Posts

Detailing Pillow Block Load Bearing Load Cells

Most commonly, a pillow block bearing is used to create a rolling system. This type of bearing is often utilized for industrial rolls for textiles, paper, and materials. It is also used on conveyor belts in manufacturing facilities. There are other common use cases in a variety of industries, including in transportation, medical device design, and aerospace.

Interface offers specialized loads cells designed to measure and monitor weight and other forces on pillow block bearings, aptly known as Interface Pillow Block Load Bearing Load Cells. The force measurement is performed for this load cell between two supports.

Pillow Block Bearing Load Cell Spans Multiple Industries

Pillow block bearing load cells are important in all types of industries where accurate load measurement is required during production and use of rollers, small and large. Some examples include:

  • Steel industry: Pillow block load cells can be used in roller mills to measure the force required to crush or shape steel.
  • Textile industry: Pillow block load cells can be used in textile machines such as looms and knitting machines to measure the tension on the yarn.
  • Packaging industry: Pillow block load cells can be used in packaging machines to measure the force required to cut or seal packaging materials.

Pillow block load cells are valuable in building and enhancing infrastructure. Using our PBLC1 is a great solution for monitoring trains on a track, in-motion. When our PBLC1 is installed on a track, and the train runs across it, the sensor can provide a signal to a station elsewhere in the world. If any force indicators suggest that there could be a problem with the weight the train is holding or the train itself, the sensor can also trigger an automatic shutdown of the train. These sensors could prevent major damage from train derailments and other train related incidents by detecting errors before the inflict damage.

These weights are important to measure or monitor as they can tell you if you are running out of material on a roll, or if a production line conveyor belt is holding too much weight. An example of the feed roller system using our wireless options is below.

Manufacturing Feed Roller System

Feed roller systems are common in production and manufacturing. In this example, a feed roller system needs to monitor the forces of both ends of the rollers, to maintain a constant straight feed. This reduces waste and ensure quality in the product use. They would also prefer a wireless system. Interface suggests installing two PBLC Pillow Block Load Cells at both ends of the bottom roller to measure the applied forces. The output of measurement is sent to the instrumentation device, our WTS-AM-1E Wireless Strain Bridge Transmitter Module. The data is then transmitted wirelessly to the WTS-BS-6 Wireless Telemetry Dongle Base Station and the WTS-BS-1-HA Wireless Handheld Display for multiple transmitters, where data can be displayed, graphed, and logged a computer. Learn more about this type of use case in our Feed Roller System Application Note.

In addition to this use case, here are a few other ways Pillow Block Load Cells are used to measure weight and force:

  • Material handling: Pillow block load cells are commonly used in conveyor systems to measure the weight of materials being transported.
  • Automotive industry: Pillow block load cells are used in assembly line applications to measure the weight of parts and components being assembled.
  • Heavy machinery: Pillow block load cells are used in cranes, bulldozers, and other heavy machinery to measure loads and monitor the equipment’s performance.
  • Manufacturing: Pillow block load cells are used in material testing machines to measure the force required to break or deform materials.
  • Aerospace: Pillow block load cells are used in aerospace applications to measure the weight and balance of aircraft and spacecraft.
  • Medical industry: Pillow block load cells are used in medical equipment such as patient lifts and hospital beds to measure the weight of patients.
  • Food industry: Pillow block load cells are used in food processing and packaging equipment to measure the weight of ingredients and finished products.

Pillow Block Bearing Load Cells Product Overview

This type of force sensor is suitable for the measurement of forces under pillow block bearings for diameter Ø 20mm (Ø 0.79 in) and for the measurement of axle weight in test stands for trains and vehicles. Our system is compatible with INA Pillow Block Bearings and is installed underneath the bearing to measure force. There are three model versions, with the options for additional multi-axis measurements for engineer to order products.

PBLC1 Pillow Block Load Bearing Load Cell

PBLC2 Pillow Block Load Bearing Load Cell

PBLC3 Pillow Block Load Bearing Load Cell

Features and benefits of our Pillow Block Load Cell include:

  • Capacities from 5 to 30 kN (1.1K to 6.7K lbf)
  • Compatible with INA pillow block bearings
  • IP65 moisture protection
  • Rugged electro-galvanized surface

In addition, our Pillow Block Load Cell are also available in multi-axis versions, which allows for more force data from your test application. This helps with measuring forces such as center of gravity, tension across a load bearing beam and more. These multi-axis versions come in two and three axis models. If you are looking to get accurate measurement for your pillow block bearing use cases, contact our specialized application engineers.

