Posts

Making Products Smarter with Interface OEM Solutions

Products need to be smart in today’s world. Whether it is consumer or commercial, people expect added functionality in everything. From coffeemakers and exercise equipment to large industrial machinery used in massive infrastructure projects, sensors play a crucial part in making these products smarter.

Sensor technologies allow smart products to collect and manage important user data, monitor products usage for durability and safety, enable automation, and personalize user applications and experiences. Original equipment manufacturers of these smart products and their components are eager to find quality sensors that provide robust features ideal for modern day user requirements.

Force sensors are key to making products smarter, performing with greater accuracy, and enhancing overall quality. Force sensors have the unique ability to perform multiple tasks at a time, including real-time monitoring and executing automation features with precision.

Interface partners with engineers and product designers to offer OEM solutions intended to be directly implanted into a product, or retroactively installed to make products smarter. With our unique assortment of custom and off-the-shelf load cells, torque transducers and instrumentation options, including wireless components, our force sensors are created to help enhance the smart products of today and tomorrow.

Interface’s white paper Turning an Active Component Into a Sensor details of how Interface works with OEMs to design sensors into products or retrofit them into existing products. To further illustrate the range of options available with Interface’s sensors and instrumentation, we have detailed additional application notes to give you a broader perspective of utilizing force sensors for OEM solutions.

Robotic Surgery Arm

A biomechanical medical company wanted to gather force, torque, and tactile feedback from their robotic arm during invasive surgery. The surgeon’s movements are mirrored by the robotic arm during surgery, and it is essential all haptic force feedback is measured to ensure safety during invasive surgery. Several of Interface’s force and torque measurement products were used in this OEM robotic arm. These include the ConvexBT Load Button Load Cell, SMTM Micro S-Type Load Cell, and the MRTP Miniature Overload Protected Flange Style Reaction Torque Transducer. Force results were collected when connected to the 9330 Battery Powered High Speed Data Logging Indicator and viewed via a laptop. Each one of Interface’s load cells and torque transducers played a part in the ensuring the safety and functionality of robotic arms during invasive surgery. The force feedback that was measured from the robotic arm ensured that the robot used the perfect amount of force when using surgical tools that create incisions during surgeries. It also measured the torque being produced, ensuring the robot arm was moving smoothly and at the right speeds.

PRV (Pressure Relief Valve) System

A manufacturer wanted to conduct a PRV test (pressure relief valve test) on their valve installation and monitory equipment when under a full pressure load. The purpose was to ensure safety and reliability for customers while the product was in use. They also wanted to be able to record and graph the results. As part of an OEM system that is used by their customers, Interface suggested installing the 1200 Standard Precision LowProfile™ Load Cell to a test frame on top of the pressure relief valve. As pressure is increased onto the spring in the valve, it pushes forces onto the load cell. Results can be recorded using the 9330 Battery Powered High Speed Data Logging Indicator. Using this solution, the manufacturer’s customers are able to successfully determine the exact amount of force it requires for their valve to release when under a pressure load, increasing longevity and safety of the product overall.

Bolt Tension Monitoring

A customer wanted to monitor the tension of the bolts used in installation of industrial pipes. Interface suggested installing multiple LWCF Clamping Force Load Cells, each connected to WTS-AM-1E Wireless Strain Bridge Transmitter Modules. The load cells are installed under the tightened bolts on the pipes as part of the technology solution to measure forces. The load cells measure the compression forces from the bolts, and the real-time results are transmitted wirelessly from the WTS-AM-1E’s to the WTS-BS-6 Wireless Telemetry Dongle Base Station. Real-time results from the LWCF’s are displayed using provided Log100 Software. Interface’s load cell monitoring system successfully monitors the compression forces of the bolts in real-time, which is an important installation solution for the OEM.

Smarter products, connected factories, and higher efficiency are all made possible through sensors. Interface force sensors are the leading solutions for enabling automation, real-time monitoring and accurate data collection for OEM applications.

Interface force sensors make consumer and commercial products smarter. Learn why OEMs choose Interface to activate products with sensor technologies and more about Interface’s capabilities and solutions for OEMs here.

