Posts

Small in Dimension and Precise in Measurement

The world of force measurement is vast. Interface products are used across industries and in a wide range of applications. From the measurement of minute forces in catheter stint testing to jumbo load cells for massive structural testing of rockets, Interface load cells provide highly accurate measurement no matter the size of the load cell.

One of the many benefits of Interface products is the extensive range of measurement capacities and dimensions we offer, including our Mini Load Cells used for small and precise measurements. Interface Mini™ load cells are ideal for light touch, weight, or limited space test and measurement applications. The Mini Load Cells provide remarkably accurate measurements like our LowProfile load cells. With capacities available as low as 0.11 lbf / 0.5 N and as high as 100 kN, there are various miniature load cells for testing and options for custom OEM solutions.

TIP: Explore your options with our Mini Load Cell Selection Guide

Typical applications for measuring tiny, accurate forces are within the medical, manufacturing, robotics, and consumer product industries.

Medical device manufacturers are working to provide handheld point-of-care devices for patients. Additionally, medical devices used within the human body must provide extremely delicate forces to achieve their intended purpose without harming the patient.

Take something that seems relatively simple, like a vascular clamp. These types of delicate instruments are used on heart valves. If they provide too little force, they cannot do their job. However, providing too much force could severely harm the patient. Medical device manufacturers of these surgical tools use miniature load cells to measure the clamping force to ensure precise accuracy to toe the line between too much and too little force, which is a very precise number.

In the pharmaceutical industry, very small load cells are crucial for accurately measuring the force applied to the pills (tablets) during the press marking phase and other manufacturing processes to ensure consistent dosage and tablet integrity.

With consumer products, precision force measurement is critical to various manufacturing processes and real-time monitoring. A load button load cell is the right size for testing the durability of a smart device by applying a force to the screen and measuring the amount of force the screen can withstand before cracking or breaking. Read: Touchscreen Force Testing App Note

A miniature load cell can measure the force required to open a food package. This information can be used to ensure that the packaging is easy for consumers to open and secure enough to protect the food from damage. In food processing, load cells measure the force applied to food during mixing, blending, and other processes to ensure consistent product quality and prevent damage to the food itself. For instance, load cells can monitor the force applied to a dough mixer to ensure the dough is correctly mixed without becoming overworked or tough.

MINIATURE LOAD CELLS FOR SMALLER, MORE PRECISE FORCE MEASUREMENT APPLICATIONS

CONVEXBT LOAD BUTTON LOAD CELL

ConvexBT Load Button Load CellThe ConvexBT Load Button Load Cell is superior to any other load button. Constructed from heat-treated stainless steel and environmentally sealed with integral temperature compensation. Learn more about ConvexBT on our YouTube channel here: https://youtu.be/l4xEKNjKREw

  • 5 lbf to 1,000 lbf, 22.24 N to 4.44 N
  • Integral temperature compensation
  • Enhanced eccentric load rejection
  • Multi-point calibration
  • Integral load button
  • Minimal diameter

SMTM MICRO S-TYPE LOAD CELL

Model SMTM is the miniature overload-protected S-type load cell and is excellent to use where size is a constraint.

  • Capacity 5, 25, 50 lbf (20, 100, 200N)
  • It can be used in tension and compression
  • Micro-sized 3/4” x 3/4” x 1/4”
  • Excellent temperature compensation (0.005%/°F Temp Effect on Output)
  • Overload protected

SUPERSC S-TYPE MINIATURE LOAD CELL

The SuperSC is an economical general-purpose load cell with a high force in a compact design. The SuperSC is environmentally sealed and insensitive to off-axis loading. The proprietary form factor is 80% smaller and 50% lighter than other models of s-type load cells. READ: New Technical White Paper Analyzes SuperSC S-Type Miniature Load Cells

  • 25 to 1000 lbf (100 N to 5 kN)
  • High force in a compact design
  • Environmentally sealed
  • High stiffness
  • Low deflection

ULC ULTRA LOW CAPACITY LOAD CELL

ULC ULTRA LOW CAPACITY LOAD CELL

The Interface model ULC is the world’s most accurate ultra-low capacity load cell measuring loads from 0.1 to 2 N (10.2 grams to 500 gmf).

