Posts

Small Sensors Make Big In-Home Healthcare Impact

In-home healthcare is booming, resulting in innovative medical devices that transform how we manage health outside the hospital. Driven by advancements in wearable tech, remote monitoring, and portable medical devices, a seismic shift empowers individuals to manage chronic conditions, recover from surgery, or maintain independence with greater ease and comfort.

Ensuring the safety and effectiveness of in-home healthcare equipment and devices is crucial, and that’s where miniaturized force measurement sensors play a role. In-home healthcare innovators and product makers use miniature load cells to demonstrate greater impact in improving home-based medical devices’ accuracy and relability.

Interface has a long history of providing the medical and healthcare industry with force measurement products for medical devices, pharmaceuticals, and in-home healthcare applications.

Interface Mini Load Cells are used for in-home healthcare device testing and integrated measurement solutions. The types of products include our popular models: Compression Load Button Load CellSSMF Fatigue Rated S-Type Load CellMB Miniature Beam Load CellWMC Sealed High Capacity Stainless Steel Miniature Load Cell, SMA Miniature S-Type Load Cell, and our new SuperSC S-Type Miniature Load Cell.

Why Are Interface Mini Load Cells Used for In-home Healthcare Devices?

#1 Size: Dimensions matter for these types of applications. Interface offers compact and versatile measurement devices that integrate seamlessly into existing and new medical devices, from monitors to therapy equipment.

#2 Capacity: The range of solutions needs to fit dimensionally, as well as by the capacity of the measurement. Whether it is minuscule Newton meters or several pounds of force, it is important to use a miniature load cell that fits the exact measurement requirements.

#3 Precision: High accuracy is paramount when developing and monitoring in-home healthcare devices. The sensors must deliver precise measurements critical for device efficacy and patient safety.

#4 Endurance: The durability and reliability are also at the core of devices used outside a medical facility. They must be built to withstand the demands of home use, ensuring long-lasting performance.

#5 Integration:  Many medical device manufacturers use Interface solutions as part of the overall equipment, embedding our sensors in the device to provide real-time feedback and monitoring.

#6 Research and Development: Any approved medical device takes years to complete the final product, including the regulation and compliance. Interface Mini Load Cells are used by design houses and testing labs throughout the prototyping phases.

Examples of Load Cells Technologies Making a Big Impact

  • Smart Scales: Track weight changes, monitor medication adherence, and detect early signs of health issues.
  • Rehabilitation Equipment: Measure force and progress during physical therapy exercises, providing personalized feedback and improving outcomes. See: Treadmill Rehabilitation
  • Transfer Lifts: Ensure safe and comfortable patient transfers by accurately measuring weight and balance. See: Patient Hoyer Lift
  • Infusion Pumps: Precisely control medication delivery for chronic conditions, improving patient safety and treatment effectiveness. See:
  • Bed Weighing: Monitor weight fluctuations for accurate diagnoses and treatment plans, even at home. See: Hospital Bed Weighing App Note
  • Assistive devices for people with disabilities: The design must be tested with precision measurements to ensure they enhance functionality and independence.

The demand is high due to in-home medical devices. What was once viewed as for use in hospital settings is now in homes around the globe.  By enabling patients to manage their health at home, these devices can improve outcomes through increased compliance, early intervention, and personalized care. Home healthcare can be significantly cheaper than hospital care, benefiting patients and healthcare systems.

Our team of measurement application engineers provides standard, custom, and OEM sensor solutions for in-home medical devices. Our experts assist you in finding the right load cell for your specific needs.

We have proven experience providing sensors for seamless integration into existing equipment or new medical device designs to ensure compatibility and optimal performance. Together, we can help leverage the power of miniature load cells to create a future of personalized, effective, and accessible in-home healthcare.

ADDITIONAL RESOURCES

New Technical White Paper Analyzes SuperSC S-Type Miniature Load Cells

Spotlighting Medical Device and Healthcare Solutions

Medical Bag Weighing App Note

Medical and Healthcare Solutions

Interface Solutions for Medical Devices and Healthcare

Measuring the Potential of IoT Wearables Using Load Cell Technology

Weighing

Accuracy Matters for Weighing and Scales

 

Building a Clean Energy Future in Hydrogen with Force

Clean energy is a driving force of innovation, technology, and investment in the global economy. Established energy giants and nimble startups are pouring resources into sustainable solutions. Among them, hydrogen shines as a particularly exciting frontier. The global hydrogen generation market is estimated to be $170B and growing, with an estimated 2,000 hydrogen production-related projects globally.

As with any evolving technology, monitoring and testing are necessary to qualify and improve the various systems that validate inventions and advance adoption. Interface has worked with clean energy suppliers and equipment manufacturers for many years. We have gained much experience in understanding the complexities and requirements of testing and monitoring alternative energy sources.