ADDITIONAL RESOURCES

Interface Manufacturing and Production Solutions

Quality Engineers Require Accurate Force Measurement Solutions

Interface New Product Releases Winter 2023

Infrastructure Industry Relies on Interface Force Measurement

Interface Solutions for Production Line Engineers

Industrial Automation

 

Electrical Engineers Choose Interface Sensor Technologies

Interface is a premier provider of force, torque and weighing solutions to electrical engineers around the world who are responsible for creating new products, solving problems, and improving systems.

Electrical engineers vary in specialization and industry experience with responsibilities for designing and testing electrical systems and components such as power generators, electric motors, lighting systems, and production robots. They use their expertise and knowledge of electrical systems and components to design, develop, assess, and maintain safe and reliable electrical systems. There are many electrical engineers who work on complex systems and who are responsible for troubleshooting and diagnosing problems that may arise.

The electrical engineers whose primary focus is research and development look to create new electrical technologies and advance existing systems. Projects related to renewable energy, smart grids, wireless communication systems, and electric vehicles utilize all types of measurement solutions throughout all phases of their R&D. Accuracy of testing is essential for electrical engineers, to ensure components comply with safety regulations and industry standards.

How does an electrical engineer use sensor technology for testing?

Sensors are a critical tool for electrical engineers in testing and optimizing the performance of electronic devices, systems, and processes. The type of sensor used, and the specific testing application will depend on the needs of the project or product, including the following examples.

  • Structural testing: Sensors are used to measure the structural integrity of materials and components. Load cells convert force or weight into an electrical signal that can be measured and analyzed. For example, Interface’s standard load cells are frequently used to measure the amount of strain or deformation in a material under load, which can help electrical engineers design stronger and more reliable structures. See how Interface’s products were used in an EV battery structural testing project.
  • Process control: Sensor technologies, including load cells and torque transducers are frequently utilized in manufacturing processes to monitor and control various parameters. Electrical use this data gathered through various instrumentation devices to ensure that the manufacturing process is operating within the desired parameters and to optimize the process for efficiency and quality.
  • Environmental testing: Environmental sensors are commonplace for measuring temperature, humidity, pressure, and other environmental factors. Electrical engineers can use this data to test and optimize the performance of electronic devices and systems under various environmental conditions. Read Hazardous Environment Solutions from Interface to learn more.

Electrical engineers use load cells in a variety of applications, such as measuring the weight of objects, monitoring the force applied to a structure, or controlling the tension in a cable or wire. The choice of load cell will depend on the specific application and the requirements for accuracy, sensitivity, and capacity. Electrical engineers must also consider factors such as environmental conditions, installation requirements, and cost when selecting a load cell.

Electrical engineers work in a wide range of industries and sectors, as their expertise is required in many different areas of technology and engineering. Interface has supplied quality testing devices and components to EEs in every sector, from electronics to construction.

Electrical engineers in the electronics industry use Interface products in designing and developing components such as microchips, sensors, and circuits. Demands for intrinsically safe load cells and instrumentation come from electrical engineers that are responsible for designing, maintaining, and improving power generation and distribution systems, including renewable energy systems such as solar, wind, and hydropower.

More than any time in Interface’s 55-year history, electrical engineers who work on a variety of aerospace and defense projects, are using Interface sensor products for designing and testing avionics systems, communication systems, and navigation systems.

We also continue provide electrical engineers who engage in designing and developing the electrical and electronic systems in vehicles, including everything from powertrains and engine management systems to infotainment systems and driver assistance technologies with new and innovative force measurement solutions.

Manufacturing electrical engineers who engage in designing and optimizing manufacturing processes, as well as designing and evaluating the electronic components and systems used in manufacturing equipment are frequently using Interface sensors. This includes the rising demands for sensors in robotics.

Electrical engineers across many different industries depend on Interface, just as all the companies and organizations around the world depend on their expertise. Interface is a proud partner of engineers across all disciplines.

ADDITIONAL RESOURCES

Interface Celebrates Engineers

Interface Solutions for Production Line Engineers

Quality Engineers Require Accurate Force Measurement Solutions

Interface Solutions for Material Testing Engineers

Why Civil Engineers Prefer Interface Products

Why Product Design Engineers Choose Interface

Introducing the Interface Consumer Product Testing Case Study

The global consumer products market is a multi-billion dollar industry that thrives on innovation and new product development. There are numerous opportunities to utilize sensor-based technologies to test for safe use and monitor product performance.

Interface is a source of quality precision force sensor technologies used throughout the product lifecycle from concept and R&D, through engineering and testing, to manufacturing and eventually consumption. We supply force measurement solutions for use in equipment, machines, tools, and integration into actual products like our miniature load cells to measure performance and use. We even provide products to accurately measure and monitor hardware used in consumer product distribution. Interface load cells and instrumentation help consumer product designers and fabricators drive usability, adoption, production efficiencies, and ensure safety to satisfy the needs of all types of consumers.