ADDITIONAL RESOURCES

Interface OEM Solutions Process

OEM: Candy Stamp Force Testing

OEM: Medical Bag Weighing

OEM: Prosthetic Foot Performance

OEM: Snack Weighing and Packaging Machine

OEM: Tablet Forming Machine Optimization

OEM: Industrial Robotic Arm

OEM: Chemical Reaction-Mixing

Contact our OEM specialists and let us help you to make your products smarter and more equipped to meet the demands of tech-savvy users.

Force Sensing Keeps Factories Running Feature in Fierce Electronics

In the recent article, ‘May the force be with you: Force sensing keeps factories running, product quality high’ Dan O’Shea at Fierce Electronics writes about the growing demand for sensors in industrial automation applications.

Following his interview with Interface’s Keith Skidmore, Dan writes:

‘While some sensors are more focused on monitoring equipment or measuring environmental conditions around a manufacturing process, force sensors measure mechanical forces occurring in the equipment and processes, and the products being manufactured. They measure things like load, tension, resistance, weight or total pressure applied. By employing this kind of sensing technology, manufacturers can monitor the health of their equipment and improve quality assurance for their products.’

“Testing things by applying a force to them is super common. Many products in lots of industries get tested this way, from aerospace to automotive, through to consumer goods. Chairs, furniture, mattresses, ladders–basically, anything that’s being manufactured, there can be a desire to figure out how strong the various parts of those products are.” Keith Skidmore, engineer and regional sales director at Interface

Read the entire Fierce Electronics article here.

Interface provides industrial automation and IoT solutions to manufacturers, equipment makers and factories around the world. Sensors play a pivotal role in production and optimization through tools and process improvements.

Industrial Robotic Arm

Robotic arms are frequently used in production facilities throughout the manufacturing process. Suppliers of these devices heavily rely on accurate and quality sensors to provide feedback. In this application, the designer needed to test the force of the arm apparatus to ensure it could safely secure packages on a moving conveyor belt without damaging any materials or products. This automated function helps to improve quality of packaging and increase productivity on the line.

Interface provided the model 6A40A 6-Axis Load Cell with model BX8-HD44 Data Acquisition Amplifier instrumentation. The 6-Axis load cell provides measurement of all forces and torques (Fx, Fʏ, Fz, Mx, Mʏ, Mz) and the BXB-HD44 Data Acquisition Amplifier logs, displays, and graphs these measurements while sending scaled analog output signals for these axes to the robot’s control system. Customer installed 6A40 6-Axis Load Cell between robot flange and robot grabber. The extensive data outputs from the multi-axis sensor provided the exact detailed measurements needed for the industrial robotic application.

Interface Sensors Used for Internet of Things

What is creating the increasing demands for sensor technologies today? One thing is just using sensors in things, putting sensors into things that didn’t use to utilize sensors. Advancing the use of data in objects, equipment, consumer goods, machines and tools is increasing the needs for advanced and reliable measurement devices. It’s why demand for Interface products used in Internet of Things applications are expanding rapidly.

Sensor data is being used through the entire life cycle of a product design, from early design to testing, through production and even aftermarket sales. The valuable insights that engineers and manufacturers gather from real-time user data and feedback in both test and actual market use is advancing iterations, use cases, and smart application types.  Interface is seeing this in the demands for miniature sensors used by OEMs and wireless technologies. The smarter the device, the better the sensor. That is why Interface is a preferred partner when IoT needs accurate information to make smart decisions.

Big data along with advancing IoT communication capabilities is presenting opportunities for manufacturing to use efficient, accurate, and cost-effective sensor solutions designed for making products and machines smarter. Users of IoT solutions and manufacturers of IoT products are using valuable sensory data to constantly measure applied forces, helping with innovation and redesigns. It’s being used for all types of smart devices, industrial automation robots, medical equipment, and even wireless mobile testing labs.

What type of products are being used in IoT?

