Posts

I’ve Got a Load Cell – Now What? Episodes 3 and 4

Continuing our review of the popular webinar series, I’ve Got a Load Cell – Now What?, we are detailing the third and fourth episodes. The focus of these two installments is documentation that you should expect with every load cell and the fundamentals of load cell output.

Digging into documentation is an important subject for anyone that is buying or using load cells for test and measurement. It is also a differentiator in the quality and type of manufacturer that makes your device. The details provided in load cell documentation validates the characteristics and performance, as well as experience and craftmanship used in the engineering and construction of your load cell.

When quality and accuracy matters, documentation and certification are critical verification evidence.

Load Cell Documentation: Datasheets and Calibration Certificates

Interface provides detailed datasheets for every load cell model number. On the top of the datasheet, the Interface model number precedes the description of the load cell’s primary characteristics, such as 1200 Standard Load Cell. The Interface Calibration Certification accompanies every sensor device we manufacturer and ship from our U.S. headquarters, confirming the final condition prior to release. Interface calibrates every load cell we make before it leaves our facilities as part of our performance guarantee.

INTERFACE DATASHEET FUNDAMENTALS

  • Features and Benefits
  • Standard Configuration and Drawings
  • Dimensions
  • Specification Parameters Based on Model and Capacity
  • Detailed Measurement and Performance Data for Accuracy, Temperature, Electrical and Mechanical
  • Options
  • Connection Options
  • Accessories

Special note for datasheet reviews, the models that use the same form factor are often on the same datasheet with varying capacity measuring ranges in U.S. (lbf) and Metric (kN) information.  All Interface datasheets are available for review and download for every product we offer, including load cells, torque transducers, multi-axis sensors, mini load cells, load pins and load shackles, instrumentation and accessories.

INTERFACE CALIBRATION CERTIFICATES DETAILSIQ

  • Model Number
  • Serial Number
  • Bridge and Capacity
  • Procedures
  • Input and Output Resistance
  • Zero Balance
  • Test Conditions: Temperature, Humidity and Excitation
  • Traceability
  • Shunt Calibration
  • Performance Test Data of Test Load Applied and Recorded Readings
  • Authorized Approval

The performance information detailed on the certificate is important for how it was calibrated, how it performed at release, system health checks and troubleshooting. Watch the episode #3 of I’ve Got a Load Cell – Now What? for additional information about datasheets and cal certs.

Fundamentals of Load Cell Output

Load cells are used in one of two ways, either universal (bipolar) or single mode (unipolar). Bipolar is for measuring tension and compression. Unipolar is for measuring either tension or compression. This use type will dictate what output you will get from the load cell. Most Interface load cells are a tension upscale device, which means you will get a positive output when it is placed in tension.

Standard load cells are usually unamplified mV/V ratio metric output. Interface does offer amplification signals for our load cells, which is a common request when pairing with a data acquisition system. In episode #4 of I’ve Got A Load Cell – Now What?, Elliot provides an example of mV/V ratio metric when using a 5000 lbf LowProfile Load Cell with our 9840 Instrumentation.

For questions about datasheets, calibration certifications or performance and capacities, please contact our application engineers.

ADDITIONAL RESOURCES

Interface 1200 Precision LowProfile Load Cell Series Product Highlight

Load Cell Basics Technical Q&A Part One

Load Cell Basics Technical Q&A Part Two

Understanding Load Cell Temperature Compensation

Load Cell Basics Sensor Specifications

 

Faces of Interface Featuring Scott Whitworth

Our Faces of Interface features the masterfully creative force behind the Interface brand. If you’ve ever downloaded an Interface product brochure or spent time on the Interface website, chances are Scott Whitworth, Interface’s creative services manager, played an important role.

Scott puts together complex product details for T&M pros, develops visual stories with digital content, and helps us keep track of thousands of offerings – one at a time! This is a story about Scott’s journey from film to the video game industry and even teaching before finally joining Interface.

Growing up, Scott was always interested in art and filmography. He pursued creative endeavors, such as a degree in the film industry at the Arts Institute of Phoenix, where he also took some traditional painting and sculpting classes. During his time in school, he started to pick up graphic design skills as well. These talents led Scott to begin his career in the film industry at a company called Digital Domain. In this role, he did digital effects for several different films and commercials.