In our latest case study, Interface Delivers for Consumer Products, we highlight specific use cases and products that are used by the consumer products industry. Interface offers multitudes of products, from sensors used to measure weight on the production line of a consumer good to regulating how the consumer can use the product by using embedded load cells into the actual product.

Here are a few examples of how our force sensors are used in the consumer products industry:

  • Keyboards and buttons: Force sensors can be used to measure the force applied to keys on a keyboard or buttons on electronic devices, such as smartphones or game controllers, to ensure that they have a consistent and satisfying feel for the user.
  • Package testing: Force sensors can be used to measure the force applied to packaged consumer goods, such as food and beverage containers, during transportation and handling to ensure that they are not damaged and that their contents are protected.
  • Automotive testing: Force sensors can be used to measure the forces applied to various components of a vehicle during crash testing, such as doors and seat belts, to ensure that they meet safety standards and provide adequate protection for the occupants.
  • Sports equipment: Force sensors can be used to measure the force applied to sports equipment, such as golf clubs, tennis rackets, and baseball bats, to ensure that they meet performance and safety standards.
  • Wearable devices: Force sensors can be used to measure the force applied to wearable devices, such as fitness trackers, to ensure that they are durable and can withstand the wear and tear of daily use.

Our specialty is building force measurement solutions for the testing and monitoring of parts and total systems, which is vital to manufacturers and designers of consumer packaged goods. Accurate measurement is necessary in design, prototyping and producing final consumer products across all industries for performance and safety. These solutions are ideal for consumer product stand-alone testing rigs, production equipment, as well as embedding into products to increase operability and reliability for end users.

Additional consumer products applications utilizing Interface quality measurement solutions include:

These are just a few examples of how force sensors are used in the consumer products industry to measure the force applied to a variety of products. The use of force sensors is essential for ensuring that consumer products meet safety and performance standards, and for providing consumers with a high-quality user experience.

To better illustrate and address our solutions designed for consumer products across sectors, we have developed a case study outlining the consumer product testing challenges and technology we offer for these customers.
Interface Delivers for Consumer Products Case Study

Interface Solutions for Safety and Regulation Testing and Monitoring

Among the many challenges we help to solve, safety and the stringent requirements for helping to make products safer for all types of users is top of the list. Interface’s solutions are known for quality and accuracy, which are at the forefront of all decisions used for safety and regulation testing. It is one of the top reasons consumer product makers choose Interface force, torque and weighing test and measurement solutions.

Everyone involved in the production and sale of products have a role to play in ensuring product safety and compliance with regulations, from the manufacturer to retailer of any product. They are all responsible for designing, testing, and producing safe products.

Manufacturers have the primary responsibility for ensuring that products are safe and compliant with regulations. Governments have the authority to establish safety standards and regulations for products and to enforce these standards through inspections, fines, and recalls. Independent testing lab are used to conduct safety and compliance testing. These labs provide impartial and objective test results. Retailers also have a responsibility to ensure that the products they sell are safe and compliant with regulations. By working together, they can help to promote public trust in products and reduce the risk of accidents and injuries.

In engineering, safety and regulation testing of products is crucial for ensuring that products are safe for use and meet industry standards. This type of testing helps to identify potential hazards and design flaws that could harm consumers or cause damage to property. It also ensures that products comply with regulations and standards set by governing bodies such as the Consumer Product Safety Commission (CPSC) and the International Electrotechnical Commission (IEC). This helps to protect consumers, promote public trust in products, and reduce the risk of liability for manufacturers. By performing safety and regulation testing, engineers can help to ensure that products are reliable, effective, and trustworthy.

Safety and regulation testing helps manufacturers in several ways:

  1. Liability reduction: By ensuring that products meet safety standards and regulations, manufacturers can reduce their risk of liability in the event of accidents or injuries caused by their products.
  2. Consumer trust: Consumers are more likely to trust and purchase products that have been tested and found to be safe and compliant with regulations.
  3. Marketability: Products that meet safety and regulation standards are more likely to be accepted in the market and sold to a wider range of customers.
  4. Brand reputation: A company’s reputation is closely tied to the safety and quality of its products. By demonstrating a commitment to safety and compliance, manufacturers can enhance their brand reputation and build consumer trust.
  5. Cost savings: Investing in safety and regulation testing can help manufacturers identify and correct design flaws before products are mass-produced, reducing the cost of recalls and liability claims.

We work with manufacturers of heavy machinery, vehicles, consumer goods, medical devices and pharmaceuticals, and even aircraft and rocket ship builders. All these industry experts know that precision test and measurement solutions are essential for eliminating the serious threat to humans when their inventions and products are not thoroughly tested and monitored properly.

