Posts

Why Mechanical Engineers Choose Interface Solutions

Mechanical engineers play a crucial role in the design, development, and maintenance of mechanical systems that are integral to modern society and industries. They apply tenets of physics, materials science, and engineering to design, test and analyze, fabricate, and maintain mechanical systems in various industries, including automotive, aerospace, energy, robotics, and manufacturing.

Frequently, mechanical engineers use Interface force measurement devices to gather data, analyze performance, and ensure the safety and reliability of mechanical systems. Force measurement technologies help them to quantify the magnitude and direction of forces acting on objects or structures.

Mechanical engineers are active in the research and development of modern technologies and innovations, from small components to large industrial machines. This vital role is typically involved in the selection of materials, manufacturing processes, and quality control to ensure that mechanical systems are safe, dependable, efficient, and cost-effective.

Interface’s quality and accuracy of load cells make them a preferred engineering solution for various use cases. The range of products are used for multiple testing and design applications. The most common products selected by mechanical engineers include:

Engineers use sensors to determine the forces acting on different components or subsystems within a larger system, such as an engine, gearbox, or suspension system, during operation. This information can be used to verify that components are operating within their design limits, identify potential failure points, and optimize performance.

Force measurement devices are used by mechanical engineers in quality control processes to ensure that mechanical systems meet design specifications and performance requirements by performing tests during the manufacturing process, such as checking the tension in bolts, verifying the strength of welds, or measuring the force required for assembly or disassembly of components.

Mechanical engineers use impact force sensors to measure the forces experienced by a vehicle during crash testing, or fatigue testing machines to apply cyclic loads to components or structures to simulate real-world conditions. They participate in the design, development, and optimization of renewable energy systems such as solar power, wind power, hydropower, and geothermal power. Read Interface Solutions for Growing Green Energy.

Mechanical engineers are at the forefront of advancements in robotics and automation, including designing and developing autonomous vehicles, drones, robotic manufacturing systems, and automated processes for industries such as automotive, aerospace, and manufacturing. Advancements in materials science is a key role for many mechanical engineers. As well, these types of engineers play a crucial role in advancing the field of biomechanics and developing medical devices.

IoT and smart systems that integrate mechanical components with sensors, actuators, and control systems to create intelligent and connected systems are a result of the work of mechanical engineers. This includes developing smart buildings, smart appliances, smart transportation systems, and other IoT-enabled devices. Read Interface Sensor Technologies Enables IoT Capabilities

Mechanical engineers use force measurement devices to perform tests and experiments to determine the forces experienced by mechanical systems. Load cells help them to quantify the loads on structural components, such as beams, columns, or joints, to understand their performance under different conditions.

ADDITIONAL RESOURCES

Electrical Engineers Choose Interface Sensor Technologies

Interface Celebrates Engineers

Interface Solutions for Production Line Engineers

Interface Solutions for Material Testing Engineers

Quality Engineers Require Accurate Force Measurement Solutions

Why Product Design Engineers Choose Interface

Why Civil Engineers Prefer Interface Products

Use Cases for Load Pins

Performance Structural Loading App Note

Interface OEM Solutions Process

 

 

Interface Explores Commercial Launch Solutions

Interface supplies advanced sensor technologies to high-profile companies in some of the most challenging environments, including those that are using their innovations for exploration beyond planet earth.

Aerospace commercial launch programs have a critical role in advancing our understanding of the world around us, as well as in supporting a wide range of industries and applications. Commercial launch is typically defined by engineers and aerospace market leaders as the design, manufacturing, and operation of rockets and spacecraft for commercial purposes. This includes providing launch services to customers such as private companies, governments, and research institutions.

Collaborating with engineers and market leaders at the forefront of the commercial launch industry, Interface is proud to take part in enabling space exploration and satellite deployment for a wide range of use cases. Commercial launch has a big part of our global economic growth for scientific research, environmental monitoring, communications, and national security.