We are seeing Interface load cells, torque transducers, multi-axis sensors, DAQ and instrumentation systems are designed for all kinds of advanced IoT applications. While many are taking advantage of our expanding line of wireless and Bluetooth load cells and instrumentation, we also see numerous requests for our Mini Load Cells to be designed into the actual product.

Interface has been supplying these sensor technologies for years. To capture some of growing demands miniaturized and wireless sensors, we’ve recently launched a new solutions area on our website, Internet of Things. We explore Industry 4.0 and wireless applications, offer a new Interface IoT Solutions brochure and highlight products that are used for IoT use cases.

Our solutions align with the requirements of IoT and Industry 4.0.  You see this in the array of capabilities in our products, including:

  • Wireless communications and enabled sensors for real-time collection
  • Miniature load cells and sensor technologies for modernization and innovation of product designs
  • Robotic sensor solutions for use in autonomous and mounted devices
  • OEM designed sensor solutions to use for stability and product intelligence
  • Intrinsically safe products used in harsh and changing environments
  • Safety and regulatory sensors for constant monitoring
  • Bluetooth and wireless telemetry system components used for monitoring and testing
  • Stainless steel and rugged designs for different temperatures and climates
  • Advanced instrumentation and software for accurate and reliable data capture
  • OEM engineered products for high-production counts

Whether you are using Interface measurement products for prototype testing, temperature testing, component and usability studies or small-scale testing machines, we have solutions that make your tests cordless, digital, and using internet speed to capture data.

Recent IoT Applications Using Interface Measurement Solutions

  • Smart factory tools and machines
  • Wireless testing equipment for labs
  • Autonomous vehicle components
  • Robots and robotic parts
  • Weighing and lifting apparatus
  • Safety regulation feedback and sensing devices
  • Predictive usability and durability testing
  • Fitness and health equipment use
  • Touch screen testing
  • Home health feedback sensors

To learn more about our products used for IoT applications, contact our application engineering experts.

Additional Resources

Wireless Telemetry System

WTS 1200 Standard Precision LowProfile® Wireless Load Cell

WTS Brake Pedal Force Testing

IoT Solution That Monitors Rigging and Lifting in Real-Time Showcased at OTC50

Advancements in Instrumentation Webinar Recap

Solutions to Advance Agriculture Smart Farming and Equipment

New Interface White Paper Highlights Turning an Active Component into a Sensor

The most common uses of force measurement in OEM (original equipment manufacturer) applications are when a force sensor is designed into a product that will be produced at mid to high volumes and provides real-time force feedback on certain product functions in use. Utilizing sensors as a feature enables data acquisition over time to monitor forces and understand how those forces effect product efficiency, safety, quality or all of these performance metrics. This ultimately is used to design a better product, in the current state and for future enhancements or to know when a product is performing best or risks breaking down.

Did you know that there is another application of force sensors in OEM applications that is playing a large role in the factory of the future? This is when we turn an active component into a sensor and use that data to create automated actions. This solution is used when there is a desire to take a moving component within a system and make it smarter, ultimately allowing it to make data-based decisions on its own.

For example, the manufacturing industry is using force sensors on machines within a production line that are responsible for picking components up for visual inspection. The sensor is integrated into the grabbing component and can tell the machine the exact force to use when picking up the component as not to damage it. This is a critical capability when dealing with expensive and delicate components that can break under too much force. In the past, a force measurement sensor would have been used only to test this functionality. When the sensor is designed directly into the machine, the user can both test beforehand and monitor and automate processes in real-time.

The need for this type of capability is growing rapidly amongst manufacturers across a wide variety of industry including aerospace and defense, industrial, medical, automotive, industrial automation, assembly and more. To further outline the potential for these types of solutions, Interface developed a new white paper that details  how sensor solutions for OEMs work with specific examples of the benefit of turning an active component into a sensor.

Included below is a brief intro to the recently released white paper. Get your copy by clicking on the link here. Additionally, if you’re interested in learning more about Interface solutions for OEM applications go here, or call us to speak to our OEM application experts at 480-948-5555. Ready to get started, let us know how we can help here.