He then moved to Phoenix, where he worked for a company called THQ. At THQ, Scott began in the film and television division where he worked in animation. Two years after he started, the company closed the film and television division and offered Scott a position in the games division. Scott remained with THQ for eight years doing 3D modeling and design.

From 2008 until 2015, Scott worked as an independent creative resource across several creative disciplines for many clients. And then an old colleague brought him back to Arizona and back to the Art Institute working a teaching job. He enjoyed his freelance work but wanted to get back into the corporate world, which ultimately led him to Interface.

Scott started in graphic design for Interface to help bolster our marketing footprint. He quickly learned about the load cell industry and all the customers that utilize sensors. Growing up in Michigan, his grandfather made parts for the automotive industry, so he was familiar with some of the technical intricacies and use cases. With a naturally technical mind and blended with a passion for creative works, he was a perfect fit for Interface.

“The blending of technical content with design tasks is I really love about working at Interface. It provides creative freedom in my work, with the discipline of getting all the technical details exactly right.” Scott Whitworth, Creative Services Manager at Interface.

Scott’s day-to-day involves leading a agile marketing team and overseeing all branding and creative functions, including collateral material, data sheets, website design and supporting the development of creative assets for our global network of sales partners. He plays a big role in creating continuity amongst all of Interface’s marketing assets. When he arrived, there were differences between marketing materials, so he has worked to standardize and strengthen the brand into the same style. His efforts and leadership in this area has really supported a leading look and representation for Interface.

When he’s not making the Interface brand shine, Scott can be found spending time with his wife and four kids. He has three sons ages 14, 13 and 10, as well as a 2-year-old daughter. So, Scott doesn’t have time for much more than being a great dad! When he does get some free time, he continues his creative passions through 3D modeling for himself, exploring painting and sculpture and other forms of art.

Scott has worked hard to make the Interface brand standout from the competition through a wide variety of platforms We’re thankful for Scott and his many talents and are glad we got share his story.

Choosing the Right Torque Transducer

Interface offers an extensive line of torque transducer models in different designs and capacities to fit all types of torque measurement testing requirements.  The first thing to understand when choosing the right torque transducer is how an actual torque transducer works in order to then determine the best type, style, model, mounting, capacity and special features for your requirements.

A torque transducer, like a load cell, consists of a metal spring element, or flexure. Strain gages are applied to the flexure in a Wheatstone bridge configuration. Torque applied to the sensor causes bending or shear strain in the gaged area, generating an output voltage signal proportional to torque.

To assist you in choosing the right torque transducer, get a copy of our Torque Measurement Primer for reference in your selection process.

Reaction or Rotary Type

There are also two different types of torque transducers: reaction and rotary. A reaction, also known as static, torque transducer measures torque without rotating, while a rotary torque transducer rotates as part of the system. A rotary sensor, also sometimes called dynamic torque, is merely a reaction sensor that is allowed to rotate. Normally, a reaction style sensor has a cable attached to it for supplying excitation voltage to the strain gage bridge and for output of the mV/V signal. Spinning of these sensors is prevented by the attached cable. To get around the issue of the attached cable, a variety of methods have been used for rotary sensors Some of those methods include slip rings, rotary transformers, rotating electronics, rotating digital electronics and radio telemetry.

Shaft or Flange Style

Torque transducers typically come in one of two major mechanical configurations, shaft or flange style. Shafts can be either smooth or keyed with keyed shafts coming in either single or double-keyed versions. Flange style sensors are typically shorter than shaft style, and have pilots on their flange faces as a centering feature.

Smooth shafts offer some advantages over their keyed counterparts, including more uniform introduction of the torque into the measuring shaft, ease of assembly and disassembly and zero backlash. A coupling designed for use with smooth shafts will have some method of clam ping to the shaft. This is commonly accomplished with split collars or shrink-disk style hubs. Shrink-disk style hubs usually include features to aid in their removal from the shaft.

Hubs for keyed shafts are simpler than those for smooth shafts and cost less but can suffer from wear due to backlash, especially in reciprocating applications. To prevent backlash, the hub must be installed on the keyed shaft with an interference fit, which is usually accomplished by either heating the hub before installation or pressing the hub onto the shaft.