Force measurement devices are critical tools for commercial launch companies, helping ensure the safety and effectiveness of spacecraft and rockets during design, testing, and launch. Interface high-accuracy load cells, torque transducers, load pins and wireless instrumentation are utilized throughout testing phases of aerospace vehicles, small and large. Interface products are used by commercial launch companies for a range of applications, including:

Rocket and Engine Testing: Load cells and force measurement devices are used to measure the thrust and other forces generated by rocket engines during testing. This information is critical for ensuring that the engine is operating safely and as designed. Read

Launch Vehicle Testing: Load cells and force measurement devices are used during testing of the launch vehicle to measure the loads and stresses that it will experience during launch. This helps ensure that the rocket is designed to withstand the forces it will encounter during launch.

Payload Integration: Load cells are used to measure the weight and balance of the payload during integration into the rocket. This helps ensure that the rocket is properly configured for launch and that the payload is secure.

Parachute Deployment: Load cells are used to measure the forces generated during parachute deployment and landing. This helps ensure that the parachute system is designed to deploy safely and effectively. See Parachute Deployment and Deceleration Testing

Spacecraft Separation: Load cells are used to measure the forces generated during spacecraft separation from the launch vehicle. This helps ensure that the spacecraft is safely released from the rocket and that it is on its intended trajectory.

Force measurement plays an important role in space exploration and commercial launches, including vehicle designs, automation of machines that manufacture components, structures used for launch testing, and the actual engineering and building of the spaceships. See our case study, Force Measurement for Space Travel.

With the growing investments in commercial space applications, Interface solutions are in high demand for testing in vehicles in launch environments.  Interface products are used in thrust testing, structural testing, and even force gravity testing.  Every test must be verifiably accurate due to the trustworthiness and safety requirements of moving the ever-increasing valuable payloads, which is beyond stellar communication technologies. It’s now about launching and returning humans, with frequency, in the new era of space travel. Safety is priority number one., Here are a few application examples of Interface solutions utilized by commercial launch market leaders.

Rocket Structure Testing

NASA’s Space Launch System (SLS) core stage is largest ever built at 27 feet in diameter and 200+ feet tall. Core components including liquid hydrogen and oxygen tanks must withstand launch loads up to nine million pounds-force (lbf). Interface load cells were attached to hydraulic cylinders at various locations along test stands to provide precise test forces. Strain gages were also bonded to rocket structure surface and connected to data acquisition system for stress analysis. Using this solution, engineers can measure loads applied at various areas on the rocket structure, verifying the structural performance under simulated launch conditions. Read more about this type of testing here, Rocket Structure Testing

Space Dock Capture Ring Force Testing

A space company wanted to test their spacecraft docking simulator. They wished to test the forces of the actuators used during the “lunge”, when the soft capture ring is lunged forward to latch onto a space vehicle that has been mounted. They also wanted to ensure they are working properly when engaged, and that it does not go past its overload force limit. Interface suggested using multiple WTS 1200 Standard Precision LowProfile™ Wireless Load Cells to be installed to the actuators of the capture ring. Both as wireless solutions, measurements can be recorded through the WTS-AM-1E Wireless Strain Bridge Transmitter Module, which then can transmit to the WTS-BS-1 Handheld Display or the WTS-BS-6 Wireless Telemetry Dongle Base Station for the customer to record, log, and graph on their computer. Interface’s Wireless telemetry system successfully measured the forces of the soft capture ring of the space docking port with overload protection. Learn more about this application here: Space Dock Capture Ring Force Testing

Reduced Gravity Testing

In this application, Interface supplied a Model 1100 Series Load Cell, which was installed in-line with a steel support cable to actively measure the vertical load on the system. A control system was then utilized, (which includes a Model 9870 High Speed High Performance TEDS Ready Indicator), to monitor the load cell output and continuously offload a portion of a human or robotic payload weight during all dynamic motions. Using precise feedback from the load cell, the control system commanded a motor to raise or lower the subject to maintain a constant offload force. During the simulation, the system actively compensated for the subject’s movement to accurately reproduce a microgravity environment. Read more about this test here: Reduced Gravity Simulation.

Commercial launch companies are often driven by market demand and competition, which can lead to innovations in rocket and spacecraft design, manufacturing processes, and launch operations. This in turn can lead to advancements in space exploration, scientific research, and other applications that benefit society. We are proud to play a part of these advancements and discoveries.