Among the various clean energy harvesting and storage solutions available today, hydrogen is among the most researched and impactful clean energy options. Hydrogen is considered a clean fuel that produces only water when consumed in a fuel cell. Hydrogen can be produced from biomass, natural gas, nuclear power, and renewables, including solar and wind. Read: Load Cells for Renewable Energy Production and Testing

Due to experience as a supplier of force measurement solutions for energy providers and equipment makers, Brian Peters contributed a new article about the dynamics of applying force testing in hydrogen energy to the Winter Edition of Global Hydrogen Review. His article highlights the current state of hydrogen energy and the barriers that force measurement is helping to solve. He details force-testing solutions for novel technologies that transport, monitor, and store hydrogen energy.

The full article can be read on page 19 of the December 2023 edition of Global Hydrogen Review here. We’ve also included a brief preview of the article below.

Feel The Force

By Brian Peters, VP of Global Sales, Interface

Hydrogen, as a clean and reliable renewable energy source, has been a carrot on a stick for green energy innovators for many years. Scientists and technologists have understood the positive impact of hydrogen for a long time and even harnessed it at times, but the ability to reliably transport, store, and harness this energy at a reasonable cost has previously eluded them. However, hydrogen is back in full force as storage and battery technology has advanced, giving new life to the promise of hydrogen.

Hydrogen is critical to the future of green energy because it is an optimal solution to storing renewable energy from other sources such as wind and water. In certain areas, like California, we produce too much energy from renewable sources but have nowhere to store it. This is leading to a tremendous amount of resource loss. Therefore, hydrogen innovation investment is on the rise again to solve production, storage, and monitoring application challenges aimed at curtailing waste and holding enough energy to power more infrastructure with green energy.

To start, hydrogen production in its current state is quite expensive as the element is difficult to handle, and the equipment and processes available today are scarce or subpar. Many of the traditional production and storage methods also lead to excessive waste.

One of the key reasons that storage has become such a challenge is due to the unique nature of hydrogen energy. Hydrogen is an incredibly light element in liquid form, which is a popular way of storing it in higher volumes. However, in this form, it can be very volatile and hard to maintain due to temperature constraints, and therefore, storage, metering, and more require extreme precision. While in a compressed form, hydrogen takes up more space and needs to be carefully monitored for pressure-related concerns.

Due to the volatility of hydrogen energy, transportation has also become a barrier to the reliable transfer and use of hydrogen energy. The cost alone of transporting liquid or compressed hydrogen can become immense with the current lack of stable transportation/storage methods and the danger it can pose to the individuals shipping the substance.

The road to reaching a place where hydrogen could become a real solution to meeting the demand for renewable energy has been filled with hundreds of technological advancements. One of the lesser-known but extremely critical solutions to making hydrogen a reality on a large scale is force measurement. Force sensors can be used at every level of hydrogen advancement, from harnessing the power of hydrogen to storing, monitoring, and transporting it – and more use cases for hydrogen applications are being implemented frequently. Read More

ADDITIONAL RESOURCES

Load Cells for Renewable Energy Production and Testing

Interface Details Hydrogen Electrolyzers Solution in Design News

Interface and Green Energy Innovation

Interface Load Cells Propel New Torsional Force Measurements for Wind Energy Project

Interface Supports Renewable Energy Innovation

Interface Solutions for Growing Green Energy

Demands for Quality Energy Measurement Solutions

Windmill Energy App Note

Wave Energy Converter

Biomass Handling

Load Cell Simulator 101

A load cell simulator is a device that mimics the electrical signal of a load cell. This allows technicians to test and calibrate measurement systems without applying physical force or weight to the load.

By generating a range of input signals using a load cell simulator, technicians can assess the instrument’s linearity, sensitivity, and accuracy, ensuring it meets the required specifications.

The two most common uses for load cell simulators are troubleshooting and calibration. Load cell simulators can effectively troubleshoot force measurement systems, detecting and isolating faults or malfunctions. By simulating various load conditions and injecting fault conditions, technicians can pinpoint the source of the problem, such as a broken wire or a faulty load cell.

Load cell simulators are essential for calibrating force measurement devices, ensuring they accurately translate applied force into a measurable electrical signal. By generating a controlled force signal, technicians can compare the displayed value to the known input signal, identifying discrepancies and adjusting the device accordingly.

Interface load cell simulators are part of our accessories product line. They are an essential accessory and valuable investment for any testing lab or research facility frequently using load cells. These simulators can help to improve safety, reduce downtime, improve accuracy, lower costs, and increase convenience.

Why Use a Load Cell Simulator?