  • Proprietary Interface temperature compensated strain gages
  • Highest performance low capacity load cell in the world
  • Overload protected
  • Safe side load overload to 5X capacity
  • Low extraneous load sensitivity
  • Low-temperature effect on zero (0.002%/°F)
  • Tension and Compression
  • 5 ft integral cable included

MBP OVERLOAD PROTECTED MINIATURE BEAM LOAD CELL

Model MBP series load cells perform similarly to the famous Model MB series with the added safeguard of internal overload protection.

  • 5 lbf to 10 lbf
  • Proprietary Interface temperature compensated strain gages
  • 10x overload protection
  • Low height – 0.99 in (25.1 mm)
  • 0008%F temp. effect on output
  • 5′ Integral Cable (custom lengths available upon request)
  • NIST Traceable Calibration Certificate

SMALL AND PRECISE MEASUREMENT APPLICATIONS

SPECIMEN RESEARCH

In the medical industry, medical experts need the best equipment to research multiple specimens. In this case, a medical researcher needs to monitor the load force of their linear actuator that uses a needle to collect material from the desired specimen. Interface’s SuperSC S-Type Miniature Load Cell can easily be installed into the linear test stand. A needle with a gripper on the end is installed on the lower end of the SuperSC. As the needle is pushed to collect specimen material, the load feedback is captured using the 9330 Battery Powered High-Speed Data Logging Indicator through an SD card or another laptop. Read: Specimen Research App Note

AIRBAG CONNECTOR TESTING

Testing airbag connectors functionality is needed to ensure perfect deployment in case of a car crash. Eight to twelve connectors are installed in each vehicle, and tests must be made to clarify whether the connectors are working effectively. These connectors usually work when latched, but that does not ensure the electrical properties are performing. The amount of force needs to be tested to see when an electrical current is connected. Interface’s solution is to attach the WMC Sealed Stainless Steel Miniature Load Cell to the actuator of the test rig. The airbag connector is placed at the test rig’s bottom. Forces are applied and measured using the 9330 High-Speed Data Logger as the connector is pushed down to latch together. When connected to a computer, results can be logged, downloaded, and reviewed.

COBOT MONITORING SYSTEM

Collaborative robots, or cobots, are offering more manufacturing operations in the industrial packaging industry. Protective cages or fences are no longer needed for safety purposes, but safety testing is still required to ensure humans and robots can work together. Four 3-axis Force Load Cells (creating one 6-axis Force Plate) are installed between two metal plates at the base of the cobot. Interface suggests installing a 6-axis force plate under the cobot and two ConvexBT Load Button Load Cells in the pinchers of the cobot. If a human were to knock into the cobot or have any object stuck in the pincher, the cobot would sense the force measured from the load cells and be programmed to stop immediately.

Interface can serve a wide range of test and measurement applications from millions of pounds force to the most minute. If you want sensors with small, more precise measurement capabilities, please check out our miniature load cell selection guide.

Interface Load Cells for Press Machines

Press machines are designed to measure and apply force for various reasons. Hydraulic presses can be used to shape materials or crush objects. Stamping presses make a visible impression or stamp onto materials, such as a pharmaceutical tablet or logo on a food product. Even sandwich presses follow many of the characteristics of more industrial presses.

Press machines are used across automotive, aerospace, construction, consumer goods, medical, agriculture, mining, and other industries.  The presses produce consistent, cost-effective quality parts, tools, and products. No matter what kind of press machine, it must undergo rigorous testing during the machine-building process. During operation, there must be continuous monitoring of the press force used in each application.

NEW! Interface Solutions for Machine Builders

Interface load cells are critical to designing, testing, and using accurate and reliable press machinery. Interface load cells come in various shapes, dimensions, and capacities, allowing press machine builders and engineers to find the best solution for their specific machinery use case. Whether selecting a miniature load button load cell for a small press test or our WMC Load Cell to integrate into the machine, Interface has a range of products for press machine applications.

Benefits of using load cells in press machines:

  • Enhance Operator Safety
  • Prevention of Overloading
  • Improve Consistency
  • Avoid Damage to Equipment
  • Reduce Waste and Scrap
  • Increase Quality and Consistency of Work Product
  • Improve Process Control
  • Extend the Life of the Machine’s Operation
  • Increase Productivity

In a press machine test, the load cell is typically placed between the ram of the press and the die, where it can measure the force being applied to the object. The load cell is usually connected to a readout or display showing the operator the force applied to the part or material. This readout may be a simple analog or digital display, depending on the specific press and load cell being used in the machine. Review our Instrumentation Selection Guide to find the best option for your press.