Testing is the first step in the process of ensuring safety. Interface load cells and torque transducers are used to test a wide variety of parameters related to force. For instance, Interface provides solutions for projects involving the testing of cranes and ensuring that these massive machines are able to lift the weight that the particular products specifications allow. This ensures safety for the user and those on the ground by putting the machine through rigorous testing using load cells to measure the cranes maximum limits with various loading conditions. Watch a quick demonstration video of crane safety test solutions from Interface.

In addition, force measurement can be used to measure small and precise forces during the testing phase. One such example is the use of load cell load buttons to measure the clamping force of a vascular clamp used in surgery. This force needs to be tightly tuned in regulation with stringent medical requirements. Forces to small or large could have serious repercussions for the patient. This is simple test that makes a dramatic difference in which the clamp force is applied to these miniature load cells and the force signal is sent to the tester.

One specific requirement that Interface has a great deal of experience in supplying solutions for torque testing on lug nuts, bolts and other assembly equipment. While tightening these parts may seem like a simple process, industries like automotive and aerospace have strict requirements for the exact tightness and tolerance for bolts. We provide torque testing systems that evaluate these parameters accurately to meet those regulations. Any misstep in tightening can lead to sever failure that puts the user at significant risk, not mention pedestrians when it comes to the automotive industry.

The next use of force measurement in the realm of safety is by using these sensors for real time monitoring. Load cells and torque transducers can be designed into a product to allow for monitoring of the product in use, telling the user when the product it is monitoring needs to be repaired, notifying them if a vehicles or machine is holding weight above its capacity, or there is potential failure of a machine or product.

For instance, machines on a production line can be monitored and irregular data can show that it needs to be brought down briefly for repairs. Having machines with issues that are not noticed do not only affect efficiency, but it can also pose a threat to nearby workers. Additionally, monitoring something like a crane is also a way to ensure it is not overloaded.

All these applications provide notable examples of how force measurement can guarantee meeting safety requirements and regulations, as well as monitoring for safe conditions in real time. To provide a visual example, we have developed several applications notes, a few of which we have included below.

Regulatory Medical Device Stent And Catheter Testing

A customer needed to apply known forces to stent and catheters to ensure they pass all necessary strength and flexibility testing. Interface suggested an MBP Overload Protected Beam Miniature Load Cell be placed behind the guide wire for the stent or catheter. The motor will spin the linear drive and push the load cell and guide the wire through the testing maze. The MBP Overload Protected Beam Miniature Load Cell is connected to the DIG-USB PC Interface Module. All forces are measured and stored on PC. Using this solution, the customer was able to perform required testing and log to PC, followed by being able to review results and take actions as needed. Get more information about this testing in our Stent and Catheter Testing App Note.

Equipment Safety with Bolt Tension Monitoring

A customer wanted to monitor the tension of the bolts that are used on their industrial large metal pipes. Interface suggested installing multiple LWCF Clamping Force Load Cells, each connected to WTS-AM-1E Wireless Strain Bridge Transmitter Modules. The load cells were installed under the tightened bolts on the pipes and measured the compression forces from the bolts. The real-time results were transmitted wirelessly from the WTS-AM-1E’s to the WTS-BS-6 Wireless Telemetry Dongle Base Station when connected to the customer’s PC. Real-time results from the LWCF’s were displayed using provided Log100 Software. Interface’s load cell monitoring system successfully monitored the compression forces of the bolts in real time.

Public Safety Bridge Seismic Force Monitoring Solution

A customer wanted to monitor seismic activity that occurs to a bridge by using force sensors and then continuously monitoring bridge forces before, during and after earthquakes occur. The customer also preferred a wireless solution so they would not need to run long cables on the bridge. Using Interface’s LP Load Pin custom made to fit their needs, alongside the Interface WTS Wireless Telemetry System, continuous force monitoring was able to take place without long cables, allowing the customer to monitor continuous loads, log information to the cloud and review information. Read Bridge Seismic Force Monitoring Solution App Note for more information.

If you are looking for accurate and dependable solutions to assist with testing and monitoring for safety and regulatory requirements, contact us.

ADDITIONAL RESOURCES

Crane Block Safety Animated Application Note

Load Cells for Consumer Product Applications

Interface Solutions for Production Line Engineers

CPG Bike Frame Fatigue Testing

MARITIME Crane Block Safety Check

Crane Safety Requires Precision Measurements Ship to Shore

Entertainment Venue Force Measurement and Monitoring Solutions

 

Entertainment Venue Force Measurement and Monitoring Solutions

There is a great deal of critical sensor technology used to design, build, and monitor venue infrastructure and the public before and during events. Venues management, architects, product makers and engineers take inordinate steps to protect people from bodily harm, risks, and hazard-related threats. This also includes the detailed real-time monitoring for venue infrastructure, staging, equipment such as speakers and monitors, and special apparatus used for entertainment, whether it be musical, theatrical or sports related.