Fixed or Floating Mount

There are also two main methods of mounting rotary torque transducers, fixed or floating. Fixed mount applies only to sensors with bearings and involves attaching the sensor housing to a fixed support. In floating installations the sensor is supported only by its drive and load side connections, which are typically single-flex style couplings. A flexible strap keeps the torque transducer housing from rotating. By definition, bearingless sensors are always floating mount.

Fixed mounting requires that the sensor housing have a means to attach it to the support. Sometimes the mount is an option on the sensor and sometimes the foot or pedestal mount is built as part of the sensor. The simplest fixed mount design sensors include a flat machined surface on the housing with threaded mounting holes. In fixed mount installations, double flex couplings must be used.

Capacity

Once you have determined the type, style and mount, how do you choose the right transducer for your project? One of the primary considerations is selecting the right capacity. On one hand, if you choose too large a range, the accuracy and resolution may not be enough for the application. On the other hand, if you choose too small a size, the sensor may be damaged due to overload, which is an expensive mistake. No manufacturer wants you to overload the sensor.

To select the proper size, first determine the amount of torque you want to measure. This can be easy or hard, depending on your application. An easy example would be a fastener torque application, where a certain amount of torque is to be applied to a fastener. A more difficult application might be trying to figure out how much torque is required for a new design wind turbine.

This is just a brief overview, there are many other variables to consider when choosing a torque transducer. To get a full rundown, check out our white paper Torque Measurement Primer. And as always, give us a call to speak directly with our applications engineers to learn more at 480-948-5555.

With more than 36,000 product SKUs in Interface’s extensive catalog, it can be a daunting task choosing the sensors that fit your exact needs. Fortunately, we’re here to work you through it! There is an abundance of content, including product brochures, white papers, case studies and application notes, for easy comparing of different product types and categories . These resources, as well as our model product datasheets with specifications can help navigate the options and along with common solutions by industry.

Our application engineers are just a phone call away and can help you determine the off-the-shelf products or custom solutions needed for your specific application. To learn more about our torque transducer selection, you can also visit www.interfaceforce.com/product-category/torque-transducers/.

ADDITIONAL RESOURCES

New Twist on Torque Webinar

AxialTQ

Latest Spin on AxialTQ

A Comparison of Torque Measurement Systems White Paper

Rover Wheel Torque Monitoring

Aircraft Yoke Torque Measurement

Insights in Torque Testing Featured in Quality Magazine

Torque Measurement for Electric Vehicles

 

Interface OEM Solutions Process

Engaging with Interface to create a solution uniquely designed for your specific application, at scale, requires a proven process that is trusted and reliable.  Interface works with manufacturers across all types of industries, from medical to energy, to supply custom-made sensors to are used to activate components, provide measured feedback in products, for safety requirements and monitor performance. When accuracy, quality and reliability matter, Interface is a partner of choice for OEM Solutions.

In partnership with integrators and original equipment manufacturers, we fully support four phases in our OEM Solutions Process: Design, Test, Build and Supply. The OEM Process infographic highlights high-level activities in each phase.

OEM Process

The Process for OEM Solutions at Interface

#1 DESIGN PHASE:  Collaborating with our team of OEM experts begins at the design phase. We work together with you providing engineering support and mechanical sensor design expertise as we work together to scope out the requirements and create design drawings. It is important to connect early to ensure you have captured all the important details that are relevant to embedding sensor technologies into products. Beyond size and capacity, you will want to determine what you will measure, how it will transmit data and frequency of communications, as well as exact sensor type, material use and configurations. Do you need a miniature load cell or multi-axis sensor capabilities? Will it be a load button, S-Type or load pin that fits your specs? These are the types of questions we address in the early stages of the design process. To complete this phase, we provide prototypes of early designs and also pricing based on scale of production and timelines for delivery.

#2 TEST PHASE: The second phase of the OEM process involves a complete testing protocol, selecting materials and supplies as well as packaging requirements.  For example, do you need a sealed solution, coated, stainless? We work to define exact specifications of the sensor based on performance and producibility. We work closely with our engineering, production and calibration teams through test and simulations.

#3 BUILD PHASE: Upon customer approval, once testing and prototypes are given the green light, we move to producing the devices at scale. Building requires an orchestrated team that is dedicated to quality and precision in the build process.  We measure and track each required step in the build phase with exactness, allowing for no exceptions or error. We set schedules, define the floor plans and build the instructions to build based on your requirements. These critical steps ensure the parts are built and delivered within your scheduled requirements and our quality standards.