Interface is exhibiting again at Space Tech Expo 2023.

ADDITIONAL RESOURCES

Examining Interface Aerospace Industry Solutions

Interface and The Race to Space

Aerospace Brochure

Solutions Provider for Aerospace & Defense

 

 

Electrical Engineers Choose Interface Sensor Technologies

Interface is a premier provider of force, torque and weighing solutions to electrical engineers around the world who are responsible for creating new products, solving problems, and improving systems.

Electrical engineers vary in specialization and industry experience with responsibilities for designing and testing electrical systems and components such as power generators, electric motors, lighting systems, and production robots. They use their expertise and knowledge of electrical systems and components to design, develop, assess, and maintain safe and reliable electrical systems. There are many electrical engineers who work on complex systems and who are responsible for troubleshooting and diagnosing problems that may arise.

The electrical engineers whose primary focus is research and development look to create new electrical technologies and advance existing systems. Projects related to renewable energy, smart grids, wireless communication systems, and electric vehicles utilize all types of measurement solutions throughout all phases of their R&D. Accuracy of testing is essential for electrical engineers, to ensure components comply with safety regulations and industry standards.

How does an electrical engineer use sensor technology for testing?

Sensors are a critical tool for electrical engineers in testing and optimizing the performance of electronic devices, systems, and processes. The type of sensor used, and the specific testing application will depend on the needs of the project or product, including the following examples.

  • Structural testing: Sensors are used to measure the structural integrity of materials and components. Load cells convert force or weight into an electrical signal that can be measured and analyzed. For example, Interface’s standard load cells are frequently used to measure the amount of strain or deformation in a material under load, which can help electrical engineers design stronger and more reliable structures. See how Interface’s products were used in an EV battery structural testing project.
  • Process control: Sensor technologies, including load cells and torque transducers are frequently utilized in manufacturing processes to monitor and control various parameters. Electrical use this data gathered through various instrumentation devices to ensure that the manufacturing process is operating within the desired parameters and to optimize the process for efficiency and quality.
  • Environmental testing: Environmental sensors are commonplace for measuring temperature, humidity, pressure, and other environmental factors. Electrical engineers can use this data to test and optimize the performance of electronic devices and systems under various environmental conditions. Read Hazardous Environment Solutions from Interface to learn more.

Electrical engineers use load cells in a variety of applications, such as measuring the weight of objects, monitoring the force applied to a structure, or controlling the tension in a cable or wire. The choice of load cell will depend on the specific application and the requirements for accuracy, sensitivity, and capacity. Electrical engineers must also consider factors such as environmental conditions, installation requirements, and cost when selecting a load cell.

Electrical engineers work in a wide range of industries and sectors, as their expertise is required in many different areas of technology and engineering. Interface has supplied quality testing devices and components to EEs in every sector, from electronics to construction.

Electrical engineers in the electronics industry use Interface products in designing and developing components such as microchips, sensors, and circuits. Demands for intrinsically safe load cells and instrumentation come from electrical engineers that are responsible for designing, maintaining, and improving power generation and distribution systems, including renewable energy systems such as solar, wind, and hydropower.

More than any time in Interface’s 55-year history, electrical engineers who work on a variety of aerospace and defense projects, are using Interface sensor products for designing and testing avionics systems, communication systems, and navigation systems.

We also continue provide electrical engineers who engage in designing and developing the electrical and electronic systems in vehicles, including everything from powertrains and engine management systems to infotainment systems and driver assistance technologies with new and innovative force measurement solutions.

Manufacturing electrical engineers who engage in designing and optimizing manufacturing processes, as well as designing and evaluating the electronic components and systems used in manufacturing equipment are frequently using Interface sensors. This includes the rising demands for sensors in robotics.

Electrical engineers across many different industries depend on Interface, just as all the companies and organizations around the world depend on their expertise. Interface is a proud partner of engineers across all disciplines.