Interface provides torque and force measurement solutions to the global entertainment and amusement industry used in entertainment venues around the world. To ensure attendee safety of any event, force measurement sensors are ideal for monitoring of large pieces of equipment and infrastructure. This is especially critical for outdoor venues where the elements, such as wind and rain, can pose serious safety hazards.

From the monitoring of backstage rigging devices to heavy lifting equipment for sets and lighting, Interface offers a broad range of measurement and weighing solutions. Our products are used for staging, displays, filming and drone equipment, as well as theme park machines and robotics, as detailed in our Entertainment Solutions Overview.

In addition to real time monitoring, the tried and true use for force measurement sensors is in testing during the development and design stages. The entertainment industry is experimenting with a wide variety of new and engaging experiences for the audience, a lot of which involves massive infrastructure or robotics and animatronics. During live entertainment, you never want to put something as technical and complex as a mobile stage or robotic personality out in front of people without thorough testing. Interface sensors have been used to test these types of applications. Accuracy of our products ensures the manufacturers receives the data they need to confirm and produce designs used for and by various forms of entertainment.

We have recently put together a wide variety of applications notes outlining these exact types of entertainment industry applications used in venues to demonstrate how Interface products help to meet compliance requirements, improve safety, and mitigate risks for patrons, crews, entertainers, athletes, and staff while providing an entertaining experience.

Outdoor Festival Venue Wind Monitoring

An outdoor festival was occurring in a large outdoor venue for multiple days. Outdoor stages pose a risk towards high wind speeds, which need to be monitored in case a storm passes through. This is to ensure safety for all personnel on site of the festival to avoid any accidents. Interface suggested installing the WTS-WSS Wireless Wind Speed Transmitter Module on the outdoor stage. Wind speed results were wirelessly transmitted to the customer’s PC through WTS-BS-4 Wireless Base Station with USB Interface in Industrial Enclosure. It can also be transmitted to the WTS-BS-1 Wireless Handheld Display for Unlimited Transmitters Data can be displayed, logged, and graphed with supplied Log100 software. Interface’s WTS-WSS Wireless Wind Speed Transmitter Module combined with Interface’s Wireless Telemetry System was perfect to monitor the wind speed during the outdoor festival. Read more here.

Venue LED Screens

A customer constructing a huge venue wanted to weigh their very large LED screens. They also wanted to measure the force of the structure that is supporting the screens, to ensure stability and structural integrity. Interface suggested their LW General Purpose Load Washer Load Cells be assembled within rods that are part of the support structure. The LED screen hung off the structure, which connects to the rods. The compression forces applied to the rod were measured by the LW’s installed in between. The load washers were paired with WTS-AM-1E Wireless Strain Bridge Transmitter Modules, where the force results are wirelessly transmitted to both the WTS-BS-1 Wireless Handheld Display for Unlimited Transmitters and the WTS-BS-4 Wireless Base Stations with included Log100 software. Interface’s wireless load washer system successfully weighed the forces of the large LED screen for the customer’s new venue.

Venue Animatronics

Animatronics are used throughout entertainment industry. From amusement and theme parks to movie sets, animatronics need to be accurately calibrated when they move, therefore the torque of the limbs must be tested. Interface’s MRTP Miniature Overload Protected Flange Style Reaction Torque Transducer were connected to the servo motors in the limbs of the animatronics that make it move. The customer monitoring the animatronics viewed torque results on their PC when the transducers are connected to the BX8-AS BlueDAQ Series Data Acquisition with Industrial Enclosure. Using this solution, the customer was able to record the force results of his metal bending machine with Interface’s Wireless Telemetry System.

This is just a sample of the entertainment industry applications Interface force sensors can serve. We’re also heavily involved in provide standard and customized solutions used in testing and monitoring drones, touch screen calibration, equipment and infrastructure testing, and more.

Quality Engineers Require Accurate Force Measurement Solutions

In engineering and manufacturing, when introducing a product onto the market the requirements and regulations can be immense. Each industry has strict guidelines to ensure safety, durability, quality, and overall customer satisfaction. To meet these requirements, most product and component maker will have experienced quality engineers to help meet the necessary requirements in production.

Quality Engineers work in a variety of industries including automotive, transportation, infrastructure, aerospace and defense, industrial automation, medical and healthcare devices, and consumer product manufacturing. Their role is to monitor, test, and report on the quality. They are also instrumental in strategy, process development, and increasing output. Depending on the position, they are responsible for inspecting and testing raw materials, components, mechanical systems, hardware and software, as well as final products.

The Quality Engineer works with manufacturers, developers, project managers. Commonly, they are aligned with quality assurance and quality control teams to develop processes, test procedures and implement systems that ensure manufactured products and fabrication processes meet quality standards, safety regulations, and satisfy all stakeholders. They are the safeguard for companies that are creating, building and distributing products and materials.