WHITE PAPER EXCERPT

OEM SOLUTIONS: TURNING AN ACTIVE COMPONENT INTO A SENSOR

The age of industrial automation and big data is upon us. Manufacturers that fall behind in equipping their facilities and products with innovation that allows for automated processes, remote monitoring and better efficiency through technology, will quickly fall behind. This is due to the fact that automation helps to significantly improve process quality because it eliminates human error. It also creates long-term cost savings by speeding up several processes, or by helping to monitor products in use and in real-time to optimize performance and stability over time through better data collection.

Get your copy of the white paper to read more.

Special note, contributors to the white paper are Interface and sensor engineering experts, Brian Peters and Rob Fuge.

Additional Resources for OEM

Interface is a Critical Solutions Provider for OEMs

Making the Case for Custom Solutions Webinar Recap

 

Force Measurement Solutions for Advanced Manufacturing Robotics

One of the most significant trends in advancing manufacturing is the use of robotics for smart factory automation. These types of machines are designed and coded to perform a variety of mundane and repetitive tasks on a manufacturing line or within an industrial facility. This allows humans to utilize their skills to work on more complex and productive tasks.

These activities are often characterized as picking, assembly, labeling, packaging, finishing work and inspection. Integrating robotics into manufacturing has many benefits including improved workplace safety, increasing productivity, and reducing material waste and costs. Interface uses robotics in our advanced manufacturing efforts in the assembly and building of world-class sensor technologies that are used around the world.

As with all points within a factory, there are many tasks that are very simple, while others can be very intricate requiring precision. As tasks become more difficult, the accuracy of the robot’s functionality is incredibly important. This is when sensors and precision measurement become instrumental to automation.

To ensure supreme accuracy, force measurement sensors are being used to improve processes as well as designed into robotic systems for monitoring performance data in real time. Force measurement sensors help manufacturers optimize the activities and tasks assigned to automated functions.

Popular types or robots used in advanced manufacturing environments using Interface load cells and our force measurement solutions include:

  1. Articulated – Often used in assembly, these robots have rotary joints to allow for a range of motion. Sensors such as mini or load button load cells are used in the testing and actual embedded in the joints to measure force and pressure.
  2. Gantry – These robots have three linear joints that move in different axes The X, Y, Z measurements are often tested with multi-axis load cells as this cartesian robot requires accuracy and precision.
  3. Cylindrical – This type of single robotic arm moves up and down, often stabilized by a cylindrical rod. They often are used in assemblies, welding, and handling of materials. These are tested with load cells for their ability to articulate the movement with exactness.

Interface products are playing a big role in manufacturing automation, especially in the design and development of robotics that use measurement in performance. They are used in all types of industries including automotive, medical, agriculture, and of course general manufacturing.

We supply a wide variety of sensors that measure force, torque, pressure, pulling force and more. We also are well-known worldwide for the accuracy and reliability of our products, making us the perfect fit for high-precision robotics applications.

Here are a few application examples where force measurement provides enormous value in testing and using robotics to advance manufacturing.

Industrial ArmIndustrial Robotic Arm in Production Line

Robotic arm solutions are becoming commonly used on production lines. When a manufacturer of a robot arm needed to measure force and torque when the arm picks up and places objects, Interface supplied a Model 6A40A 6-Axis Load Cell with Model BX8-HD44 Data Acquisition and Amplifier. The 6A40-6 Axis Load Cell was able to measure all forces and torques (Fx, Fʏ, Fz, Mx, Mʏ, Mz) and the BXB-HD44 Data Acquisition Amplifier was able to log, display, and graph these measurements while sending scaled analog output signals for these axes to the robot’s control system. This helped the customer optimize the multiple forces on the robot needed for moving objects on the production line. Read more about this solution here.