There are numerous options for the types of load cells used for press machine applications. Hydraulic presses are some of the most common presses that use load cells. These machines are often built to form metal parts, such as gears, shafts, and bearings. The construction industry uses presses to assemble and test concrete structures. These presses are designed to crush and process minerals and ore in mining.

Mechanical presses are typically used for high-precision applications, such as metal stamping and forming. Miniature load cells are used in more precise applications that require smaller measurements. These use cases are often reserved for the medical or consumer goods industry, where the goal is to provide a stamping force for medicine or candy to label the product without crushing or damaging it. A precision Interface load cell ensures that the force applied to the material is consistent and accurate.

Another type of press using a sensor is known as a screw press which forms and compacts materials such as plastic and rubber. These press machines are found in chemical, food, and waste processing facilities.

Depending on the measurement capacity needed in the machine’s application, two popular Interface options are the Rod End Load Cells and Mini WMC Sealed Stainless Steel Load Cells. A rod end load cell is typically installed at the end of the piston or ram, where it can measure the tension or compression force being applied during the pressing operation.  These load cells provide accurate and reliable force measurement in various presses.

Press Forming and Load Monitoring

Press forming is a method to deform different materials. For instance, materials such as steel can be bent, stretched, or formed into shapes. A force measurement solution is required to monitor the forces being applied by the press-forming machine. This ensures quality control and traceability during the production process. Interface recommended installing the 1000 High Capacity Fatigue-Rated LowProfile™ Load Cell for large press forming machines. When the material is placed under the punch plate to form a shape, the 1000 series load cell measures the force applied. The captured force results were sent to the INF-USB3 Universal Serial Bus Single Channel PC Interface Module, where results could be graphed and logged on the customer’s PC using the provided software. Interface’s force measurement products and instrumentation accurately monitored and logged the force results of the press force machine, ensuring zero-error production performance.

Tablet Forming Machine Optimization

A pharmaceutical tablet producer wanted to monitor the forces the tablet forming machine applied to understand the relationship between raw material, die set, form, force, and the motor’s cycle speed. The goal was to improve the productivity and efficiency of the tablet-forming process while reducing losses (i.e., cracked tablets or voids) by adding a dimension of feedback that could be used to assign specific press adjustment criteria for given inputs. An Interface Model WMC Sealed Stainless Steel Mini Load Cell (10K lbf Capacity) was mounted in the section of the downward press bar. The machine was modified to accomplish this. The load cell was then connected to a Model 9320 Portable Load Cell Indicator to collect the needed data. After analyzing the data, the tablet producer could quantify adjustment levels by monitoring which forces produced optimal results for a given cycle speed, die set, and raw material. The enhancement of the data feedback significantly improves productivity and efficiency.

Candy Stamp Force Testing

Manufacturers of hard-shell candies often stamp text or logos on the candy shells. Stamping too hard breaks the candy shell and stamping too light results in an uneven or incomplete imprint. Using a test apparatus with an Interface Model WMC Mini Load Cell attached to hydraulic actuators was discovered to be an accurate way to measure the compression force required. Engineers determined the specific force needed to properly apply the imprint without breaking the candy shell using this solution.

Using Interface load cells on a press machine is a valuable investment that can help to improve the quality of the products being produced, extend the life of the press machine, and reduce the risk of accidents.

ADDITIONAL RESOURCES

Press Forming and Load Monitoring

Press Load Monitoring App Note

Hydraulic Press Machines and Load Cells

Metal Press Cutting Machine

Interface Solutions for Machine Builders

Force Measurement Sensors are Essential to Modern Industrial Machinery

 

ForceLeaders Summit Milwaukee

ForceLeaders Summit is heading to Milwaukee, Wisconsin. The Interface sensor workshop brings together experts in force measurement detailing applications, products, FAQs, and technical tips. We detail load cells, transducers, multi-axis sensors, data acquisition, wireless systems, instrumentation, and more. Registration required, limited seating. The event takes place in Brookfield, just outside of Milwaukee.

