT providing additional insight for design and verification.

As noted in the webinar, key challenges involved in structural testing include managing and isolating extraneous loads such as off-axis load and bending, understanding which products are most suitable for the type of structural tests you are performing and ensuring the instrumentation you are using is compatible with force solutions. Equally, it is important to define your systems for optimal data collection in the planning phase of any project.

Structural Testing Applications

Performance Structural Loading

Performers and entertainers have special stages built to perform in concerts for their fans. From the largest sports events half-time shows to other complex staging, a force measurement system is needed to ensure the safety for all performers, equipment, and scenery on stage. The stage needs to hold all weight, and also maintain during dynamic movements, such as performers walking on stage. For this challenge, Interface’s A4200 Zinc Plated or A4600 Stainless Steel WeighCheck Load Cells paired with the 1280 Programmable Weight Indicator and Controller is able to measure the individual loads on each load cell, or the entire weight of the performance stage. Results from the 1280 Programmable Weight Indicator and Controller was sent to the customer’s control center. Using Interface’s A4200 Zinc Plated or A4600 Stainless Steel WeighCheck Load Cells as a customizable solution, the customer was able to monitor and weigh the performance stage.

Rocket Structural Test

NASA’s Space Launch System (SLS) core stage will be the largest ever built at 27 feet in diameter and 200+ feet tall. Core components including liquid hydrogen and oxygen tanks must withstand launch loads up to 9 million pounds-force (lbf). Interface load cells attached to hydraulic cylinders at various locations along test stands to provide precise test forces. Strain gages bonded to rocket structure surface and connected to data acquisition system for stress analysis. Using this solution, Engineers are able to measure loads applied at various areas on the rocket structure, verifying the structural performance under simulated launch conditions.

EV Battery Structural Testing

As electric vehicles push advancements in efficiency gains, structural battery packaging is at the forefront for optimization. This drives the need to validate structural battery pack design, both in terms of life expectancy against design targets as well as crash test compliance and survivability. Interface’s solution includes 1100 Ultra-Precision LowProfile Load Cells in-line with hydraulic or electromechanical actuators in customer’s test stand. Also utilized are 6A Series 6-Axis Load Cells to capture reactive forces transmitting through pack structure. Multi-axis measurement brings greater system level insight and improved product success.

Interface is a valued partner to test labs for providing solutions for structural testing.

Additional Resources

Modernizing Infrastructure with Interface Sensor Technologies

Rocket Structure Testing

Rigging Engineers Choose Interface Measurement Solutions

Load Cell Selection Guide

Interface Explores Commercial Launch Solutions

Interface supplies advanced sensor technologies to high-profile companies in some of the most challenging environments, including those that are using their innovations for exploration beyond planet earth.

Aerospace commercial launch programs have a critical role in advancing our understanding of the world around us, as well as in supporting a wide range of industries and applications. Commercial launch is typically defined by engineers and aerospace market leaders as the design, manufacturing, and operation of rockets and spacecraft for commercial purposes. This includes providing launch services to customers such as private companies, governments, and research institutions.

Collaborating with engineers and market leaders at the forefront of the commercial launch industry, Interface is proud to take part in enabling space exploration and satellite deployment for a wide range of use cases. Commercial launch has a big part of our global economic growth for scientific research, environmental monitoring, communications, and national security.

Force measurement devices are critical tools for commercial launch companies, helping ensure the safety and effectiveness of spacecraft and rockets during design, testing, and launch. Interface high-accuracy load cells, torque transducers, load pins and wireless instrumentation are utilized throughout testing phases of aerospace vehicles, small and large. Interface products are used by commercial launch companies for a range of applications, including:

Rocket and Engine Testing: Load cells and force measurement devices are used to measure the thrust and other forces generated by rocket engines during testing. This information is critical for ensuring that the engine is operating safely and as designed. Read

Launch Vehicle Testing: Load cells and force measurement devices are used during testing of the launch vehicle to measure the loads and stresses that it will experience during launch. This helps ensure that the rocket is designed to withstand the forces it will encounter during launch.