Robotic ArmRobotic Arm

This customer needed to lift and move delicate objects, like a glass bottle, in an automated environment with a robotic arm without causing damage to the objects that are being lifted and moved. Delicacy was the key here. Two ConvexBT Load Button Load Cells were used in the grips of the robotic arm to measure the amount of pressure being applied to the object it is lifting and moving. The DMA2 DIN Rail Mount Signal Conditioner converts the signal received from the 2 ConvexBT Load Button Load Cells from mV/V to volts to the PLC Controller which tells the robotic arm to stop clamping pressure when a specified amount of pressure is applied to the object. The two ConvexBT Load Button Load Cells accurately measured the amount of pressure applied to the object the robotic arm was lifting and moving without causing any harm or damage to the object. Watch Robotic Arm Application Note and read more here.

More robotic applications are being tested every day. Interface is proud to be able to supply the necessary technology to enhance production lines, improve shipping and logistics operations and speed up repetitive processes with robotics so workforces can thrive and develop skills that advance manufacturing overall.

Additional Resources

OEM Industrial Robotic Arm App Note

Automation and Robotics Demands Absolute Precision

Robotics in Play with New Animated Application Using ConvexBT

Interface Solutions for Robotics and Industrial Automation

Force Sensors Advance Industrial Automation

Industrial automation heavily relies upon the use of sensor technologies to advance production and manufacturing. In the next phase of the industrial revolution, also referred to as Industry 4.0, gains in operational efficiencies are often rooted in innovative tools, robotics, and equipment renovations. These types of enhancements require use of interconnectivity, automation, machine learning, and real-time data. Interface is playing a significant role in enabling these advancements with smart force and torque measurement solutions.

Randy Franks at Sensor Tips poses the following question in a recent article: How can force sensing be integrated for Industry 4.0 upgrades?

“Upgrading facilities to industry 4.0 standards is one of the most significant trends in the manufacturing industry today. To do this, original equipment manufacturers (OEMs) are pushing hard to renovate their facilities with connected, automated devices and machines to create greater efficiency and cost savings. Smarter devices can ease the transition.”

He continues in his post to note, “For Industry 4.0, force measurement solutions providers are integrating actuators that move and control a mechanism or system with load cells to create fully automated force test systems.”

Illustrating how this work, Randy writes about manufacturers of mobile devices using force measurement testing automation to pressure test touch screens with the new Interface ConvexBT miniature-sized load button load cells

Click here to read the rest of the article.

Force Measurement for Efficiency in Food Processing and Packaging

Interface provides the food processing and packaging industry with sensor technologies that increase efficiency and reduce waste. Like many industrial facilities, organizations are pushing hard to integrate new technology and automation that makes processes faster, more adaptable, and smart.

One of the factors critical to creating a smarter factory is by utilizing force measurement sensors that are designed for collecting data in each production phase, as well as monitoring equipment in use for performance optimization.

Interface has a wide variety of precision-based accurate and reliable sensors used for various applications in food processing and packaging. Our customers are using miniature load cells within the production line to apply the exact force needed to delicately press a logo onto a edible product. We have others using multi-axis sensors from Interface to verify accuracy of intricately machined parts while moving through the manufacturing process.

We’ve provided sensors for industrial automation solutions to thousands of customers using in-stock as well as custom application-specific sensors for OEM equipment. Read our Force Measurement is Reducing Waste and Automating the Consumer Packaging Industry OEM case study to learn more.

Below are additional examples that highlight uses case of actual applications in food processing and packaging.  You can see additional industrial application highlights in our solutions overview by clicking here.

Commercial Food Processing

A food processing plant wanted accurate results of their in-motion check weigher when food is weighed and processed while moving down the belt.  A check weigher is an automated machine for checking the weight of packaged commodities. This included ensuring production line efficiency and food quality, real-time results of their food being weighed, and a load cell that can endure the food industry’s soiled environment.

Interface offered a solution using multiple SPI High-Capacity Platform Scale Load Cells that could be installed in the customer’s equipment that is sued through the production line where product is weighed on the conveyor. The SPI High-Capacity Platform Scale Load Cells delivers precise weighing data. When connected to the 920i Programmable Weight Indicator and Controller, the solution provides the customer real-time results of the weight of the food. The 920i Programmable Weight Indicator and Controller can also read up to four scale channels in real-time. The processing gains in efficiency were visualized and managed during the weighing process to optimize control and production. 