Fatigue Testing with Interface Load Cells

Engineers rely on fatigue testing to ensure the safety and reliability of their product designs and structures. By understanding how materials behave under repeated loading, engineers can design components resistant to fatigue failure.

Fatigue testing requires accurate and reliable force measurement. Interface uses ‘fatigue-rated’ as an exact specification that defines a special class of load cell design and construction. Interface fatigue-rated load cells are designed to withstand the rigors of repeated loading, which makes them ideal for even the most demanding high cycle count fatigue testing applications.

In a typical fatigue testing setup, Interface fatigue-rated load cells are attached to the test specimen or the test machine, and the cyclic loading is applied according to the test protocol. The load cells continuously record the applied forces or stresses, allowing engineers and researchers to monitor how the material responds to repeated loading.

By analyzing the data from Interface load cells, researchers and material engineers can determine the material’s endurance limit, fatigue life, and stress-strain behavior. This information is invaluable for optimizing material selection, design, and manufacturing processes to enhance product performance and reliability while identifying fatigue and potential failure risks.

The use of fatigue-rated load cells and data logging instrumentation is necessary for most test and measurement applications, particularly when materials, parts, or assemblies are tested for destruction. This is true because an accurate record of the forces at every moment of the tests is the only way an engineer can analyze the stresses that occurred in the moments just before the ultimate failure. Read more about fatigue testing in our Interface’s Technical Library.

Interface Fatigue-Rated Load Cells

1000 Fatigue-Rated LowProfile® Load Cell

1000 High Capacity Fatigue-Rated LowProfile® Load Cell

1500 Low Capacity LowProfile® Load Cell

1208 Flange Standard Precision LowProfile® Load Cell

Profile of a Fatigue-Rated Load Cell

  • Design stress levels in the flexures are about one-half as high as in a standard LowProfile load cell.
  • Internal high-stress points, such as sharp corners and edges, are specially polished to avoid crack propagation.
  • Extraneous load sensitivity is specified and adjusted to a lower level than in a standard LowProfile load cell.
  • All Interface fatigue-rated load cells have a specified service life of 100 million fully reversed, full-capacity loading cycles.

No one can accurately predict exactly when the failure will occur, nor which part of an assembly will be the weakest link that eventually will fail. This is why high cycle count testing is the best way to measure fatigue life. To read more about fatigue testing and fatigue theory, consult Interface’s Load Cell Field Guide.

Fatigue Testing Applications

Interface fatigue-rated load cells are used in various industries, including aerospace, automotive, civil engineering, and manufacturing. They are used to test various products, from aircraft wings and landing gear to furniture and industrial machinery.

How Interface fatigue-rated load cells are used in fatigue testing:

  • Aerospace: Interface fatigue-rated load cells test the durability of aircraft wings, landing gear, and other aerospace components. This helps to ensure that aircraft can withstand the rigors of repeated takeoffs, landings, and flights. These load cells test the materials used for structures and even rockets.
  • Automotive: Interface fatigue-rated load cells test the fatigue life of engine components, chassis, and suspension systems. This helps to ensure that vehicles are safe and reliable and that they can withstand the stresses of everyday driving.
  • Civil engineering: Interface fatigue-rated load cells test the fatigue resistance of bridges, buildings, and critical infrastructure. This helps to ensure that these structures can withstand the loads they are designed to carry and are safe for the public.
  • Manufacturing: Interface fatigue-rated load cells test the fatigue life of industrial machinery, tools, and consumer products. This helps to ensure that these products are reliable and can withstand the demands of everyday use.

Watch how Interface load cells are used in this bike frame testing application.

Interface has specialized in fatigue-rated load cells and their applications since our founding in 1968. Our LowProfile® fatigue-rated load cells provide up to 100 million duty cycles, and the gaged sensors in every load cell are individually inspected, tested, and certified to meet our rigid performance standards.

It is imperative to choose the right load cell for your fatigue testing application. Load cells come in various sizes and capacities, so it is vital to choose one that is right for your fatigue testing application. Ensure you know the maximum load that will be applied to the load cell, the type of loading, the accuracy requirement, and the environmental conditions for testing. Consult with Interface application engineers to find the suitable load cell for your testing requirements.