Payload Integration: Load cells are used to measure the weight and balance of the payload during integration into the rocket. This helps ensure that the rocket is properly configured for launch and that the payload is secure.

Parachute Deployment: Load cells are used to measure the forces generated during parachute deployment and landing. This helps ensure that the parachute system is designed to deploy safely and effectively. See Parachute Deployment and Deceleration Testing

Spacecraft Separation: Load cells are used to measure the forces generated during spacecraft separation from the launch vehicle. This helps ensure that the spacecraft is safely released from the rocket and that it is on its intended trajectory.

Force measurement plays an important role in space exploration and commercial launches, including vehicle designs, automation of machines that manufacture components, structures used for launch testing, and the actual engineering and building of the spaceships. See our case study, Force Measurement for Space Travel.

With the growing investments in commercial space applications, Interface solutions are in high demand for testing in vehicles in launch environments.  Interface products are used in thrust testing, structural testing, and even force gravity testing.  Every test must be verifiably accurate due to the trustworthiness and safety requirements of moving the ever-increasing valuable payloads, which is beyond stellar communication technologies. It’s now about launching and returning humans, with frequency, in the new era of space travel. Safety is priority number one., Here are a few application examples of Interface solutions utilized by commercial launch market leaders.

Rocket Structure Testing

NASA’s Space Launch System (SLS) core stage is largest ever built at 27 feet in diameter and 200+ feet tall. Core components including liquid hydrogen and oxygen tanks must withstand launch loads up to nine million pounds-force (lbf). Interface load cells were attached to hydraulic cylinders at various locations along test stands to provide precise test forces. Strain gages were also bonded to rocket structure surface and connected to data acquisition system for stress analysis. Using this solution, engineers can measure loads applied at various areas on the rocket structure, verifying the structural performance under simulated launch conditions. Read more about this type of testing here, Rocket Structure Testing

Space Dock Capture Ring Force Testing

A space company wanted to test their spacecraft docking simulator. They wished to test the forces of the actuators used during the “lunge”, when the soft capture ring is lunged forward to latch onto a space vehicle that has been mounted. They also wanted to ensure they are working properly when engaged, and that it does not go past its overload force limit. Interface suggested using multiple WTS 1200 Standard Precision LowProfile™ Wireless Load Cells to be installed to the actuators of the capture ring. Both as wireless solutions, measurements can be recorded through the WTS-AM-1E Wireless Strain Bridge Transmitter Module, which then can transmit to the WTS-BS-1 Handheld Display or the WTS-BS-6 Wireless Telemetry Dongle Base Station for the customer to record, log, and graph on their computer. Interface’s Wireless telemetry system successfully measured the forces of the soft capture ring of the space docking port with overload protection. Learn more about this application here: Space Dock Capture Ring Force Testing

Reduced Gravity Testing

In this application, Interface supplied a Model 1100 Series Load Cell, which was installed in-line with a steel support cable to actively measure the vertical load on the system. A control system was then utilized, (which includes a Model 9870 High Speed High Performance TEDS Ready Indicator), to monitor the load cell output and continuously offload a portion of a human or robotic payload weight during all dynamic motions. Using precise feedback from the load cell, the control system commanded a motor to raise or lower the subject to maintain a constant offload force. During the simulation, the system actively compensated for the subject’s movement to accurately reproduce a microgravity environment. Read more about this test here: Reduced Gravity Simulation.

Commercial launch companies are often driven by market demand and competition, which can lead to innovations in rocket and spacecraft design, manufacturing processes, and launch operations. This in turn can lead to advancements in space exploration, scientific research, and other applications that benefit society. We are proud to play a part of these advancements and discoveries.

Interface is exhibiting again at Space Tech Expo 2023.