#4 SUPPLY PHASE:  Interface acts as your supply chain partner in the management of production, stock and delivery. We work closely with you in inventory management and forecasting. This is where our partnership is heavily dependent on ongoing communications and reporting to project, produce and ship your parts when you need them.

In our recent webinar, Embedding Sensors in Products, our team highlights the steps, actions and commitment to getting you the solution you need. You can watch the recorded event here. Get a copy of our OEM Solutions brochure to learn more. Contact our specialized OEM Solutions Team today to get started by letting us know how we can partner with you for Interface OEM products and services.

Additional Resources:

OEM Solutions- Turning an Active Component into a Sensor

OEM: Medical Bag Weighing

OEM: Snack Weighing and Packaging Machine

OEM Industrial Robotic Arm App Note

Advancements in Instrumentation Webinar Recap

Interface experts recently hosted a conversation about what is changing in the world of instrumentation, as it related to sensor technologies and force measurement.  The new event, Advancements in Instrumentation is a continuation of our ForceLeaders Interface Instructional on Instrumentation Event.

The conversation began with a focus on what has changed in the last five years and why instrumentation is such an important topic in T&M. 

TRENDS IN ADVANCED INSTRUMENTATION

The number one change in test and measurement that we have identified is the omnipresent use of sensors in things that didn’t use to have sensors. This includes consumer products, home healthcare medical devices, EVs, factory equipment, tools, robotics, just to name a few. With the demands for more feedback, more data, and more required performance monitoring, instrumentation requirements are growing in functionality. 

We are getting smarter in our applications and uses cases, which means we need smarter devices to capture all the information to make intelligent decisions in product design, engineering, and manufacturing. We see this with smart factories, smart vehicles, smart agriculture, smart tools, smart medical technologies, these innovations and advancements need more data to make smart decisions, in design, test, build and use.

Other trends we discussed include the infusion of IoT into test and measurement. As we connect more instruments and devices into our networks, it requires advanced instrumentation and changes in what has been used as basic and standard instruments in the past. We also see customization and programmability needs changing and movement towards more digital interfaces.  Specifically, during this hour-long discussion we dive into digital outputs, amplifiers, communication protocols and advancements in software options, including a quick MathScript demo. Watch the video here.

TYPES OF INSTRUMENTATION HIGHLIGHTED IN WEBINAR

  • Signal Conditioners
  • Data Acquisition Systems (DAQ) 
  • Indicators
  • USB Interface Modules
  • Wireless and Bluetooth Telemetry Systems
  • Portable
  • TEDS Ready

Interface highlighted a series of new instrumentation solutions in great detail. This includes recent releases like our BX8 DAQ Series, Wireless Telemetry System Additions, 9850 Torque and Load Cell Indicator and SI-USB4. We also shared what we are bringing to market this year, including new portable indicators, a DAQ systems designed specifically for torque transducers, advanced multi-channel solutions and new USB indicators for wireless sensors. We also talked about custom instrumentation solutions when you need something designed for a unique use case or OEM application.

Throughout the webinar, instrumentation selection criteria were highlighted to help make the right decisions in pairing your measurement devices to the available instrumentation options. We addressed common questions, do’s and don’ts, and tips that are helpful in evaluating what will work with your project, in your lab or at your factory.

ADVANCEMENTS IN INSTRUMENTATION WEBINAR TOPICS

  • Types of Advanced Instrumentation
  • Selection Criteria for Advanced Instrumentation
  • Recap Digital Versus Analog Options
  • What’s New in Wireless + Bluetooth Telemetry Systems 
  • New Instrumentation Solutions from Interface
  • Trends in Test Data Management + Systems
  • Applications + Uses Cases
  • FAQs

You can watch the entire conversation to learn more.

WHY INTERFACE FOR INSTRUMENTATION

With so many options available, we want to make it easier in choosing the right instrumentation. Here are a few reasons why Interface is a provider of choice when it comes to instrumentation for force measurement.