Accuracy of testing and measurement data is fundamental to quality engineers. Critical to quality assurance and control processes, quality engineers rely heavily on all types of Interface high-accuracy load cells, weighing systems, and instrumentation for force measurement quality systems. Manufacturing quality engineers rely on products from Interface to test both products and equipment on a manufacturing line to ensure they perform reliably and meet certain safety standards.

Force measurement systems also make role of a quality engineer easier through the use of accurate data. This is because force measurement often enables automated, real-time monitoring of many processes used in the making of things. Interface precision load cells are used to monitor assembly line machine processes, test and monitor automation equipment like robotics, and weighcheck systems, and ruggedized equipment for quality control onsite and in remote locations.

Included below are a few examples of how force measurement systems are used in quality engineering.

Medical Device Interventional Guidewire Quality Inspection

A medical device manufacturer needs to do quality checks on threaded ends of their interventional guidewire devices. The threaded end of the guidewire contains an extremely small 000-120 thread that needs to be tested with go and no-go gauges in order to see if it will mate with other critical subassemblies. They requested a custom made turnkey test stand that is both inexpensive and flexible for varying lengths and models of guidewires.  Interface suggests a system where the customer can axially load and insert the guidewire through the MRT Miniature Flange Style Reaction Torque Transducer, secure it, and use an automated stepper motor on a slide base to test the thread quality. When in use, the MRT measures the torque magnitudes of both no-go and go gauges which indicate quality of the threaded guidewire.

Snack Weighing and Packaging Machine Quality Monitoring

One aspect of quality in the consumer packaged goods space is ensuring equal distributions of individually wrapped snack bags such as chips or candy. When snack manufacturing brand wanted to weigh the amount of their snacks that is automatically dispersed into the bags during the packaging process, Interface offered a solution. We suggested multiple SPI Platform Scale Load Cells, and installed them to the potato multi-head weigher and packaging machine. The SPI Platform Scale Load cells were installed inside of the mount that attaches the head weigher to the packaging machine. Force results from the potato chips were read by the load cells and sent to the ISG Isolated DIN Rail Mount Signal Conditioner, where the customer is able to control the automated production from their command center. The customer was able to determine the weight of the potato chips being distributed into their bags with highly accurate results. They also were able to control the automated production process with the provided instrumentation. They will use this same weighing method for other snacks that need to be packaged utilizing this machine.

Vehicle Crash Test Load Cell Wall Quality Inspection

A facility wanted to do crash tests on their vehicles for quality inspection. There are multiple tests such as structural testing of the vehicle, developmental tests, and regulatory and compliance tests and they needed to measure the force of the vehicle crash tests, on all axes. Interface’ suggested using multiple 3A400 3-Axis Force Load Cells, and attach it to the back of a cement crash wall. When connected to the BX8-HD44 Interface BlueDAQ Series Data Acquisition System, force result measurements will be recorded and displayed with the customer’s PC or laptop. The customer was able to measure the force of impact for all of their different vehicle crash testing demonstrations.

The applications of force measurements for quality engineers are large, and the necessity of obtaining this data is critical to creating, safe, reliable and high-quality products.

ADDITIONAL RESOURCES

Interface Solutions for Material Testing Engineers

Why Civil Engineers Prefer Interface Products

Why Product Design Engineers Choose Interface

The Five Critical Factors of Load Cell Quality

Our Reputation is Defined by Our Industry-Leading Quality

Interface Solutions for Research and Development

Weighing Sensor Applications and Innovative Use Cases

The advancements in sensor technologies have expanded the capabilities of how accurate data can improve performance of weighing equipment, tools, machines, components, and products. Design and manufacturing engineers are using precision weight measurements today with higher frequency to improve durability, usability, and reliability.

What has changed in the last decade that has spurred this high demand for weighing sensor technologies? Primarily it is related to the capabilities and features. This includes the ruggedization of load cell form factors to withstand harsh conditions, wireless capabilities to transmit and analyze data for continuous monitoring, smaller sensors like load buttons, ease of use and installation, and submersible options. There is also a growing requirement to design weighing sensors into a product to activate components for real-time user feedback and ensure safety.

Examples of how sensors in weighing applications are supporting innovation are abundant. Manufacturers utilize weight in design, build and supply. Defined weight is used in most product specifications, which requires precise accuracy in measurement. Utilizing precision force sensing solutions and instrumentation allows product engineers and manufacturers of all types to collect data in real time. IoT enabled weighing and scale solutions are frequently used in the modernization of products and industrial automation.

Interface supplies highly accurate and reliable load cells and sensor technologies for weighing and scale solutions. Industry use cases range from medical bag weighing to ice machine weighing. Weighing and scales must be dependable and always provide correct data. Precision sensors are a critical part of this requirement.