ADDITIONAL RESOURCES

Examining Interface Aerospace Industry Solutions

Interface and The Race to Space

Aerospace Brochure

Solutions Provider for Aerospace & Defense

 

 

Enabling A Look Way Beyond Yonder

Many know Interface is obsessed with space and space exploration. It’s in our company DNA. Going back to our founder, we see his passion and legacy through the adeptly named Richard F. Caris Mirror Lab at The University of Arizona.

As NASA revealed in the first photos from the James Webb Space Telescope, we have only just begun to explore the depths of space. It is one of the reasons we are celebrating with our fellow scientists, engineers, explorers, and innovators that have designed, tested and implemented the technologies that are being used by the JWST and in space exploration in general.

Our Interface team is extremely honored to play a role in helping open the world of space exploration. In fact, our scientists, engineers and technicians have been supplying aerospace companies with force measurement solutions that have been used for testing space vehicles, rockets, launch equipment, satellites and mirror equipment to give us all a glimpse into galaxies afar.

The Webb Telescope is something we know something about, as Interface helped deliver incredibly tight system level performance using our Interface Model 1800 Platinum Standard Calibration LowProfile Load Cells and 9840 Multi-Channel Load Cell Indicators many years ago. These products allowed the JW team to carefully monitor structural loads during initial assembly and fit verification. The satellite is designed with such specific load targets that the Earth’s normal gravity would cause structural failure when deployed. Our systems were used to monitor counteractive force setups to keep the system in an effective zero gravity state, as it would experience in space.

Read more about Interface’s space obsession and how we strive to be the best in precision solutions for all aerospace explorers and innovators that take us beyond our wildest dreams!

Interface Recognized as Contributor to Human Flight Success

Force Measurement for Space Travel

Interface and The Race to Space

Launching into Orbit with Interface

Aerospace and Defense

Solutions Provider for Aerospace & Defense

Rocket Structural Testing App Note

Space Dock Capture Ring Force Testing App Note


Aerospace-Brochure

Interface Recognized as Contributor to Human Flight Success

As a premium force measurement solutions provider, Interface load cells, torque transducers, and specialty products are frequently used by leading manufacturers, engineers, product designers and testing labs to drive innovation and industry advancements. Our products are utilized for developments and improvements in aerospace and defense, automotive, medical, industrial automation and more.

One of these industries that Interface has played a significant role in for decades as a solutions provider is the space industry. This includes providing products and services for designing and building space technologies like robotics and launch systems, as well as sensors for testing space qualified components, structures, satellites, observation equipment, space vehicles and more.

In our case study detailing our work with NASA, it is evident that our solutions for rockets and structural testing have been used by those advancing space exploration for many years.  In fact, aircraft, spacecraft, military, and defense companies such as Boeing, Airbus, Lockheed Martin, Northrop Grumman, Bombardier, Embraer, Gulfstream, Cessna and others have depended on Interface load cells for thrust, wing, static, fatigue testing and more. While structural test applications utilize many types of LowProfile™ load cells, Interface also provide a wide variety of load pins, load shackles, tension links, load washers, load button load cells and miniature tension and compression load cells for test, production, and control monitoring applications of vehicles and spacecraft.

We recently participated in the industry’s Space Tech Expo, demonstrating the products and services we provide to those that are designing and building spacecraft for sending people and cargo into orbit. We highlighted some of the solutions we detailed in these resources:

Rocket Structure Testing

Interface and The Race to Space

Force Measurement for Space Travel

Aerospace and Defense

Commercial space has also been a hot topic in recent years with technology titans creating their own space program to launch civilians into space. These organizations include SpaceX, Blue Origin, Virgin Galactic and more. Interface has been tasked with helping to provide force measurement solutions for many of these companies. In fact, Interface was recently recognized by Blue Origin for contributing to their first sub-orbital launch with humans on board, the 16th New Shepard flight (NS-16).