ADDITIONAL RESOURCES

Interface Celebrates Engineers

Interface Solutions for Production Line Engineers

Quality Engineers Require Accurate Force Measurement Solutions

Interface Solutions for Material Testing Engineers

Why Civil Engineers Prefer Interface Products

Why Product Design Engineers Choose Interface

Ruggedized Test and Measurement Solutions Webinar

Interface force measurement engineers and solution experts host an online discussion focused on products used to withstand one or more conditions related to temperature, cycling, moisture, environmental stresses. Learn about Interface’s stainless steel load cells, environmentally sealed options, submersible test and measurement products, enclosures, wireless capabilities, load pins, intrinsically safe products. We detail solutions used for all types of applications used in industries that include medical device, aerospace and defense, industrial automation, infrastructure, maritime and general test & measurement. We discuss sensors models, capabilities, features and FAQs. We dive into use cases, tips, measurement know-how and OEM products.

Taking Flight with Interface Solutions for Aircraft Testing

As a top supplier of premium force measurement solutions for the aerospace industry, one of our critical areas requiring precision accuracy and high-quality products is for testing airplanes. Interface load cells, torque transducers, and instrumentation are used regularly in testing of all types of aerospace apparatus, components, and machines, along with embedding our force sensors in aircraft for ongoing simulation tests and inflight data acquisition.

Aircraft, spacecraft, military, and defense companies such as Boeing, Airbus, Lockheed, Northrop Grumman, Bombardier, Embraer, Gulfstream, NASA, and Cessna and many others in the supply and production lines utilize Interface load cells for thrust, wing, static, and fatigue testing. While structural test applications use many types of LowProfile™ load cells, Interface also offers a wide variety of load washers, load buttons and miniature tension and compression load cells for test, production, and control monitoring applications for aircraft.

Why do aircraft testing professionals prefer Interface solutions?  One reason is our moment and temperature compensated load cells use proprietary alloy strain gages for extreme accuracy and reliability that is unmatched by other brands. Using eight proprietary strain gages per sensor, our 4mV/V output well exceeds the performance requirements for testing these specialized aerospace vehicles.

In addition, before the airplanes are even assembled, every manufactured part and components must go through rigorous testing. There are hundreds of machines that are used on the production line for the hundreds of thousands of components needed to complete these specialized craft. Interface load cells and torque transducers are found on many of these production and test machines. Our products are used to provide a wealth of insight to guide manufacturers through research, development and final build. Because testing is so inherent for any of these parts, Interface products provide reliability and accuracy when there are no exceptions.

We recently developed several new application notes on ways our products are used to test airplanes. Included below is a preview of a few of the latest additions to our application notes catalog.

Jet Engine Thrust Test

A customer wanted to conduct a static jet engine thrust test that can accurately determine the engine’s thrust, burn time, chamber pressure, and other parameters, providing invaluable data to propellant chemists and engineers. They needed a high accuracy load cell with excellent repeatability to withstand thrust forces in very harsh environments. Interface offered a 1000 High Capacity Fatigue-Rated LowProfile™ Load Cell, which is ideally suited based on their performance for this application. The load cell reacts to the thrust forces produced by the jet engine and the signals are collected and recorded to create a “thrust curve” of the engine. The performance of an Interface LowProfile™ Load Cell allowed the engineers to be confident in the data acquired from the static testing. Additionally, the repeatability of the load cell results in reduced time between tests, making static jet engine thrust testing more efficient. Read the new Jet Engine Thrust Test application note here.

Aircraft Yoke Torque Measurement

An aircraft manufacturer wanted to measure the torque of their aircrafts yoke or control wheel. They also wanted to monitor the torque and forces applied to ensure that the aircrafts controls are operating properly. Interface suggested using the AT103 2-Axis Axial Torsion Load Cell to measure both torque and force within this single sensor. It can be installed inside of the yoke, and can measure the rotation of the yoke, and the forward and backwards movements. Data can be measured and paired with the SI-USB4 4-Channel USB Interface Module and displayed with the customer’s laptop. Using this solution, the customer was able to measure and monitor the torque and force of the yoke control. Read the Aircraft Yoke Torque Measurement application note.