Common Weighing Use Cases for Advanced Sensor Technologies

  • Center of gravity testing
  • Inventory management and control
  • Batching and packaging
  • Check weighing
  • Process control
  • Sample testing and material testing
  • Equipment safety monitoring
  • Transporta tion technologies
  • All types of scales

The abilities to use precision weighing sensor devices in the form of load pins, load shackles, tension links, load beams, miniature load cells, and wireless load cells continues to expand the boundaries beyond what has been known as test and measurement. Facilities and cities use connected force sensing trash receptacles for optimizing schedules of waste management companies to reduce costs and increase efficiencies.  Innovative smart pallet force sensing helps to track products and goods at the dock to reduce expenses and increase productivity. Silo weighing for inventory management. Setpoints are configured to automatically generate purchase orders when product levels fall below a defined threshold.

Additional applications recently featured in Weighing Your Options Webinar demonstrate how Interface weighing solutions support breakthrough use cases and inventive new products. Here are a few examples of these weighing applications.

Tank Weighing and Center of Gravity Using Weighcheck Load Cells

Interface’s customer needs to monitor the amount of material in a tank by weight and locate the center of gravity. The proposed solution is to use Interface’s A4200 Zinc Plated or A4600 Stainless Steel Weighcheck Load Cells, along with Interface instrumentation 1280 Programmable Weight Indicator and Controller. Interface provided a solution that monitors the amount of material by weight in their tank while locating the center of gravity. Watch as Ken Bishop demonstrates the A4200 and A4600 weighcheck load cells  https://youtu.be/G6NA84I73Zo .

Produce Weighing Using Platform Scale Load Cells

A customer owns and operates a fruit packaging plant. They want to weigh the bins full of fruit that are loaded onto conveyor belts that transfer the fruit to other steps of the distribution process. Interface suggests installing SPI Low Capacity Platform Scale Load Cells, along with WTS-AM-1E Wireless Strain Bridge Transmitter Modules, in the center of the platforms the bins of fruit are loaded on. The WTS-AM-1E’s wirelessly transmit the data collected from the SPI’s to the WTS-BS-1-HA Wireless Handheld Display for multiple transmitters, and the WTS-BS-6 Wireless Telemetry Dongle Base Station when connected to a computer. Results can be graphed, logged, and seen during operation using this system.

Livestock Weighing System Use Sealed Beam Load Cells

A rancher wants to accurately weigh their cows for multiple reasons. They want to make sure their cows are at a healthy weight and want to maintain their weight. But they also want to know the optimal time for breeding based on the weight of their livestock. Interface’s solution is to bolt four SSB Sealed Beam Load Cells at the bottom of a metal platform, that is placed on the inside of the customer’s cattle cage. Once the cow has walked onto the plate, the SSB Sealed Beam Load Cells will measure the force pressure applied. With all four connected to JB104SS Junction Box, which is then connected to the 480 Bidirectional Weight Indicator combined accurate weight results for real-time display.

Crane Weighing Verification Using Wireless Tension Link Load Cells

A customer wants to verify that their crane is strong enough to safely lift a heavy load, at its rated maximum load capacity. A wireless solution helps to avoid long cables and for faster installation time. Interface WTSLTL Lightweight Wireless Tension Link Load Cells can measure the load’s maximum capacity. The WTS-RM1 Wireless Relay Output Receiver Modules also can trigger an alarm that can be set when the maximum capacity of weight/force has been reached. The data is transmitted and can be reviewed with the WTS-BS-1-HS Wireless Handheld Display.

ADDITIONAL RESOURCES

Cranes and Lifting

Garbage Truck On-Board Weighing

CPG Snack Weighing and Packaging Machine

Weighing Your Options Webinar Recap

CPG Veterinary Weighing Scales

CPG Water Bottle Dispensing and Weighing

CPG Water Bottle Dispensing and Weighing App Note

 

 

Weighing Your Options Webinar Recap

Most often the subject of weighing is a reference to scales. Although most of the world knows Interfaced for our expertise in test and measurement, aerospace, automotive, energy, and medical industries, we know our way around all kinds of weighing applications and scales.

In fact, load cells are truly the heart of every scale system and make modern use cases for highly accurate weight data possible. At Interface, we design, manufacture, and guarantee the highest performing load cells in the world.

In our online seminar, Weighing Your Options, Keith Skidmore, and Jeff White detail Interface products used for weighing, along with engineering tips, applications, and frequently asked questions.

How have sensors historically been used for weighing and lifting? The most common uses are in weigh modules, floor, and bench scales, along with truck and rail transport weighcheck systems. Interface’s involvement in providing measurement solutions have traditionally focused on test and measurement applications, sensors for machines and rigs, as well as use in weighing components. Trends are moving to complete weighing solutions.