  • Testing and monitoring force measurement systems: Load cell simulators can test instrumentation performance used in force measurement systems, such as hydraulic presses, assembly machines, and material testing machines. By simulating forces that the system would typically encounter, the simulator can help identify potential problems with the instrumentation, ensuring that the system operates safely and efficiently.
  • Verifying proper indicator setup: Load cell simulators can be used to verify that an indicator is configured correctly for the type of load cells being used. This includes checking the scaling and the instrument’s linearity.
  • Cable checks: One of the first troubleshooting tips for any load cell application is to check the cables and connectors. A load cell simulator is valuable for checking cables.
  • Scaling: Load cell simulators are crucial for scaling force measurement devices, enabling precise calibration, troubleshooting, and testing. They play a vital role in ensuring the accuracy and reliability of force measurements across various industries.
  • Calibrating scale indicators: Load cell simulators can generate a precise mV/V signal corresponding to a specific weight. This allows technicians to calibrate scale indicators to ensure that they are displaying accurate weight readings.
  • Application evaluation: Load cell simulators can be used to develop and troubleshoot force-related applications, such as medical devices, prosthetics, and exercise equipment. By simulating forces that users would typically apply, the simulator can help to ensure that the application is safe, effective, and operational.
  • Research and product development: Load cell simulators can be used to research new force measurement applications.
  • Technician training: Load cell simulators can educate and train technicians on the proper use and calibration of load cells.

Interface Load Cell Simulators

CX SERIES PRECISION MV/V TRANSFER STANDARD LOAD CELL SIMULATOR 

CX SERIES PRECISION mV/V TRANSFER STANDARDModel CX Series Precision mV/V Transfer Standard is the market’s most accurate load cell simulator. This NIST Traceable product is commonly used to calibrate and check instruments in accredited labs.

  • Most accurate load cell simulator
  • Special low thermal EMF construction
  • Each unit is individually calibrated, aged, and recalibrated
  • Strong, rugged design
  • Instrument substitution testing

In the series, models CX-0202, CX-0610, CX-0440, CS-0330, and CX-0220 are used to set up and check the Gold Standard® System Hardware. CX-0440, CX-0330, and CX-0220 are single-step mV/V transfer standards providing precision outputs of ±4, ±3, and ±2 mV/V respectively. CX-0610 is a multi-step unit that allows the user to go from -6 mV/V to +6 mV/V in 1 mV/V steps. Model CX-0404 is specifically designed for instrument substitution testing as per ASTM E74.

EVALUATOR 3 LOAD CELL SIMULATOR 

Evaluator 3 Load Cell SimulatorThe Evaluator 3 variable range simulator is well suited for basic troubleshooting needs, offering nine fixed intervals from -5 mV/V to +4.5 mV/V.

  • ABS plastic case
  • Weighs less than 1 lb (0.45 kg)
  • Fixed rotary switch, -0.5 mV/V to 4.5 mV/V in 9 steps of 0.5mV/V per step
  • Used in testing and troubleshooting mV/V instrumentation

IF500 LOAD CELL SIMULATOR 

The new model IF500 is a 5V or 10V excitation-only load cell simulator with a state-of-the-art microprocessor-based design. It is a cost-effective simulator with advanced instrumentation capabilities. The instrument excitation supply powers the IF500 and requires no batteries.

  • Set “ANY” mV/V value within ±5mV/V
  • State-of-the-art, microprocessor-based design
  • Sleep mode eliminates digital clock noise
  • Powered by instrument excitation supply… No batteries
  • Buffered Ratiometric output
  • 350-ohm bridge configuration
  • Stores up to 10 settings with sequential recall
  • Digital zero trim and storage
  • Low noise, low quiescent current, low-temperature coefficient, high stability amplifiers
  • Compatible with instruments using 5V or 10V excitation, including Interface’s instrument models 9820, 9840, 9860, 9870, 9890, CSC/CSD, DMA/DMA2, DCA, INF1/INF4, ISG, SGA, and VSC
  • Options include: NIST Traceable Calibration Certificate, Screw Terminal Adapters for the BNC Connectors and Cable Adapters

Application Examples for Load Cell Simulators

Manufacturing: Load cell simulators are essential for calibrating and testing force measurement devices used in manufacturing processes, ensuring accurate force control and product consistency. ADDITIONAL RESOURCE: Manufacturing Solutions.

Food Processing: Load cell simulators are critical in calibrating and troubleshooting force measurement devices, ensuring precise portion control, and maintaining food safety standards.  ADDITIONAL RESOURCE: Force Measurement for Efficiency in Food Processing and Packaging

Construction: Load cell simulators are employed for testing and calibrating force measurement devices used in construction applications, such as crane load monitoring and material testing. ADDITIONAL RESOURCE: Construction Solutions

Medical Devices: Load cell simulators are utilized for calibrating and verifying the accuracy of force measurement devices in medical applications, such as patient weighing scales and rehabilitation equipment. ADDITIONAL RESOURCE: Medical and Healthcare

Interface load cell simulators are indispensable tools for scaling force measurement devices, providing a safe, efficient, and cost-effective means to ensure the accuracy and reliability of force measurements across diverse industries. Their ability to calibrate, troubleshoot, and test force measurement devices contributes to product quality, process control, safety, and regulatory compliance, making them essential for maintaining the integrity of force measurement systems.

Interface Load Cells Propel New Torsional Force Measurements for Wind Energy Project

Amongst the wide variety of industries that Interface serves, clean and renewable energy sectors are some of the hottest in pursuit of sensor-based solutions. Between private and public funding, and the overwhelming desire for humans to become more sustainable, new energy technology and investment is multiplying at a rapid pace. 