With NS-16, Blue Origin successfully launched humans aboard the New Shepard 4 rocket. Its crew consisted of Blue Origin and Amazon founder Jeff Bezos, his brother Mark Bezos, 82 year old Wally Funk, and 18 year old Oliver Daemen. From launch to touchdown the crew’s official mission time was 10 minutes 10 seconds. The crew spent a few minutes in weightlessness and reached an altitude of 107 km (351,210 feet), similar to the previous test flights.

Interface received a special certificate and historic patch from Blue Origin for our participation in the first human flight. Notably, Blue Origin recognized Interface with the following statement:

Performance excellence is fundamental to the success of both our companies. We extend our sincere gratitude to the employees of Interface for demonstrating their dedication to the high-performance standards necessary to meet customer expectations.

Our work in the space industry is of great importance to us because it requires the highest level of quality and accuracy possible. Interface prides itself on developing solutions to meet any need and our ability to contribute to this launch and many of the other NASA or commercial launches around the nation is a testament to these capabilities.

To learn more about our work in space, visit our aerospace solutions page.

Solutions highlighted at Space Tech Expo 2021

Understanding Load Cell Temperature Compensation

The performance and accuracy of a load cell is affected by many different factors. When considering what load cell will work best for your force measurement requirements, it is important to understand how the impact of the environment, in particular the temperature impact on output.

An important consideration when selecting a load cell is to understand the potential temperature effect on output. This is defined as the change in output due to a change in ambient temperature. Output is defined as the algebraic difference between the load cell signal at applied load and the load cell signal at no load. You can find more detailed information in our Technical Library.

Temperature affects both zero balance and signal output. Errors can be either positive or negative. To compensate for this, we use certain materials that are better suited for hot or cold environments. For instance, aluminum is a very popular load cell material for higher temperatures because it has the highest thermal conductivity.

In addition to selecting the right material, Interface also develops its own proprietary strain gages, which allows us to cancel out signal output errors created by high or low temperatures.

In strain gage-based load cells, the effect is primarily due to the temperature coefficient of modules of elasticity of the force bearing metal. It is common in the industry to compensate for this effect by adding temperature sensitive resistors external to the strain gage bridge which drop the excitation voltage reaching the bridge. This has the disadvantages of adding thermal time constants to the transducer characteristic and of decreasing the output by 10%.

Our load cells are temperature compensated for zero balance. By compensating for zero balance, we can flatten the curve in the relationship between temperature and zero balance. An uncompensated load cell has a much more severe curve, which ultimately affects accuracy and performance.

Interface offers thousands of load cell designs, for standard use and for use in hazardous environments. For instance, rocket engine tests subject our load cells to extremely high temperatures. For use in various maritime industry projects, they can be used in very cold coastlines and even submerged in cold water. No matter where you are, environment influences the load cell’s performance.

If you are concerned about temperature, Interface provides specifications for every load cell we manufacture. The Interface specification datasheet, as referenced here, is available for download by product. It always includes all the necessary data required to understand the load cell’s ability to perform at the highest-level including compensation range, operating range, effect on zero balance and effect on span.

One thing that is also unique about our products is that while most competitors only compensate for hot temperatures (60 to 160 degrees Fahrenheit), Interface covers both hot and cold thermal compensation from 15 to 115 degrees Fahrenheit, including adjust and verify cycles.

Watch our recorded webinar Load Cell Basics, where Keith Skidmore discusses temperature compensation.  He notes during this informative presentation that if the temperature is changing during a test, it can affect the zero and the output of the load cell. How much effect depends how much temperature is changing and how well the load cell is compensated against the errors, which can be either positive or negative. Good news is they are repeatable from test to test, so if you have large temperature swings you can characterize the system and then subtract out the shift if you know the temperature effect on zero.

Interface Application Engineers are available to answer questions regarding the effect of temperature on force measurement data, or the different ways we can help design a solution to compensate for your environment.