  • Interface is a single point of contact for measurement device and instrumentation
  • Interface offers a range of solutions from USB Interface Modules to Multi-Channel and Wireless DAQ Systems
  • Interface can partner to design and build complete systems
  • Interface has expertise for technical support
  • Interface has deep use case experience across all the sensors we offer, from load cells to wireless load pin technologies
  • Interface instructional videos, literature, software demonstrations and manuals available online in your Support area of the website
  • Interface provides software with our instrumentation

Additional Resources

Interface Instructional on Instrumentation Event

Recap of Inventive Multi-Axis and Instrumentation Webinar

Instrumentation Analog Versus Digital Outputs

Instrumentation Options in Test and Measurement

Force Measurement Instrumentation 101

Industry Leader in Test and Measurement

Interface was founded as a supplier of cutting-edge test and measurement industry solutions in 1968. It’s in our DNA and fundamental to what we’ve been engineering, manufacturing and selling for more than five decades. What started out as first to market with a pancake-style LowProfile load cell, has expanded into a broad mix of world-class test and measurement products and calibration services that enable T&M professionals full access to complete systems, from sensors to instrumentation.

Our mix of load cells, torque transducers, multi-axis sensors, calibration systems and other force measurement solutions allow engineers, product designers and manufacturers access to industry-leading testing devices that provide the most accurate and reliable data possible.

Whether that is testing the torque when applying a screw via robotics or verifying touch screen force for the latest 5G consumer hand-held device, we provide the sensors that test the machines, tools, and actual products before and in-market.

Interface is steadfast in ensuring the test and measurement professionals have more than quality sensors. We also provide T&M solutions to maintain and service testing equipment and devices used in labs and facilities throughout the world. The range of products we offer are from standard precision use to calibration-grade. Whether we are supplying our 1800 Platinum Standard Load Cell or a Verification Load Frame, Interface supports all types of T&M pros. Or as we like to call them, ForceLeaders.

Test and measurement use cases are growing due to the demands for miniature load cells, more data for intelligence gathering and automation functionality.  It is estimated that more than $27B is spent in the production of test and measurement equipment globally. And the market is growing due to professionals seeking advancements in equipment and sensor technologies for use in new products, maintaining equipment and sustaining usability with data and proven testing rigor.

Interface sensors are involved in a wide range of T&M applications across a multitude of industries, with increased visibility into new markets like IoT and smart data-drive technologies.

Trends in test and measurement that are fueling the greatest growth:

  1. Medical and healthcare devices using miniature and wireless sensor technologies
  2. Activation of sensors into real-time data monitors and feedback tools
  3. Networking and communications use with 5G and wireless sensor capabilities
  4. Robotics and industrial automation machines and equipment
  5. Safety and regulation equipment with performance sensors
  6. Consumer electronics durability and usability
  7. Environmental exposure and changing conditions, from submersible to extreme temperatures

Read more about the trends in test and measurement in 2022 Test and Measurement Industry Trends.

The reason Interface is the industry-leading provider is because T&M requires precision and reliability. Interface sensors are known for being the most accurate in the industry. From structural and material testing to static and fatigue testing, our products provide key data for manufacturers, engineers and testing professionals to ensure their products and services will hold up under designed loads and performance standards.

From our Ultra Low Capacity series measuring forces in mere grams to our LowProfile™ load cells with capacities up to 2 million lbf, our solutions can meet the needs for any test profile required when it comes to force.  In regard to torque testing, Interface can supply torque transducers with ranges as low as 0.005 Nm and up to 340K Nm to meet the needs of your test. Our overload protected low capacity load cells and torque sensor provide the most accurate results in the industry. In fact, T&M experts measuring torsion effects, tension tests, mass and kinetic energy are utilizing our products. Watch the video below to see some popular Interface Test and Measurement Product Solutions.

Interface provides an overview of solutions for the T&M industry, detailing our capabilities and providing an overview of some of recent applications. Of course, there are hundreds of use cases every year that depend on Interface, so these are just a couple highlights we thought you would find interesting below. Download the T&M Industry brochure at https://bit.ly/37q3Bnx. E-Bike Torque Measurement

An E-Bike manufacturer needed to test the torque on their electronic bicycles. They needed a torque sensing system that measures how much force the bike rider is pedaling onto the pedals, because this determines how much electric power the bike’s motor generates. Interface suggested installing the Model T12 Square Drive Torque Transducer where the pedal assist sensor would normally be. The T12 Square Drive Torque Transducer’s results can be recorded, graphed, and logged using the SI-USB4 4 Channel USB Interface Module when connected to the customer’s PC. Using this solution, the E-Bike manufacturing company successfully tested the torque on their electronic bicycles with Interface’s products and instrumentation. Read the full E-Bike app note here.