Interface force measurement solutions are used in all types of energy-related applications for wind, solar, hydro, nuclear, geothermal, and emerging energy sources worldwide. We are recognized as a provider of choice for our reliability and accuracy in designing, engineering, testing, innovating, and manufacturing precision sensor solutions for the energy industry.  In fact, we have designed unique load cells that are embedded into some of the largest test and production equipment for energy production in the world. Read Interface Most Promising Energy Tech Solution Provider

Advance technologies in renewable and sustainable energy sources continues to drive the critical need to monitor, test, and validate concepts, equipment, and tools used in procurement. In the global energy industry, many of the alternative source technologies are inventive, newer, and require unique measurement solutions to take on the challenges found in R&D, testing, and production.  

In addition, alternative energy sources in their infancy can be very cost prohibitive going from exploration to consumption. Therefore, it is important that quality, cost effective testing solutions are provided to help researchers, engineers and manufacturers minimize total costs. Interface force testing solutions help to solve and lessen the burden of these challenges by offering a wide range of test and measurement solutions.

New Interface case study reveals how our load cells were used by the PTB in Germany to calibrate and test the world’s largest machine that measures torsional forces related to wind turbines.

Interface force measurement sensors were requested to help Physikalisch-Technische Bundesanstalt (PTB), the national metrology institute of the Federal Republic of Germany, in the design of an innovative wind energy project. As the second largest metrology institute in the world, the PTB has an acclaimed international reputation in research relating to units and precise measurement. 

PTB is a service provider for science, business, and society, and advises the German federal government on all metrology issues. Organizationally, the PTB is a departmental research facility and senior authority within the portfolio of the Federal Ministry of Economics and Climate Protection. For more than 135 years, PTB’s role has been making important contributions to advancing the energy transition, heat transition and climate protection with quality and speed. 

Interface, working in tandem with our esteemed partner Interfaceforce e. K. in Germany, was asked to provide load cell solutions to use in the design and testing of the world’s first traceable torque measurements of up to 5 MN ∙ m for a wind energy facility. As a first of its kind project, the PTB needed to include high accuracy, quality test equipment to guarantee precise and reliable data. Interface solutions fit the exact requirements.  Read the complete case study here.

Summarizing the engagement, PTB endeavored to construct a system with highly accurate and repeatable results, and one that enable bending moments, axial forces, and dynamic excitations of up to 3 Hz. Thereby, making it possible to realize a metrological characterization of dynamic influences in the (MN ∙ m) torque range, as well as in the MN force range. Working closely with PTB, Interface’s experts in Germany worked with the metrology lab engineers to identify the correct products for this unique calibration system.  

These products are being used to calibrate and test PTB’s torque measurement system, allowing the system to provide accurate and repeatable results over time. The custom load cell products Interface provided PTB for this innovative wind energy system, as detailed in Interface Supports Incredible Wind Energy Innovation, included:

The load cells that were chosen helped PTB to create the system needed for its wind energy facility, which allows multi-component transducers to be calibrated in a traceable and practice-oriented way for force and torque. The system is also now the world’s largest machine starting up at PTB, with which the large torsional forces that occur in wind turbines can be precisely measured for the first time.  Read the article: World’s largest device for measuring torque in wind turbines opens.

As we detailed in Load Cells for Renewable Energy Production and Testing, Interface and our incredible distributor network continues to work with engineers and industry leaders to find viable measurement solutions. Pushing the boundary forward on new and renewable energy is rewarding for our company, especially as we help those achieve energy innovation using sustainable, quality measurement solutions.

ADDITIONAL RESOURCES

Geothermal Well Drilling

Interface and Green Energy Innovation

Interface Solutions for Growing Green Energy

Demands for Quality Energy Measurement Solutions

Interface Supports Renewable Energy Innovation

Interface Supports Incredible Wind Energy Innovation

Electrical Engineers Choose Interface Sensor Technologies

Interface is a premier provider of force, torque and weighing solutions to electrical engineers around the world who are responsible for creating new products, solving problems, and improving systems.

Electrical engineers vary in specialization and industry experience with responsibilities for designing and testing electrical systems and components such as power generators, electric motors, lighting systems, and production robots. They use their expertise and knowledge of electrical systems and components to design, develop, assess, and maintain safe and reliable electrical systems. There are many electrical engineers who work on complex systems and who are responsible for troubleshooting and diagnosing problems that may arise.

The electrical engineers whose primary focus is research and development look to create new electrical technologies and advance existing systems. Projects related to renewable energy, smart grids, wireless communication systems, and electric vehicles utilize all types of measurement solutions throughout all phases of their R&D. Accuracy of testing is essential for electrical engineers, to ensure components comply with safety regulations and industry standards.

How does an electrical engineer use sensor technology for testing?

Sensors are a critical tool for electrical engineers in testing and optimizing the performance of electronic devices, systems, and processes. The type of sensor used, and the specific testing application will depend on the needs of the project or product, including the following examples.