ADDITIONAL APPLICATIONS AND RESOURCES

CPG Bike Handlebar Fatigue Testing

Interface Specializes in Fatigue-Rated Load Cells

Prosthetics Load and Fatigue Testing App Note

Furniture Fatigue Cycle Testing App Note

Aircraft Wing Fatigue App Note

 

Force Measurement Sensors are Essential to Modern Industrial Machinery

 

Industrial machinery plays a vital role in the global economy. It helps to improve productivity and efficiency, and it is essential to produce many of the goods we rely on daily.

Industrial machinery use cases range from equipment used in manufacturing and construction to transportation and robotics. Force measurement sensors and instrumentation play a critical role in ensuring industrial machinery’s safe and efficient operation.

Interface sensor technologies, including our load cells and multi-axis sensors, provide critical data for various machinery designs and functions. Interface analog and digital instrumentation products are available to amplify, condition, and display the signals from force measurement sensors.

The accuracy of force, torque, and weight measurements guide industrial machinery’s design and performance mechanisms.

What types of industrial machinery are using Interface measurement products today?

  • Machine tools used for grinding, drills, and lathes
  • Fabrication apparatus used for bending, shearing, and welding
  • Assembly equipment for production environments that include conveyor belts, robotic arms, and picking devices
  • Testing, quality control, and safety inspection equipment
  • Heavy equipment operational controllers for forklifts, cranes, and hoisting gear
  • Construction machinery such as loaders, bulldozers, and lifts

Industrial machinery is prevalent in manufacturing vehicles, aircraft, consumer goods, medical devices, and pharmaceuticals. Heavy-duty machinery is standard in energy production, mining, forestry, agriculture, and transportation.

The machines’ quality heavily depends on the accuracy of measurements used in the initial design, retrofitting, production, and practice. Interface products provide the products that enable machines to operate at peak performance safely and efficiently. Learn more in our new Interface Industrial Machinery Solutions, a part of Industrial Automation market offerings.

How Interface Measurement Solutions Used in Industrial Machinery

Machine Safety Monitoring

Interface products are used for monitoring the performance of machines and for management in sensing potential problems before they cause a failure. Interface measurement technologies are used in construction machinery to enable operators to gauge the force applied to materials, preventing overexertion and potential damage. Read Interface Solutions for Safety and Regulation Testing and Monitoring

Heavy Machinery and Lifting Equipment

In material handling equipment, force sensors help prevent accidents and injuries. Interface load cells, including load pins and shackles, monitor loads, weight, and distribution. Learn more about lifting solutions in our Engineered Solutions for Lifting Webinar.

Manufacturing and Production Machines

Manufacturers rely on Interface sensor solutions in industrial machines such as injection molding machines to monitor the force applied to the mold or how they are used in machines to ensure correct product packaging. The efficiency of machines is enhanced by correctly measuring the forces applied during different operations. Force sensors help ensure products are assembled correctly and within tolerance on production lines.

Industrial Automation Machines and Robotics

Interface sensors in industrial machines such as robots allow for more precise and delicate tasks that measure force at touch and throughout the entire operation. In machine tools, load cells assist in monitoring cutting forces and prevent damage to tools and workpieces. In robotic arms and automated assembly lines, force sensors provide precise force application during welding, riveting, and material handling.

Benefits of Using Interface Products in Industrial Machinery

  • Improved safety: Load cells can help prevent accidents and injuries by monitoring the weight and distribution of loads and ensuring that machines operate correctly.
  • Increased productivity: Force measurement sensors can help improve machines’ efficiency by optimizing the force applied during different operations. Force measurement sensors can help reduce machine downtime and enhance the quality of products with accurate data, helping to make intelligent decisions.
  • Reduced waste and operating costs: Measurement devices can help to reduce costs by preventing machine failures and improving the quality of products.

Force measurement sensors and instrumentation are essential components of modern industrial machinery. They ensure the safe, efficient, and productive operation of these machines. Contact Interface application engineers to evaluate the best sensor technologies for your specific test and measurement pe failures and improving the quality of products.

ADDITIONAL RESOURCES

Hydraulic Press Machines and Load Cells

Sanding Machine Force Monitoring

Interface Solutions for Machine Builders

Metal Press Cutting Machine

Laser Machine Cutting Force App Note

Ice Machine Weighing

Force Measurement Testing Improves Products and Consumer Safety

Cobot Safety Programming

Crane Capacity Verification App Note

Bending Beam Load Cell Basics

Bending beam load cells are a versatile and cost-effective solution for many weighing and force measurement applications. These types of miniature load cells are small in dimension, which makes them ideal solutions for compact testing environments and for embedding into machines or products for continuous performance measurement.