Proving Theoretical Cutting Forces of Rotary Ultrasonic Machining

Rotary ultrasonic machining is a hybrid process that combines diamond grinding with ultrasonic machining to provide fast, high-quality drilling of many ceramic and glass applications. This new method has been theoretically proven using computer models. Rotary ultrasonic machining generates forces of a very small magnitude. To prove this theory, any load cell used for measurement must be sensitive, while at the same time retaining high structural stiffness within a compact, low-profile envelope. Interface’s 3A120 3-Axis load cell is installed in the rotary ultrasonic machine to measure the forces being applied to a sample part. With clear signals and minimal crosstalk, the applied forces are recorded and stored using an the BSC4D Multi-Channel PC Interface Module. The 3-Axis load cell provides excellent data helping uncover the relationship between machine cutting parameters and the forces applied on the component. Using this knowledge, the machining process can be reliably optimized for new materials and operations. Learn more about this machining T&M app note here.

You can learn more about all types of T&M applications in our Applications Catalog, demonstrating the diversity and range of T&M solutions and ingenuity of our customers.

Additional Resources:

Interface Solutions for Testing Tools

Insights in Torque Testing Featured in Quality Magazine

 

Interface Helps Power the World

As technology and infrastructure have advanced to accommodate various forms of energy collection, the role of force measurement in the test and manufacturing of these machines has grown significantly. As a precision force measurement solutions provider, Interface has been a long-time partner to these global production and equipment customers in the energy industry. Interface sensors are used in different applications for various sectors, including oil, gas, wind, coal, solar, hydro, geothermal, nuclear, renewables and emerging alternatives around the world, as detailed in our energy solutions overview.

As a pioneer of load cell technology, Interface is recognized globally for providing the most accurate and reliable force measurement solutions utilized by energy market leaders and suppliers of parts, machines and technologies used in the sector. Accuracy matters for safety and reliability in energy-related test and measurement projects, engineering and product design, and in the original equipment manufacturing of components that require precision sensor technologies.

Interface products are used in several different applications for the energy marketplace. In fact, Interface is recognized as the prominent oil and gas solutions provider of force measurement solutions. These companies within the energy industry recognize Interface for product reliability, accuracy, and innovative design, as detailed here: Interface Most Promising Energy Tech Solution Provider.

To meet the growing demands for best-in-class energy market solutions, Interface recently launched our new downhole force measurement solution for high-pressure, high-temperature applications, the Interface Pressure Compensated Downhole Load Cell (IPCD). The IPCD is a Wheatstone bridge foil-gaged-based force measurement solution using proprietary compensation methods and designed to provide highly accurate force data in harsh environments, like those found in the oil and gas industry, while requiring limited maintenance compared to similar solutions on the market. Read the new IPCD technical white paper here.

Another area that is growing tremendously are alternative energy applications. Recently, Interface has been involved with projects involving wind and water energy, as well as playing a significant role in testing batteries on electric vehicles. Also, our energy customers come to us needing a custom force measurement solution to deal with these unique challenges for all energy types including thermal, radiant, chemical energy, nuclear, electrical, motion, sound, elastic, and gravitational energy.

Types of energy industry applications that utilize Interface products, services and technologies include:

  • Oil and gas extraction equipment and parts
  • Hydro power generation
  • Windmill energy equipment
  • Wireline spool tension control
  • Fuel management and measurement
  • Solar panel testing
  • Hook load tension
  • Torque tong monitoring
  • Tool recovery and fishing
  • Wave energy generator
  • Downhole equipment
  • Plug setting
  • Calibration and equipment maintenance
  • Storing crude oil and natural gas
  • Transporting crude oil and natural gas
  • Wireless monitoring equipment
  • Activation of components and embedding sensors

We recently introduced a new solutions brochure on our energy solutions page.  Additionally, we have included a few application examples below to give you an idea of the type of work we do and the customers we serve in energy:

Wave Energy Generator

Wave EnergyA scientist had been tasked to create electricity by using the energy that is generated by ocean waves. As electricity is generated by ocean waves, an Interface load cell was used measure tether line tension using a submersible 3200 Hermetically Sealed LowProfile® Precision Stainless Load Cell. The mooring line was attached to the load cell base and the platform generator was connected to the load cell hub. This measured the forces that were generated by the ocean waves and data was later analyzed by the customer’s Data Acquisition System (DAQ). Scientists used force data to make adjustments to the tether line. Also, if tether line breaks free, the scientist can be notified immediately to reattach the tether line.