  • Structural testing: Sensors are used to measure the structural integrity of materials and components. Load cells convert force or weight into an electrical signal that can be measured and analyzed. For example, Interface’s standard load cells are frequently used to measure the amount of strain or deformation in a material under load, which can help electrical engineers design stronger and more reliable structures. See how Interface’s products were used in an EV battery structural testing project.
  • Process control: Sensor technologies, including load cells and torque transducers are frequently utilized in manufacturing processes to monitor and control various parameters. Electrical use this data gathered through various instrumentation devices to ensure that the manufacturing process is operating within the desired parameters and to optimize the process for efficiency and quality.
  • Environmental testing: Environmental sensors are commonplace for measuring temperature, humidity, pressure, and other environmental factors. Electrical engineers can use this data to test and optimize the performance of electronic devices and systems under various environmental conditions. Read Hazardous Environment Solutions from Interface to learn more.

Electrical engineers use load cells in a variety of applications, such as measuring the weight of objects, monitoring the force applied to a structure, or controlling the tension in a cable or wire. The choice of load cell will depend on the specific application and the requirements for accuracy, sensitivity, and capacity. Electrical engineers must also consider factors such as environmental conditions, installation requirements, and cost when selecting a load cell.

Electrical engineers work in a wide range of industries and sectors, as their expertise is required in many different areas of technology and engineering. Interface has supplied quality testing devices and components to EEs in every sector, from electronics to construction.

Electrical engineers in the electronics industry use Interface products in designing and developing components such as microchips, sensors, and circuits. Demands for intrinsically safe load cells and instrumentation come from electrical engineers that are responsible for designing, maintaining, and improving power generation and distribution systems, including renewable energy systems such as solar, wind, and hydropower.

More than any time in Interface’s 55-year history, electrical engineers who work on a variety of aerospace and defense projects, are using Interface sensor products for designing and testing avionics systems, communication systems, and navigation systems.

We also continue provide electrical engineers who engage in designing and developing the electrical and electronic systems in vehicles, including everything from powertrains and engine management systems to infotainment systems and driver assistance technologies with new and innovative force measurement solutions.

Manufacturing electrical engineers who engage in designing and optimizing manufacturing processes, as well as designing and evaluating the electronic components and systems used in manufacturing equipment are frequently using Interface sensors. This includes the rising demands for sensors in robotics.

Electrical engineers across many different industries depend on Interface, just as all the companies and organizations around the world depend on their expertise. Interface is a proud partner of engineers across all disciplines.

ADDITIONAL RESOURCES

Interface Celebrates Engineers

Interface Solutions for Production Line Engineers

Quality Engineers Require Accurate Force Measurement Solutions

Interface Solutions for Material Testing Engineers

Why Civil Engineers Prefer Interface Products

Why Product Design Engineers Choose Interface

Interface Solutions for Research and Development

Among the many roles of force measurement in engineering and manufacturing, the role of force sensing in research and development may be the most exciting and important. Load cells and other types of force sensors qualify and collect data on exploratory projects across a wide variety of industries. These tests determine the viability of a potential project and eventually new innovations.

Research and development are core to most businesses to stay competitive. R&D is essential in creating new products and anticipating customer demands. Whether it is assessing the viability of a new IoT home technology for consumers or designing a component used in a new surgical medical device, research is core to the technical and technological development of most any product.

In an R&D environment, force testing helps to compare product materials, determine the strength materials and components, and evaluate environmental, ergonomic, and other features. Additionally, force testing is common across industries as a quality control measure to accurately check that a given group of products meet targeted design specifications, per performance, safety, and regulatory requirements.

Interface often works with engineers whose role it is perform research and development within their organization. R&D engineers use research theories, principles, and models to perform a variety of experiments and activities. Not only do R&D engineers create new products, but they often are responsible for the redesign of existing products.

Our goal at Interface is to help R&D engineers identify the best sensor-related products they can use to work through the problems they are seeking to solve. The products we provide validate findings through highly accurate sensor test and measurement data. There are some R&D applications that need just one or two load cells and basic instrumentation to conduct the project testing. Other times Interface is asked to create an application-specific engineered to order part or design a custom measurement solution to achieve the desired test and measurement outcomes. The later is often the case if a sensor is an actual part of the product design. Interface has helped R&D engineers assess all kinds of prototypes and early designs using our precision force measurement devices.

Force measurement is used throughout the product research and development lifecycle, from ideation and prototyping, to robust testing and eventual commercialization phases.

  • IDEATION: In the ideation phase, we provide force measurement solutions for testing materials for compatibility with the idealized product’s use cases.
  • PROTOTYPING: In prototyping, force sensors help engineers select a minimum viable product (MVP) design. Sensors are used in the lab environment to validate a product or component, or as an actual embedded sensors utilized for real-time feedback and performance monitoring.
  • TESTING: When a product moves into the testing phase, it ready for a more thorough batch of tests including cycle and fatigue testing. Our load cells, torque transducers and instrumentation are commonly used in these environments. Every product will require a sensor model that fits by specifications and capacity.
  • COMMERCIALIZATION: Finally, when a product is ready for commercialization, we provide products used to run a variety of tests to ensure the product is constructed in a way that is safe for the user and meets certain force related specifications for intended use.