Aircraft Engine Hoist

An aerospace company wanted to test their aircraft engine hoist in order to safely lift, remove, or install engines efficiently and safety. Interface’s solution was to install WTSSHKB-HL Wireless Bow Shackles to the aircraft engine hoist. A heavy load was added to the hooks where the aircraft engine would be. Results from the heavy load are then sent wirelessly to both the WTS-BS-4 USB Industrial Base Station attached to the customers computer or laptop, and the WTS-1-HS Handheld display for single transmitters. With these products, the customer was assured that the aircraft engine hoist was strong and secure enough to lift a heavy engine when installing or removing an engine inside of an aircraft. Learn more about the Aircraft Engine Hoist application here.

Our expert application engineers help our customers by providing technologies that provide exceedingly accurate measurement used in all types of testing, including structural, static and fatigue. For more information on Interface and its solutions designed for airplanes and other aerospace applications, please visit https://www.interfaceforce.com/solutions/aerospace.

Additional Aircraft Testing Resources

Aircraft Wing Fatigue App Note

Aircraft Screwdriver Fastening Control App Note

Aircraft Lifting Equipment App Note

Examining Interface Aerospace Industry Solutions

 

Interface and The Race to Space

Like many, we are celebrating some incredible milestones in the space industry this year. With every milestone, there is a long path of discovery, invention, and experience that creates these extraordinary moments.

The 53-year history of Interface is rich in experiences supplying force and torque measurement solutions to the engineers and innovators of space vehicles and the structures that support them. For decades Interface has supplied load cells, torque transducers, and multi-axis sensors of all sizes and capacities to the organizations that put the first man on the moon and to those that are pursuing the commercialization of space travel and colonization of other planets.

Our legacy as a reputable provider of sensor technologies has created a reliance on Interface products and expert calibration services. Our products have been and are used today in the development and flight qualification for the ascent and now descent of spacecraft, with rapid expansion and frequency. As we enter a new era of recoverable spacecraft, we are seeing more dependence on Interface as the supplier of the measurement devices used by these remarkable innovators, builders, and test engineers.

Why Interface? It comes down to reliability and accuracy, two extremely important measures of success in the launch and recovery of spacecraft.  These measures are also critical factors given the acceleration in space travel for both valuable cargo and with greater occurrences, humans.

Beyond the performance factors of precision force and torque measurement solutions that Interface engineers and manufactures, we are chosen by the steadfast leaders and new entrepreneurs in the space industries because of quality and our ability to customize our products to exact specifications.

You will find Interface products used in thrust testing, structural testing and even force gravity testing.  Every new test and launch inspire the Interface team to keep doing what we do. In fact, you can find our high-capacity and miniature load cells in use with future engineers and astronauts at universities around the world that are inventing new planetary exploration vehicles and rockets.  Learn more here.

Interface provides products that accurately measure thrust, which is critical in cargo lifting. Every test must be verifiably accurate due to the trustworthiness and safety requirements of moving the ever-increasing valuable payloads, which is beyond stellar communication technologies. It’s now about launching and returning humans, with frequency, in the new era of space travel.

Interface load cells are also commonly used in the production and development of launch structures.  These structures must withstand incredible forces during liftoff and return.

You can also find the Interface blue and stainless-steel load cells in the designs and for testing structures and aerodynamics for payloads of all types.

NASA’s Space Launch System (SLS) core stage is 27 feet in diameter and 200+ feet tall. Core components including liquid hydrogen and oxygen tanks must withstand launch loads up to 9 million pounds-force (lbf). Interface 1200 High-Capacity Standard Precision Low-Profile™ Load Cell Model 1260 for 600,000 lbf capacity, Model 1280 for 1,000,000 lbf capacity and Model 1290 for 2,000,000 lbf capacity were used in the design and testing of the structure.

Load cells were attached to hydraulic cylinders at various locations along test stands to provide precise test forces. Strain gages bonded to rocket structure surface and connected to data acquisition system for stress analysis. Read more here: /solutions/aerospace-industry/rocket-structural-testing/.

Exploring the possibilities of what you can measure?  Interface is here to support your vision and mission. Contact our experts to help you get exactly what you need to accurately measure your designs.

 

 

Aerospace and Defense Industry Solutions

Among the many applications Interface products are used for across multiple markets, there may be none that require the highest levels of accuracy, quality and reliability as does the aerospace and defense industry.