Solutions Provider for Aerospace & Defense

Interface has developed highly innovative force measurement solutions for a variety of complex and highly regulated industries. These industries require the most accurate and reliable test and measurement equipment on the market because bad data and unknown variables can spell disaster. This fact has never been truer than it is in the aerospace and defense sector.

For our worldwide customers in aerospace, Interface supplies a variety of sensor solutions, including load cells, tension links, load shackles, wireless instrumentation and more. And Interface is a proud supplier to some of the world leading manufacturing aircraft, spacecraft, military, and defense organizations such as the U.S. Government, NASA, Lockheed, Northrop Grumman, Raytheon, Bombardier, Embraer, Boeing, Airbus Gulfstream, Cessna and more of the world’s most prominent (and well known) rocket builders.

To further highlight our work in the aerospace and defense industry, we’ve also put together a case study outlining, in detail, some of the specific applications in which force measurement sensors can be used. The case study dives deeper into three specific applications highlighting the products used for aircraft wing fatigue, aircraft engine hoist, and parachute deployment and deceleration testing.

READ: The new Aerospace & Defense Case Study can be read in full here.

As a premier partner to these and many other leading global aerospace and defense companies, we’ve seen a lot of high-profile applications which require both off-the-shelf and custom manufactured force solutions. Our engineers and application experts partner with our customers to ensure they get the product that fits the exact requirements, weather it’s a submersible sensor or built for extreme compression and fatigue condition tests.

Our precision load cells have been used on thousands of different projects, both big and small. From aircrafts to ground vehicles and infrastructure, here are a few examples of the projects we’ve supplied various load cells, from jumbo to mini, various torque transducers, multi-axis sensors, customized load pins and as well as wireless telemetry testing systems:

ADDITIONAL RESOURCES:

Exploring Aerospace Force Measurement Solutions Blog

Launching into Orbit with Interface

Force Measurement for Space Travel

 

Aerospace and Defense Industry Solutions

Among the many applications Interface products are used for across multiple markets, there may be none that require the highest levels of accuracy, quality and reliability as does the aerospace and defense industry.

By classification, aerospace largely comprises of those engaged in producing and servicing of commercial aircraft. The defense market is defined as those providing military weapons and systems designed to operate in the air, in the sea or on land.

The aerospace and defense industries are global markets that continue to expand their use of precision sensor technologies for advancing innovations in autonomous vehicles and flight systems, electric and hydrogen engines, as well additive manufacturing applications. Interface proudly serves the world’s largest manufacturers and suppliers in the aerospace industry by providing world-class force and torque measurement solutions for these types of requirements, as well as for their future inventions.

Over the past two years, the trends in the global commercial space ecosystem along with defense needs have created unique requirements that benefit from our five decades of being a premium provider for A&D equipment manufacturers and testing labs. We are able to meet these trending demands through our standard, engineered to order and completely custom force, torque and systems. These solutions are being utilized in testing of all types of vehicles, on the ground, in the water, and for flight.

A&D is a unique industry because of the complex needs of many applications. When we develop applications for other industries, we’re typically focused on solving a few specific challenges, whether it’s related to cost, safety, performance, environment, or other engineering specified design requirements. In aerospace and defense, every one of these factors needs to be addressed, as well as some special needs. Applications in the aerospace and defense industry cannot fail. If they do, it can put people, both military and civilians, in danger. That’s why force products in the defense industry need to be of the highest quality in all key factors.

Below are a few applications for force measurement in the defense industry. Each demonstrates the criticality of proper force testing, as well as the complexity of the projects Interface has been involved in.

SLS Tank Test

As outlined in NASA’s article on the SLS Tank Test, NASA’s goal was to push the very limits of a test version of the world’s largest rocket fuel tank. The project put incredible flight test strain on the tank to try and push it to its breaking point. After five hours of testing and more than 260% of the expected flight load, the tank finally buckled. Doing this helped engineers gather data on the tank to help intelligently optimize the final rocket ship.