To give you an example of how an R&D engineer utilizes force sensors, we have included a few application examples below.

R&D Testing for Bicycle Manufacturer

A bike manufacturing company R&D engineer created a new handlebar design. They need to test the handlebar concept for their bikes during the R&D phase to ensure they will perform for a rugged trail ride experience, while ensuring safety of the recreational equipment. The R&D team took the concept and conducted fatigue tests on their handlebars to observe its structure and performance durability before mass production.  Interface suggested using Interface Mini™ product SSMF Fatigue Rated S-Type Load Cells. Two of these s-type load cells are attached on either end of the bike’s handlebar stem, where it will measure the forces applied as the handlebar undergoes its fatigue test. Results can be measured, logged, and graphed with the SI-USB Universal Serial Bus Dual Channel PC Interface Module.

Research Rig Used for Testing Prosthetic Designs

Prosthetic limbs must undergo rigorous R&D testing prior to manufacturing. These critical apparatuses are tested for extreme loading that can occur during falls, accidents, and sports movements. Fatigue testing of prosthetic components determines the expected lifespan of the components under normal usage. R&D engineers use testing data to determine whether prosthetic materials and designs will withstand the rigors of daily use and occasional high load situations. For the R&D project, various configurations of compression and tension test machines can be used depending on the type of prosthetic device being tested. Often the same machine can be used for static and fatigue testing. For this application, an SSMF Fatigue Rated S-Type Load Cell is mounted between a hydraulic actuator and the device being evaluated. During static testing, loads are applied to the specimen using the load cell signal as force feedback control of the test machine. During a fatigue test, the actuator repeatedly applies and removes the force to simulate activity such as walking. Tilt tables may be used to apply forces at various angles to simulate the heel-to-toe movement of walking or running. The 9890 Strain Gage, Load Cell, mV/V Indicator with Logging Software was used to store the research data.

 

Electric Vehicle Structural Battery Testing for Prototype

Battery technology is critical to the evolution of electric vehicles, so there are a variety of tests performed on new innovations in EV battery technology. As electric vehicles push advancements in efficiency gains, structural battery packaging is at the forefront for optimization. This drives the need to validate structural battery pack design, both in terms of life expectancy against design targets as well as crash test compliance and survivability.  Interface’s solution for this challenge included 1100 Ultra-Precision LowProfile Load Cells in-line with hydraulic or electromechanical actuators in the customer’s test stand. Also utilized were 6-Axis Load Cells to capture reactive forces transmitting through pack structure. Multi-axis measurement brings greater system level insight and improved product success. The tests performed using Interface’s force measurement products were able to validate the battery packs strong structural design.

Proving Theoretical Cutting Forces Of Rotary Ultrasonic Machining

Rotary ultrasonic machining is a hybrid process that combines diamond grinding with ultrasonic machining to provide fast, high-quality drilling of many ceramic and glass applications. This new method has been theoretically proven using computer models. Rotary ultrasonic machining generates forces of an exceedingly small magnitude. To prove this theory, any load cell used for measurement must be sensitive, while at the same time retaining high structural stiffness within a compact, low-profile envelope. Interface’s 3A120 3-Axis Load Cell was installed in the rotary ultrasonic machine to measure the forces being applied to a sample part. With clear signals and minimal crosstalk, the applied forces are recorded and stored using an the BSC4D Multi-Channel PC Interface Module. The 3-Axis load cell provided excellent data helping uncover the relationship between machine cutting parameters and the forces applied on the component. Using this knowledge, the machining process was reliably optimized for new materials and operations.

The role of Interface as it pertains to R&D is constantly growing as engineers create new innovations to solve a myriad of challenges throughout the world. We provide the most accurate and reliable force measurement systems to help advance technology across industries.

ADDITIONAL RESOURCE

Interface OEM Solutions Process

Interface Solutions for Machine Builders

Interface Solutions for Consumer Product Goods

CPG Bike Frame Fatigue Testing

CPG Treadmill Force Measurement

CPG Golf Club Swing Accuracy

Interface Sensors Used for Development and Testing of Surgical Robotics

Fitness Equipment Makers Require Extreme Accuracy

Back to School Force Measurement Essentials

Interface has a long history of collaborating with colleges and universities around the world. From individual engineering students testing the force of launching miniature rockets to supplying onsite test labs with load cells and equipment for R&D, we are a resource for higher education learning and experimentation.

In our view, innovation and exploration have no boundaries. What validates new ideas and manifests problem solving requires modern and reliable tools that support student’s projects and activities. Its key to any program’s success. It is also why we are proud to be known around the globe as a leader in building and designing force measurement products that facilitate these initiatives through higher learning.