The use of bending beam load cells expands across industries and applications, for weighing scales, medical devices, industrial process controls, robotic designs, packaging machinery and civil engineering projects.

How Bending Beam Load Cells Work

A bending beam load cell converts a force applied to it into an electrical signal by measuring the flexure of the beam. This is done by attaching strain gages to the beam. When the beam bends, the strain gages change their resistance, which is then converted into an electrical signal by a Wheatstone bridge circuit. The output signal is proportional to the applied load.

The bending beam load cell is bolted to a support through the two mounting holes. Under the covers, you can see the large hole bored through the beam. This forms thin sections at the top and bottom surface, which concentrate the forces into the area where Interface’s proprietary strain gages are mounted on the top and bottom faces of the beam. The gages may be mounted on the outside surface, as shown, or inside the large hole.

The compression load is applied at the end opposite from the two mounting holes, usually onto a load button that the user inserts in the loading hole.

MB Miniature Beam Load Cell

MB MINI BEAM LOAD CELL

The Interface Model MB is a miniature beam load cell used in test machines and a variety of low capacity applications.

  • Standard Capacities are 5 to 250 lbf (22.2 N to 1.11 kN)
  • Proprietary Interface temperature compensated strain gages
  • Performance to 0.03%
  • Low height – 0.99 in (25.1 mm)
  • Eccentric load compensated
  • ±0.0008% /˚F – max temperature effect on output
  • Low deflection

MBI Overload Protected Miniature Beam Load Cell

Interface’s Model MBI Overload Protected Miniature Beam Load Cell has better resistance to off-axis loads then other similar load cells and is fatigue rated.

  • Standard capacities from 2 to 10 lbf (10 to 50 N)
  • Proprietary Interface temperature compensated strain gages
  • Performance to 0.03%
  • Low height – 1in max
  • ±0.0008% /˚F – max temperature effect on output
  • 10x overload protection

MBP Overload Protected Miniature Beam Load Cell

Our Model MBP series Mini load cells provide a similar performance to Model MB series with the added safeguard of internal overload protection. This patented overload protection is accomplished via hard stops that are EDM machined into the load cell flexure. This provides a greater overload protection (2.5-10lbf ±1000% of full scale capacity, 100 N ±500% of full scale capacity), giving the user added protection in more severe applications.

  • Standard capacities from 2 to 10 lbf (10 to 50 N)
  • Proprietary Interface temperature compensated strain gages
  • 10x overload protection
  • Low height – 0.99 in (25.1 mm)
  • ±0.0008% /˚F temp. effect on output
  • 5′ Integral Cable (custom lengths available upon request)
  • NIST Traceable Calibration Certificate

MBS Parallelogram Load Cell

The Interface MBS Parallelogram load cell is made of lightweight aluminum construction and highly suitable for medical and robotics applications.

  • Capacities from 2.2 to 10 lbf (9.8 to 44.5 N)
  • Lightweight
  • Nonlinearity error 0.02% FS
  • Ideal for OEM applications

Double Bending Beam Cells

A very useful variation on the bending beam design is achieved by forming two bending beams into one cell. This allows the loading fixtures to be attached at the threaded holes on the center line, between the beams, which makes the sensitive axis pass through the cell on a single line of action.

Bending Beam Load Cell Applications

Material testing is a common application for bending beam load cells. This type of miniature load cell measures the forces applied to materials with a high degree of accuracy to determine stiffness, strength and durability of the specimen.

It is quite common to find bending beam load cells in industrial automation machines and robots to precisely measure the forces required for control, safety and efficiency. In robotics specifically, bending beam load cells will measure the force applied to the robot’s arms and grippers. The data is used to control the robot’s movements and to ensure that it is not damaging the objects it is handling.

Aerospace engineering have long used bending beam load cells in design, testing and manufacturing of aircraft and spacecraft. Automotive engineering use bending beam load cells to design and test vehicles for safety and reliability.

Due to Interface’s ability to custom design bending beam solutions that meet strict size, capacity and accuracy requirements, our products are commonly used in medical and healthcare applications.