Windmill Energy

A customer wanted to improve the performance of a windmill by adjusting the blade pitch and measuring the torque generated as power ramps are studied. Interface offered a T2 Ultra Precision Shaft Style Rotary Torque Transducer which can be coupled between windmill blade propeller and electric generator. Information is sent to customer’s Data Acquisition System (DAQ). Using this solution, the customer was able to use torque data to determine the optimal blade pitch for the windmill and generate more power with less stress on the bearings.

Interface has worked with market leaders and innovators in the energy industry for decades. As new forms of energy are developed, new force innovations are required to confirm and test accuracy and reliability. As well as enhancements to machines, parts, equipment and materials, Interface is a supplier of choice for standard, modified and custom solutions. Our sensors are embedded into equipment, as well as part of everyday monitoring of force and pressure.  To learn more about our work in the energy industry, visit our solutions page at https://www.interfaceforce.com/solutions/energy/.

Additional Resources

Interface Leads Innovation in Oil and Gas Force Measurement

Announcing the Launch of the Interface Pressure Compensated Downhole Load Cell

Interface Pressure Compensated Downhole Load Cell White Paper

 

Taking Flight with Interface Solutions for Aircraft Testing

As a top supplier of premium force measurement solutions for the aerospace industry, one of our critical areas requiring precision accuracy and high-quality products is for testing airplanes. Interface load cells, torque transducers, and instrumentation are used regularly in testing of all types of aerospace apparatus, components, and machines, along with embedding our force sensors in aircraft for ongoing simulation tests and inflight data acquisition.

Aircraft, spacecraft, military, and defense companies such as Boeing, Airbus, Lockheed, Northrop Grumman, Bombardier, Embraer, Gulfstream, NASA, and Cessna and many others in the supply and production lines utilize Interface load cells for thrust, wing, static, and fatigue testing. While structural test applications use many types of LowProfile™ load cells, Interface also offers a wide variety of load washers, load buttons and miniature tension and compression load cells for test, production, and control monitoring applications for aircraft.

Why do aircraft testing professionals prefer Interface solutions?  One reason is our moment and temperature compensated load cells use proprietary alloy strain gages for extreme accuracy and reliability that is unmatched by other brands. Using eight proprietary strain gages per sensor, our 4mV/V output well exceeds the performance requirements for testing these specialized aerospace vehicles.

In addition, before the airplanes are even assembled, every manufactured part and components must go through rigorous testing. There are hundreds of machines that are used on the production line for the hundreds of thousands of components needed to complete these specialized craft. Interface load cells and torque transducers are found on many of these production and test machines. Our products are used to provide a wealth of insight to guide manufacturers through research, development and final build. Because testing is so inherent for any of these parts, Interface products provide reliability and accuracy when there are no exceptions.

We recently developed several new application notes on ways our products are used to test airplanes. Included below is a preview of a few of the latest additions to our application notes catalog.

Jet Engine Thrust Test

A customer wanted to conduct a static jet engine thrust test that can accurately determine the engine’s thrust, burn time, chamber pressure, and other parameters, providing invaluable data to propellant chemists and engineers. They needed a high accuracy load cell with excellent repeatability to withstand thrust forces in very harsh environments. Interface offered a 1000 High Capacity Fatigue-Rated LowProfile™ Load Cell, which is ideally suited based on their performance for this application. The load cell reacts to the thrust forces produced by the jet engine and the signals are collected and recorded to create a “thrust curve” of the engine. The performance of an Interface LowProfile™ Load Cell allowed the engineers to be confident in the data acquired from the static testing. Additionally, the repeatability of the load cell results in reduced time between tests, making static jet engine thrust testing more efficient. Read the new Jet Engine Thrust Test application note here.