It is very inspiring to see new engineering students, future metrologists, and soon-to-be graduates designing new medical devices, creating new spacecraft and interplanetary vehicles, testing materials used for miniature consumer products and of course, building plenty of new robots and AI machines.

In our view, every university or college should have Interface force measurement products on hand to support these types of educational test and measurement research projects. Here is a simplified list of basic sensor products to get started.

Force Measurement Essentials for Higher Learning

  • Precision load cells in diverse designs and capacities
  • S-type load cells (load beams)
  • Miniature load cells and load buttons
  • Multi-axis sensors
  • Calibration grade equipment
  • Instrumentation
  • Wireless sensor technologies
  • Rotary and reaction torque transducers
  • Verification load frames

Our investment in supporting educational programs runs deep into our history as a company. You will find our founder’s name on the Richard F. Caris Mirror Lab at The University of Arizona. Following in his commitment to education, the Richard F. Caris Charitable Trust II continues to support STEM programs including sponsorship of the International Science and Engineering Fair (ISEF).

We drive to ensure that students who have a passion for science, technology and engineering have access to the best force measurement sensor technologies. It is why we offer a standard discount to all students and education institutions. You can learn more about our education support here. We know that learning requires the best tools, and we want to make sure that every student has the most accurate, quality and precision load cells available today.

As with all inquisitive minds, we thought it would be interesting to share what are other university and colleges buying for their learning programs and campus labs.

Top 10 products for testing projects and campus lab studies:

  1. 1200 LowProfile Load Cells are our most popular load cell, available in standard and high-capacity features.
  2. 1010 Load Cell model is a fatigue-rated low profile load cell in our 1000 product family, offering various capacities and functions.
  3. 2420 Load Cell is one of our stainless-steel standard and high-capacity load cells in our 2400 model series.
  4. 1500 Low-Capacity Load Cell designs are common requirements for applications where low sensitivity to eccentric load is important.
  5. WMC Sealed Stainless Steel Miniature Load Cell has an environmentally protected construction that comes in a variety of model capacities and configurations. It is great for small spaces and industrial applications.
  6. 3-Axis Load Cells are extremely popular multi-axis sensors designed to provide more testing data and often paired with BSC4 instrumentation. They are ideally suited for aerospace, robotics, automotive, and medical research testing applications.
  7. 6-Axis Load Cells are growing in popularity, for cost benefit and their unique ability to simultaneously measure Fx Fy Fz Mx My Mz.
  8. SSM Miniature Load Cells are one of many popular general-purpose s-type designed load cells. You call learn more about all our s-type models here.
  9. Torque Transducers of all types are used by university programs, engineering departments and metrology labs. There are many different options including rotary and reaction torque solutions. For all options, start here to choose the right one.
  10. Load Washer Load Cells are used because of the unique through-hole designs. They come in various models and dimensions, along with capacity options.

As with any project, the questions of what you want to measure, the applications, and where you are sending the data, are all core to choosing the sensor and instrumentation that is best suited for the learning environment or program.

Speaking of where to send the data for performance monitoring and analysis, the five most favorite types of instrumentation selected by university students and engineering labs include:

  1. DMA2 Signal Conditioner
  2. 9840 4-Channel Intelligent Indicator
  3. 9825 General Purpose Indicator
  4. BX8-AS BlueDAQ Series Data Acquisition System
  5. SGA AC/DC POWERED SIGNAL CONDITIONER

If you are heading back to school and thinking that it is time to revamp the testing lab or need new force measurement equipment, be sure to reach out to our education application engineers. They have years of experience and can help you get exactly what you need for your project and programs.

Be sure to tune into our Load Cell Basics, for answer to common questions about using these highly accurate sensors for your test and measurement projects. You can find all our Interface videos on our YouTube channel here.

If you are looking to explore more technical resources, be sure to go to our online support area and subscribe to our blogs for weekly updates.

ADDITIONAL EDUCATIONAL RESOURCES

Types of Force Measurement Tests 101

Torque Transducers 101

Multi-Axis Sensors 101

S-Type Load Cells 101

Mini Load Cells 101

Force Measurement Instrumentation 101

Load Washers 101

Couplings 101

Load Shackles 101

Load Pins 101

Tension Links 101

Load Button Load Cells 101

Strain Gages 101

Load Cell 101 and What You Need to Know

Calibration Systems 101

Force Measurement Accessories 101

TEDS 101

Shunt Calibration 101

 

Demands for Quality Energy Measurement Solutions

Powering the world is no simple task, especially as research and innovation into alternative energy sources are at an all time high. Across the energy supply chain there are soaring demands from engineers, scientists, equipment makers and suppliers to provide quality and accurate market solutions.

The energy market is constantly evolving to power our infrastructure as well as finding new ways to reduce our carbon footprint. Interface is a key differentiator when it comes to test and measurement. We play an important role in the development and deployment of effective energy market solutions as our sensor technologies are used to test and monitor energy equipment, sources and methods for extraction and containment. As well, Interface is center in supplying devices used in the development of fueling alternatives and introducing new energy solutions.