In this application, load cells played the key role of collecting the flight force data. The extreme nature of the flight tests meant that the load cells needed to be incredibly durable and provide accurate data all the way through the breaking point.

Structural Testing

For the many hundreds of thousands of commercial and military vehicles on the market, especially those that fly, there are numerous force tests involved to validate a design and ensure they’re safe and of the highest quality to move into production. Load cells and torque transducers are used across a wide variety of vehicles for structural testing. The torque of the helicopter rotor is measured and validated using a torque transducer, or the wings and hull of an airplane are put through wind tunnels and other stress tests with load cells installed to collect data. All of these force applications are critical to ensuring that these vehicles can last beyond their intended breaking point and offer complete peace of mind to operators and passengers. There are a million different things that a military pilot is thinking about – the structural integrity of his or her aircraft should never be one of them.

Custom Sensors

Another area that has grown in recent years as technology pushes the aerospace and defense market forward is custom sensors. Test has gotten more sophisticated as the move to big data becomes more prevalent, and Interface has addressed this by working directly with customers to develop custom sensors that address unique challenges.

One of the biggest areas where we have seen a growing need for custom sensors is on test stands in thrust application. Test stands are often used in field testing on rocket or plane engines. In certain field applications, the test stand is outfitted with numerous load cells that must be custom designed with features like weatherization, multiple bridges, very-high precision, and more. The reason for this is because the cost of a thrust test in fuel alone can be incredibly high. You usually only get one shot at a successful thrust test. If there are any issues with the sensor, it’s going to be costly.

Interface has deep experience developing custom sensors for our aerospace and defense partners. We understand their needs and work closely with their engineering team to ensure they get it right the first time. If you’re interested in learning more about Interface and our solutions for the aerospace and defense industry, please visit us at www.interfaceforce.com/solutions/aerospace.

For additional references, check out our A&D related case studies and application notes:

Launching Into Orbit with Interface

Force Measurement for Space Travel

Interface’s Crucial Role in Vehicle and Urban Mobility Markets

Aircraft Wing Fatigue Test

Rocket Structural Test

Wind Tunnel Testing

Contributor: Elliot Speidell, Interface Regional Sales Director

Exploring Aerospace Force Measurement Solutions

The aerospace industry is responsible for some of the greatest inventions and innovation in our global history. The engineering and manufacturing of a single rocket engine design, using handwritten calculations and with less computing power than a modern smartphone, took us to the moon.

The NASA Parker Solar Probe is the culmination of some of the most impressive technology ever developed by mankind, journeying through the skies and beyond earth’s atmosphere with the ability to reach a top speed of 430,000 miles per hour.

The aerospace industry is an assembly of researchers, design houses, test labs and manufacturing companies that engineer and build vehicles to travel within and beyond Earth’s atmosphere. The range of aircraft and space vehicles include all types from unpowered gliders to commercial and military aircraft, as well as rockets, missiles, launch vehicles, and spacecraft. The term aerospace comes from the combination of the words aeronautics and spaceflight. All of these vehicles go through extensive and rigorous test and measurement programs and processes.

For more than half a decade, Interface has served some of the most prominent aerospace organizations in the nation including NASA, Boeing, Northrop Grumman and more. Our sensor technology has been used to design, test and manufacture airplane frames, wings, landing gear, rocket engines and even the machines that build the components for these products. These projects require the most precise data available, not only to ensure that the airplane or spaceship can fly and land, but more importantly to guarantee its safety for the pilot, crew and passengers.

Interface is humbled and proud to provide critical force measurement solutions and technology to the aerospace industry, in support of science, innovation and exploration.

Interface is often selected by our aerospace customers over the competition because we offer the most accurate and reliable force measurement products on the market. In this blog, we will be outlining how Interface serves the aerospace industry in validating designs, improving performance and maintain the highest safety possible.