Water Bottle Dispensing and Weighing

 

A beverage bottle manufacturer wanted to dispense the right amount of fluid into their bottles, and then weigh their bottles to ensure it is at the labeled weight on their product packaging. This is both to minimize waste, but also to meet the standard requirements noted on the packaging. Interface suggested using the MBP Miniature Beam Load Cell, and attaching it under a plate or platform the water bottle is placed on while it is being filled with fluids. The force weight is measured by the MBP Miniature Beam Load Cell, and connected to the 9870 High-Speed High-Performance TEDS Ready Indicator where results are captured, displayed, and recorded by the customer utilizing their water bottle assembly machinery. With this solution, the water bottle manufacturer received highly accurate results of each water bottle being weighed in real-time, using the accuracy to reduce waste and speed processing time.

Snack Weighing and Packaging Machine                     

A snack manufacturing brand wanted to weigh the amount of consumable food product automatically dispersed into the bags during the packaging process. In this case, they needed to weigh their potato chips being packaged and ensure the potato chips are at the exact weight needed due to regulatory standards. Interface’s solution was to use multiple SPI Platform Scale Load Cells and install it to the potato multi-head weigher and packaging machine. The SPI Platform Scale Load cells were installed inside of the mount that attaches the head weigher to the packaging machine. Force results from the potato chips bag fill are read by the load cells and sent to the ISG Isolated DIN Rail Mount Signal Conditioner, where the customer was able to control the automated production from their command center.

The customer was able to determine the weight of the potato chips being distributed into their bags with highly accurate results. They also were able to control the automated production process with the provided instrumentation. They will use this same weighing method for other snacks that need to be packaged.

To learn more about Interface solutions designed for the modern factory, or specifically the food and beverage industry, contact our expert application engineers.

Additional Packaging Application Note:

Candy Stamp Force Testing

Load Washers 101

Load washer load cells are a versatile product used throughout a wide range of industries and applications. These force measurement donut-styled components are frequently used to measure and monitor clamping forces, fastening control, bolt loading and other compressive loads.

A load washer looks remarkably similar to the washers used to distribute the load of a threaded fastener like a screw. A load washer also works in a similar fashion, however they’re made of rugged stainless steel material and use proprietary measurement technologies, like strain gages, which allow it to measure press and compression force rather than just distributing the load.

Interface offers eight different models of load washers of varying sizes and force measuring ranges, all the way from 11.2 to 1124K lbf. The Interface Load Cell Load Washers can be easily designed into products to continuously measure and monitor compression forces. The variety of load washer styles and capacities, all using the thru-hole feature, give product engineers and designers multiple choices for what best fits their application and use case. Specifications for each model are available, along with design files and model ranges online.

For instance, our LWPF1 Load Washer Load Cell is designed to measure press force and is rated at capacities from 450 to 22.5K lbf. It offers a large thru-hole and short height for tight spaces.

Another popular Interface load washer is the LWCF Load Washer Load Cell which can be used to measure clamping forces and also bolt tightening. It has a capacity range of 3.4K to 337.2K lbf and is ideal for determining bolt preloads. We offer precision, high-capacity, and environmentally safe load cell load washers.

Interface also offers two models that have pre-manufactured mounting holes for installation, which are ideal for press force control and measurement. You can see our entire line of load washer load cells here.

Interface load washers are smaller in size, allowing for standard and customized sensors of this type to be used by original equipment manufacturers. We commonly get requests for these load cells for use in industrial automation equipment, medical device testing, test and measurement projects as well as products that need a small but precise sensor.

We’ve also included real-world applications of load washer load cells below. This will give you an idea of the types of projects in which this force device can be used to determine accurate force data used to refine or confirm the design of product or tool.