Aircraft Yoke Torque Measurement

An aircraft manufacturer wanted to measure the torque of their aircrafts yoke or control wheel. They also wanted to monitor the torque and forces applied to ensure that the aircrafts controls are operating properly. Interface suggested using the AT103 2-Axis Axial Torsion Load Cell to measure both torque and force within this single sensor. It can be installed inside of the yoke, and can measure the rotation of the yoke, and the forward and backwards movements. Data can be measured and paired with the SI-USB4 4-Channel USB Interface Module and displayed with the customer’s laptop. Using this solution, the customer was able to measure and monitor the torque and force of the yoke control. Read the Aircraft Yoke Torque Measurement application note.

Aircraft Engine Hoist

An aerospace company wanted to test their aircraft engine hoist in order to safely lift, remove, or install engines efficiently and safety. Interface’s solution was to install WTSSHKB-HL Wireless Bow Shackles to the aircraft engine hoist. A heavy load was added to the hooks where the aircraft engine would be. Results from the heavy load are then sent wirelessly to both the WTS-BS-4 USB Industrial Base Station attached to the customers computer or laptop, and the WTS-1-HS Handheld display for single transmitters. With these products, the customer was assured that the aircraft engine hoist was strong and secure enough to lift a heavy engine when installing or removing an engine inside of an aircraft. Learn more about the Aircraft Engine Hoist application here.

Our expert application engineers help our customers by providing technologies that provide exceedingly accurate measurement used in all types of testing, including structural, static and fatigue. For more information on Interface and its solutions designed for airplanes and other aerospace applications, please visit https://www.interfaceforce.com/solutions/aerospace.

Additional Aircraft Testing Resources

Aircraft Wing Fatigue App Note

Aircraft Screwdriver Fastening Control App Note

Aircraft Lifting Equipment App Note

Examining Interface Aerospace Industry Solutions

 

Fine-Tuning Testing Solutions for Championship Racing Vehicles

As every championship race car team looks to find its competitive advantage, measured in seconds, Interface continues to play a pivotal role in ensuring accurate force measurement solutions are used to test the limits of every component used in motorsports.

The automotive industry has long depended on the quality and accuracy of Interface load cells, torque transducers, instrumentation, and multi-axis sensors.  Did you know it is also used in the competitive arena of auto racing?  Performance demands are constantly being pushed for all types of racing machines, whether it’s for NASCAR, IndyCar, or even the amateur level racing. What is known in the racing community is that engineers and manufacturers of equipment and parts used in these high-performance vehicles rely on Interface for precision testing solutions.

In our new case study, Building a Championship Race Car, we detail some of the specific sensor technologies used in the racing arena for high performance testing. We highlight how Interface’s TXY 2-Axis Load Cell is used in testing tires. Leading tire manufacturers, including SCCA sponsors, utilize these sensors to get precise test data on tire uniformity. The TXY has minimal cross talk across its strain gage bridges, ideal for this type of testing.

We also detail how our top load cell, the LowProfile, is frequently used in testing shocks, springs, and struts.  With any racing vehicle, control is fundamental, and the equipment used to maintain that control must be proven to meet the exceptionalism and requirements of racing professionals and their teams.

In this technical article, learn how the popular AxialTQ Torque Transducer, a bearing-less, compact wireless design, affords the test engineer suitable data collection for engine analysis, as well as brake HP calculations for active performance testing.

A competitive spirit runs deep within our Interface team, it’s what we do. We like to ensure our products are top class and help our customers win!  We also have first-hand experience in how our products are used in the racing arena. That experience affirms the positive performance effects of force measurement in auto racing.

Did you know that Interface’s Vice President of Sales, Brian Peters, has accomplished eight National Championships in Sports Car Club of America (SCCA) solo racing, and also competes in the One Lap of America cross-country, weeklong multi-competition racing event?

The annual SCCA National Championships draws more than 1,000 drivers from across North America to compete over two days. Wins are decided by mere thousandths of a second. Knowing how our products are used in high-performance racing environments, only fuels us more.

Performance and precision are critical and Interface force measurement solutions help to fine-tune critical racing vehicles, parts, and apparatus used to test different components in motorsports. We also like to say, it’s a competitive advantage. Read our case study to learn more.

Additional Resources

Powered by Interface Race Update from Brian Peters

Race Car Suspension Testing

Driving Force in Automotive Applications

Automotive and Vehicle