Sensors are used throughout the product life cycle, from R&D to distribution, including

  • Weighing individual parts or components
  • Equipment and machines that measure weight during assembly and production
  • Weighing ingredients in food and chemical processes
  • Weighing products during distribution
  • Weighing before and during transportation

Interface load cells can measure across a wide range of force, from 0.02 to 2,000k lbf.  Interface products used in weighing applications are diverse in design, including:

Our weighing sensors combined with available instrumentation use a variety of communication methods, including analog, digital, wireless and cloud based, to allow users to gather data in-facility or remotely. Junction boxes such as our JB1100 4-Channel Advanced Signal Conditioning Transmitter Indicator and Junction Box are frequently used for weighing systems. We can also customize sensors to meet specifications for weighing use cases.

Most Common Types of Instrumentation Used for Weighing

  • Analog Signal Conditioners
  • Digital Signal Conditioners
  • Active Junction Boxes
  • Digital Displays
  • Programmable Weight Controllers
  • Data Acquisition Systems
  • Wireless and Specialty Devices

Interface has also introduced several weigh system modules, like the WSSCLC-Mount Weighing Assembly. It is a stainless-steel construction and available in three sizes. It incorporates a safety retainer to prevent accidental vessel lifting or sliding. When used with Model WSSCLC Load Cell, the system is IP68 rated and good for rugged applications.

The place to start with any new weighing application is what do you need to weigh by and what is the smallest increasing increment? Interface application engineers can help you choose the correct equipment, including the load cell, weigh module, instrumentation, and any accessories. They will review the requirements such as live load, dead load, number of supports, washdown, weighing materials, temperature and temperature swings, hazardous environment and exposure, type of vessel, measurements of compression or tension, mixers or shakers attachments, rigid conduit, or piping and even shock loading issues.

Watch the complete online seminar to learn more about weighing systems used for tank and hoppers, conveyor belts, industrial equipment, continuous weighing and automation features for alarms and safety requirements. We detail do’s and don’ts along with frequently asked questions.

ADDITIONAL RESOURCES

Accuracy Matters for Weighing and Scales

Livestock Weighing System Application Note

Fruit Weighing

INF4-EtherCat Two, Three, and Four Sensor Weight Transmitter and Indicator

CPG Water Bottle Dispensing and Weighing

New Interface Case Study Exams Weighing and Scales

CPG Veterinary Weighing Scales

 

 

New Interface Case Study Exams Weighing and Scales

Test and measurement are used in the development and monitoring of manufactured goods across all industries. With a history of producing force measurement solutions for more than five decades, Interface has supplied a myriad of sensor devices for hundreds of thousands of different use cases and applications.

From the scales we use in packaging centers to the enormous weigh check equipment used in transportation, weighing and scale measurement solutions are instrumental in the successful design, engineering, launch, and maintenance of products and components.

Many of the earliest force sensors were designed for the purpose of weighing objects, and they continue to be a large part of test and measurement today. As products evolve and new inventions enter the market, sensors must maintain their durability, quality, and accuracy for large and miniaturized uses. Therefore, you see inventors and innovators turn to Interface today for sensors that are designed for use in robotics, IoT, and factory automation equipment used for weighing.

Historically, the only difference between now and then is that Interface has perfected accuracy in measurement across with an extensive range of force sensors models, configurations, sizes, capacities, and specification requirements that can measure weight at “jumbo” scale, as well precisely measure exceedingly small, minute forces as an embedded sensor.

Determining accurate weight is a key data point manufacturers need throughout a product lifecycle. Whether they need the information for transporting an object, lifting the object, or just creating a specification sheet, accurate data for weight measurements is fundamental for safety and function. This includes weighing single and combined parts in early design, weighing the manufactured equipment during assembly and production, using scales for weighing output with exact measure, as well as obtaining real-time weight in distribution and transport.

To accomplish this, Interface provides a host of load cells and instrumentation devices. Since our first load cells were designed in 1968, we have built millions of these products for engineers and designers that require the highest precision force sensors for accurate and reliable data collection in test and measurement (T&M). Our customers represent a wide swath of industries, products, equipment types, tools, and electronics that depend on us for proving accuracy, consistency, and reliability in performance in T&M.

In our latest case study, we outline four weigh and scale use cases that utilize Interface sensor technologies. Defined weight as a product specification requires extreme accuracy in measurement. Utilizing precision force sensing solutions and instrumentation enables product engineers and manufacturers to collect data and use it as part of the product design.

Accuracy Matters for Scales and Weighing focuses on weighing and scale applications used with heavy machinery, medical devices, operational containers, and distribution solutions. In each of these instances, utilizing weight in the design, build, and supply of these products is fundamental to each use case and the success for the product.

Weighing and Scales Case Study