AIRCRAFT SCREWDRIVER FASTENING CONTROL

An airplane manufacturer was able to calibrate their screwdriver by measuring its torque, rotational speed, and angle, when attaching materials together for their airplane. They were also able to measure the forces being applied to the screw, to ensure it was not applying too much torque to the components. With a T15 Hex Drive Rotary Torque Transducer attached to the fastening work bench, the system measured and recorded torque, rotational speed, and angle of the screwdriver. The LWCF Clamping Force Load Washer  is installed, measuring the forces applied on the screw being fastened. Results are sent to the SI-USB4 4-channel USB Interface Module, which is connected to a laptop where data is logged, graphed, and displayed for test results.  This configuration provided data to calibrate their screwdriver by measuring its torque, rotational speed, and angle, when attaching materials together for their airplane. They were also able to measure the forces being applied to the screw, to ensure it was not applying too much torque to the components.

BOLT FASTENING FORCE AND TORQUE

Using a General Purpose Load Washer Load Cell Model LW in conjunction with a Model T12 Square Drive Rotary Torque Transducer, the customer was able to align force and torque measurements to desired levels. This was accomplished by combining the sensors with the high sample rate of the data logging and graphing capabilities of the SI-USB, capturing real-time force and torque levels for examination. The fasteners were tightened to the specified force and torque requirements and were safely installed without impairment to themselves or the joint material. The customer was able to measure the rapid event effectively and accurately.

Here is another simple use case that

To learn more about load washer load cells and our entire product lineup or to talk to an engineer about the specific needs of your next project, please call us at 480-948-5555.

 

 

Force Measurement Solutions for Bolt and Screw Fastening

Among the many applications of force measurement devices, one that appears to be a simple application can have a big impact on worker safety, productivity, waste reduction, assembly and product performance. In this new animated application note highlight, we take a look at the tools used for bolt fastening measurement.

Bolts and screws are used to secure different pieces or components together for nearly every product imaginable, especially when it comes to large machinery and even automobiles. The success of these products and the manufacturing of these components requires a strict level of detail that goes into the tightness of a bolt. It’s not like your typical “do it yourself” furniture where you just tighten a screw or bolt until you can’t anymore. The precision needed for certain objects to be tightened to the exact measurement is mandatory.

Interface provides measurement solutions for all types of industrial automation and toolset testing used in thousands of applications that ultimately are utilized in the building of products. In the example below, we provided devices that are used to determine the exact bolt force and tightness necessary. The goal of measuring the tightness is to avoid under or overtightening. As you can imagine, under tightening can cause components to come apart. However, over tightness can also cause significant damage to the pieces being bolted together.

Bolt Fastening Application

To show the process of measuring bolt tightness, check out this latest use case video demonstration.

For this bolt fastening application, the customer used an Interface Model LWCF Load Washer along with an Interface Model INF-USB3 Single Channel PC Interface Module to monitor force being applied during bolt tightening. The data transferred from the bolt clamping force load cell load washer with a thru-hole, to the instrumentation is displayed, logged and graphed directly onto a computer for analysis and performance testing.

This is a basic example of the test and measurement process, however, Interface also contributed to a number of real-world projects and created applications notes to provide an illustration. One of our favorites is when an industrial automation company was building an automated assembly machine for an automotive manufactur­ing plant.

The product engineers and testing team needed to tighten all of the head bolts on an engine on their assembly line to a specific torque value. Having the head bolts precisely and consistently tightened to the engine block is critical to the operation of the engine.

To measure this force, several Interface Model T33 Spindle Torque Transducers were installed in their new machine to control torque and angle and ensure the head bolt was properly tight­ened. The square drive of the T33 allowed the customer to fix their tool directly to the end of the torque sensor, streamlining the installation.

Using this solution, the head bolts were correctly installed according to manufacturer specifications, producing an engine that meets performance and reliability expectations of the auto manufacturing plant.

Here are additional solutions that showcase how Interface load cells, torque transducers, instrumentation and custom solutions are used for various tools and manufacturing processes across various industries.

Aircraft Screwdriver Fastening Control

Fastening Work Bench

Bolt Fastening Force and Torque

Interface Solutions for Robotics and Industrial Automation

Contact us to learn more how we can help you ensure the right fastening and machine control for your next projects.