Bending Beam Application for Medical Device Testing

In this application, the medical device product lab needs to apply known forces to stent and catheters to ensure they pass all necessary strength and flexibility testing. MBP Overload Protected Beam Miniature Load Cell is placed behind the guide wire for the stent or catheter. The motor will spin the linear drive, push the load cell, and guide the wire through the testing maze. The bending beam load cell connects to the DIG-USB PC Interface Module to record and store testing data for analysis. Read more.

Bending Beam Application for Vertical Farming

Vertical farming is the production of produce in a vertical manner using smart technology systems, while indoors using an irrigation system. A wireless force measurement solution is needed to monitor the amount of water being used, to ensure the produce is being watered just the right amount. Interface suggests installing four MBI Overload Protected Miniature Beam Load Cells under each corner of the trays of the produce to accurate measure the weight during watering. A JB104SS 4-Channel Stainless Steel Junction Box connects to each bending beam cell and to a WTS-AM-1E acquisition module. The device wirelessly transmits the sum weight to the WTS-BS-1-HA Wireless Handheld Display for multiple transmitters, and the WTS-BS-6 Wireless Telemetry Dongle Base Station. Interface’s Wireless Telemetry System monitored and weighed the amount of water being used on the produce in this vertical farming system to increase yield and conversation. Read more here.

Additional Resources

How Do Load Cells Work?

The Basics Of Shear And Bending Beams

Interface Mini™ Load Cell Selection Guide

Introducing Interface Load Cell Selection Guides

The Anatomy Of A Load Cell

Mini Load Cells 101

Load Cell 101 And What You Need To Know

Wireless Telemetry Systems 101

A wireless telemetry system enables the remote measurement and transmission of data from one location to another without the need for physical wired connections.  As technology continues to advance, wireless telemetry systems are becoming increasingly sophisticated, reliable, and secure, enabling them to be applied in a wide range of industries and use cases for test and measurement applications.

Interface offers a wide range of wireless telemetry products. Components in wireless telemetry systems typically include sensors, transducers, instrumentation, communication modules, transmitters, displays and printers.

The sensors are used to measure tension, compression, weight, torque, or any other measurable quantity. Interface utilizes proprietary strain gage sensor technologies. Transducers convert the analog signals from sensors into digital data that can be processed and transmitted to instrumentation.

Load cells are commonly used with wireless telemetry systems to measure and transmit data related to the force or weight applied to an object. The load cell converts the force exerted on it into an electrical signal, which can then be wirelessly transmitted to a remote monitoring system.

The most popular Interface wireless load cells are our WTS 1200 Standard Precision LowProfile® Wireless Load CellWTSTL Wireless Tension Link Load Cell, WTSLP Wireless Stainless Steel Load Pin and WTSSHK-D Wireless Crosby™ Load Shackle. Interface works with our customers to develop engineered-to-order wireless solutions by request.

The analog output from the load cell may require signal conditioning to ensure accuracy and compatibility with the wireless telemetry system. Signal conditioning can also be required for amplification, filtering, and analog-to-digital conversion to convert the analog signal into a digital format.

Wireless communications modules are responsible for transmitting the data over wireless channels. It can use various communication technologies like Wi-Fi and Bluetooth depending on the application’s requirements. The transmitter is responsible for wirelessly communicating the load data to the receiving end of the telemetry system.

There are various options for data collection. Data acquisition instrumentation is preferred in force measurement applications for the purposes of collecting vast amounts of the data from sensors and transducers and preparing it for transmission.

At the receiving end of the telemetry system, another wireless communication module receives the data from the load cell’s transmitter. Once the data is processed, it can be analyzed, logged, and displayed on a user interface, such as a computer dashboard or a mobile app. This allows operators, engineers, or users to monitor the load values in real-time and make informed decisions based on the data

Interface Wireless Telemetry System (WTS) Solutions

The Interface Wireless Telemetry System (WTS) offers flexibility by eliminating physical connections, making it easier to deploy sensors in remote or challenging environments. Wireless telemetry systems offer more flexibility in sensor placement and system configuration.

The absence of physical wires allows for easier repositioning or adding new sensors without significant infrastructure changes. This setup is particularly useful in scenarios where it is challenging or impractical to use wired connections, such as in large-scale industrial applications or when monitoring moving or rotating machinery.