To explain our role in the energy market and how are products can be used by engineers in these industries, Interface Energy Solutions Overview details the types of products and examples of applications used by industry market leaders and innovators.

Interface force measurement solutions are used in all types of energy related applications to produce oil, gas, wind, coal, solar, hydrogen, nuclear, geothermal and emerging energy sources around the world. We are recognized as a provider of choice for our reliability and accuracy in designing, engineering, testing, innovating, and manufacturing precision sensor-based solutions for the energy industry.

One of the industries where Interface’s experience and knowledge of force measurement is vertically integrated into production and manufacturing processes is in the energy industry. The conditions energy professionals work in can be harsh. They are often in hazardous environments extracting oil and natural gas, wind, or coal to fuel our world’s dependencies for power. The equipment our energy sector customers use must be rugged and provide the most accurate results possible. If the equipment fails, our customers risk steep losses and exposure to safety hazards.

Based on market requirements, we recently introduced the new Interface Pressure Compensated Downhole Load Cell solution specifically designed for the energy sector. The downhole environment poses many challenges for well-drillers, operators, tool-string designers, and other engineers in the oil and gas industry. This innovation eliminates the need for “wet” load cells to monitor forces on their downhole load strings, which don’t hold up for extended use where there are extreme pressures and temperatures in a caustic environment. Interface created a dry load cell with an innovative protective design that reduces the number of sensors required in any downhole load string, extending the life of the load cell by a decade or more.

The types of products the energy market demands from Interface for these applications include standard LowProfile load cells, various torque transducers, multi-axis sensors and all types of instrumentation. We supply engineered to order and custom products for various energy testing environments and OEM solutions. The range of options include uniquely designed torque transducers, load washers, tension and compression load cells, load pins, wireless gear and more.

ENERGY APPLICATIONS USING INTERFACE PRODUCTS

  • Solar panel design and testing
  • Wireless monitoring devices
  • Submersible and hazardous environment products
  • Hydrogen electrolyzer devices
  • Storing and transporting crude oil and natural gas
  • Windmill testing and management
  • Wireline spool tension control
  • Oil and gas equipment
  • Hydro power generation
  • Hook load tension
  • Torque tong monitoring
  • Tool recovery and fishing
  • Wave energy
  • Downhole OEM parts
  • Calibration and equipment maintenance

Interface force measurement solutions are used in components, machines and field equipment for energy R&D and production. From prototyping to monitoring equipment, our durable load cells and torque transducers assist suppliers of parts along with energy industry leaders and innovators to fuel the world. You can find more energy applications here.

Energy-Brochure-1

To learn more about our work in the energy industry or to inquire about how our force sensors can benefit your next project, contact our application engineers today.

Additional Resources

Interface Helps Power the World

Interface Most Promising Energy Tech Solution Provider

Announcing the Launch of the Interface Pressure Compensated Downhole Load Cell

Fueling Global Demand for Interface Solutions

 

Interface White Paper Highlights Contributing Factors to Load Cell Accuracy

Core to everything we do at Interface is within our foundational pillars of quality, service, accuracy, and innovation.

When it comes to precision load cells, our team of experienced engineers is fully committed to designing and building the best force measurement products in the industry. In fact, it is commonly known that with our published specifications, we often exceed them. It is why Interface products retain the industry-leading reputation for precision performance.

With innovation and imagination in our values, Interface team members look for ways to continuously test boundaries and explore possibilities, never losing sight of accuracy. We are students of the industry and understand the precise details and mechanics that go into force measurement product development to make our solutions are the most accurate on the market.

Critical to serving our customers is understanding the contributing factors of load cell accuracy and matching the products that best fit their requirements. There are many factors that can disrupt accuracy or skew data, such as the environment in which the load cell is being used, the type of load cell application use, even the mounting process.

All of these specifications must be correctly identified when choosing the right product for the project or product to ensure accurate results. To help our fellow community of engineers, manufacturers, and product designers to navigate the force measurement world, we have developed a new Contributing Factors to Load Cell Accuracy White Paper. Click here to get your copy today!

This Interface technical white paper includes a breakdown of the most critical factors of load cell accuracy, which includes:

  • Creep
  • Side and eccentric load
  • Temperature
  • Humidity
  • Mounting process

Chief Engineer Ken Vining provides valuable insights into some of the steps to take to avoid accuracy failure, such as:

  • Utilizing a golden part
  • Preventing load cell misuse
  • Setting a preventative maintenance schedule
  • Recalibration

This valuable resource provides a quick reference to understand load cells and the intricate details that come with their proper and accurate use. Included below is a link to access the downloadable PDF of the white paper. This technical white paper is an addition to our long-standing commitment to providing expert resources for those using or researching use case applications for load cells.

CLICK HERE TO ACCESS TO THIS NEW WHITEPAPER TODAY

The Interface Load Cell Field Guide is also available on Amazon.