AIRCRAFT

One of the most important tests to run in aircraft development is static and fatigue testing on the frame of the aircraft and the wings. Engineers will often simulate the effects of various forces on the aircraft and wings with actuators which act as of wind, weather, debris and more. Hundreds of Interface load cells are used to measure those forces to either validate the simulations or find errors in order to adjust the simulation and design accordingly. Load cells are also used on the machines controlling these forces in the test environment to ensure the actuators are simulating the right amount of force.

READ THIS APP NOTE FOR AIRCRAFT WING FATIGUE TESTING

ROCKETS

For a spacecraft that can weigh up to 1,000 tons, you need a lot of force to get it off the ground and safely out of the earth’s atmosphere. One of the ways that engineers test the thrust force of a rocket engine is with load cells. During these tests, the engine is attached under the mounting plate, which is part of a test stand. Interface load cells are installed between the plate and test stand and when the rocket thrust pushes up on the plate, the load cells relay the force data to the engineers. These tests help engineers make adjustments to the engine to use the precise amount of force to lift the craft into space, but not too much so that it doesn’t burn up too much fuel.

READ THIS CASE STUDY: LAUNCHING INTO ORBIT WITH INTERFACE

AEROSPACE MANUFACTURING

Before the air and spacecrafts are even assembled, the components need to be manufactured in a plant. There are hundreds of machines that are used on the production line for the hundreds of thousands of components needed to complete the craft. Interface load cells and torque transducers can be found on many of these machines. Not only are they used to help test the machines, they are also used to measure various forces on the machines in real-time. Our products are used to provide a wealth of insight to tell the manufacturers if the machine is working properly, needs to be recalibrated or needs repairs.

READ THIS APP NOTE FOR ROCKET STRUCTURAL TESTING

For more information on the numerous applications of Interface products in the aerospace and space industry, visit our solutions page at www.interfaceforce.com/solutions/aerospace/. Here you can read application notes and browse the various products we offer for our customers.

To watch an actual aircraft structural, check out this great Airbus video of an actual test.

Contributor: Randy White, Regional Sales Director at Interface

Launching Into Orbit With Interface

Interface supplies force measurement solutions and services to help the world’s largest aerospace organizations in the design and test of space vehicles and ground equipment. We pride ourselves on the accuracy and reliability of our products, and it is our key differentiator in serving highly regulated markets with zero room for error.

Working with NASA is a pinnacle in providing advanced test and measurement solutions for use in vehicle designs used for space exploration. We have the privilege of engaging with this highly respected space agency and we wrote a case study on the experience. This blog provides an abbreviated version of the study.

Challenge

NASA’s latest efforts have been centered around human deep space exploration, opening new possibilities for scientific missions to places like the Moon, Mars, Saturn, and Jupiter.  Getting a rocket and its payload beyond earth’s orbit is no easy task. There’s nothing more important than structural integrity, and achieving it on a rocket is incredibly difficult. Faced with these challenges, NASA turned to Interface to aid in the development of its Space Launch System (SLS) to replace its Saturn 5 rocket.

Interface Solution

Due to the massive size of the rocket, Interface provided NASA with two different models of custom load cells that ranged to accurately measure the forces the SLS will experience during its use.  Interface also fulfilled NASA’s extremely high accuracy requirements for force measurements by using finite element analysis to revitalize its existing 2000 series load cell design.

Results

Multiple custom Interface load cells were attached to hydraulic cylinders at different points along the test stand to measure the load produced by each cylinder within 0.05 percent. With these custom high precision load cells, engineers were able to evaluate loads applied to different areas of the rocket structure, allowing them to accurately verify the structural performance under simulated launch conditions.

For more information on how Interface helps to solve aerospace challenges and provide advancement in test and measurement, go to www.interfaceforce.com/solutions/aerospace.

Read the full Interface NASA Case Study here: Interface Case Study for NASA Solutions