By classification, aerospace largely comprises of those engaged in producing and servicing of commercial aircraft. The defense market is defined as those providing military weapons and systems designed to operate in the air, in the sea or on land.

The aerospace and defense industries are global markets that continue to expand their use of precision sensor technologies for advancing innovations in autonomous vehicles and flight systems, electric and hydrogen engines, as well additive manufacturing applications. Interface proudly serves the world’s largest manufacturers and suppliers in the aerospace industry by providing world-class force and torque measurement solutions for these types of requirements, as well as for their future inventions.

Over the past two years, the trends in the global commercial space ecosystem along with defense needs have created unique requirements that benefit from our five decades of being a premium provider for A&D equipment manufacturers and testing labs. We are able to meet these trending demands through our standard, engineered to order and completely custom force, torque and systems. These solutions are being utilized in testing of all types of vehicles, on the ground, in the water, and for flight.

A&D is a unique industry because of the complex needs of many applications. When we develop applications for other industries, we’re typically focused on solving a few specific challenges, whether it’s related to cost, safety, performance, environment, or other engineering specified design requirements. In aerospace and defense, every one of these factors needs to be addressed, as well as some special needs. Applications in the aerospace and defense industry cannot fail. If they do, it can put people, both military and civilians, in danger. That’s why force products in the defense industry need to be of the highest quality in all key factors.

Below are a few applications for force measurement in the defense industry. Each demonstrates the criticality of proper force testing, as well as the complexity of the projects Interface has been involved in.

SLS Tank Test

As outlined in NASA’s article on the SLS Tank Test, NASA’s goal was to push the very limits of a test version of the world’s largest rocket fuel tank. The project put incredible flight test strain on the tank to try and push it to its breaking point. After five hours of testing and more than 260% of the expected flight load, the tank finally buckled. Doing this helped engineers gather data on the tank to help intelligently optimize the final rocket ship.

In this application, load cells played the key role of collecting the flight force data. The extreme nature of the flight tests meant that the load cells needed to be incredibly durable and provide accurate data all the way through the breaking point.

Structural Testing

For the many hundreds of thousands of commercial and military vehicles on the market, especially those that fly, there are numerous force tests involved to validate a design and ensure they’re safe and of the highest quality to move into production. Load cells and torque transducers are used across a wide variety of vehicles for structural testing. The torque of the helicopter rotor is measured and validated using a torque transducer, or the wings and hull of an airplane are put through wind tunnels and other stress tests with load cells installed to collect data. All of these force applications are critical to ensuring that these vehicles can last beyond their intended breaking point and offer complete peace of mind to operators and passengers. There are a million different things that a military pilot is thinking about – the structural integrity of his or her aircraft should never be one of them.

Custom Sensors

Another area that has grown in recent years as technology pushes the aerospace and defense market forward is custom sensors. Test has gotten more sophisticated as the move to big data becomes more prevalent, and Interface has addressed this by working directly with customers to develop custom sensors that address unique challenges.

One of the biggest areas where we have seen a growing need for custom sensors is on test stands in thrust application. Test stands are often used in field testing on rocket or plane engines. In certain field applications, the test stand is outfitted with numerous load cells that must be custom designed with features like weatherization, multiple bridges, very-high precision, and more. The reason for this is because the cost of a thrust test in fuel alone can be incredibly high. You usually only get one shot at a successful thrust test. If there are any issues with the sensor, it’s going to be costly.

Interface has deep experience developing custom sensors for our aerospace and defense partners. We understand their needs and work closely with their engineering team to ensure they get it right the first time. If you’re interested in learning more about Interface and our solutions for the aerospace and defense industry, please visit us at www.interfaceforce.com/solutions/aerospace.

For additional references, check out our A&D related case studies and application notes:

Launching Into Orbit with Interface

Force Measurement for Space Travel

Interface’s Crucial Role in Vehicle and Urban Mobility Markets

Aircraft Wing Fatigue Test

Rocket Structural Test

Wind Tunnel Testing

Contributor: Elliot Speidell, Interface Regional Sales Director