Wireless Telemetry System Components

Wireless Transducers

Wireless Transmitters

Wireless Receivers

Wireless Output Modules

Wireless Displays and Instrumentation

This is a list of what types of products are available. The Interface WTS offering continues to grow with added products to the line. Check out the Wireless Modular System Overview for more system details.

Wireless Telemetry System Benefits

The Interface WTS is a wireless telemetry system that transmits high-quality data to single and multiple devices. It offers a wide variety of benefits, including:

  • High accuracy: The WTS offers measurement accuracy of ±0.02% of full scale, ensuring that you get accurate readings from your sensors.
  • High speed: It is a high-speed system that can transmit data at up to 1000Hz.
  • High resolution: The WTS has a resolution of 10,000 counts, which means that you can measure even slight changes in force.
  • Multiple configuration options: The WTS can be configured to meet a wide variety of needs. You can choose from a variety of transmitters, output modules, receivers, antennas, and displays.
  • Easy to use: It is a modular system that can be easily expanded to meet the needs of your application. It is supported by our powerful WTS Toolkit configuration software that makes it easy to set up and use.
  • IP-rated enclosures: The WTS transmitters and receivers are available in two different sized enclosures that are rated to IP67, making them dustproof and waterproof.

A major benefit of wireless telemetry systems is the ability to adapt and expand by adding additional sensors or devices to system, without the constraints of wireless and cables. They are easy to integrate, and installation is fast for immediate benefits.

Wireless telemetry seamlessly integrates with the Internet of Things (IoT) and cloud-based platforms, enabling centralized data storage, analysis, and easy access from multiple devices.

Read: Interface Wireless Telemetry System Review

Applications Using Interface Wireless Telemetry System Solutions

Aerospace: Wireless options are preferred for large projects like require careful movement and testing of aircraft, components and systems. Providing flexibility in real-time data without the cable is a huge benefit. See these WTS solutions for Aircraft Engine Hoist and Airplane Jacking System

Industrial Automation: Load cells with wireless telemetry are commonly used in industrial environments for weighing large objects, such as in material handling, manufacturing, and logistics. Check out IoT Lifting Heavy Objects.

Medical and Healthcare: Wireless medical telemetry systems are used for patient monitoring, such as in wearable health devices. In medical settings, wireless load cells are used in patient lifts and hospital beds to monitor patient weight and movement. Learn more in our Patient Hoyer Lift application.

Agriculture: The agriculture industry uses WTS for monitoring crop management programs and measuring the weight of produce, animal feed, or livestock. Check out this use case: WTS Equine Bridle Tension System App Note.

Energy: The energy industry utilizes wireless load cells and telemetry products for remote monitoring of oil wells, pipelines, and storage facilities. Check out Tank Weighing and Center of Gravity

Infrastructure: Civil engineers use WTS for assessing the health and integrity of structures like bridges and dams. Monitoring loads on structures like bridges and cranes to ensure safety and structural integrity. Check out Road Bridge Lift Monitoring.

Manufacturing: There are many examples of manufacturing WTS use cases. Wireless load cells are being used to monitor the weight of products as they move through the production line. This information can be used to ensure that products are meeting quality standards, and to identify any potential problems early on by fully utilizing the wireless telemetry capabilities.

Construction: In the construction industry, wireless load cells and telemetry systems monitor the load on beams and columns during construction to ensure that structures are safe and stable, and to detect any potential problems before they cause an accident. Check out Jib Crane Tension Monitoring.

Transportation: In the transportation industry, wireless load cells are being used to monitor the weight of cargo on trucks and trains to ensure that loads are not overloaded, and to comply with regulations. Read IoT Waste Management Container Weighing.

Automotive: The industry utilizes a number of machines and systems to test components used in the making of automobiles. Read how WTS is used in this brake testing application: WTS Brake Pedal Force Testing.

Entertainment: Protecting the artists, equipment and attendees is top of mind for all venues. Wireless systems are used to monitor environmental conditions, rigging, display mounts and more. Read Multi Stage Load Monitoring.

Integrating load cells with wireless telemetry systems provides a convenient and efficient way to monitor force or weight data remotely, allowing for real-time data analysis and enhancing the automation and safety of various processes.

If you are looking for a reliable and accurate wireless telemetry system, the Interface WTS is a great option. It is a powerful and versatile system that can be used in a wide variety of applications. and industry use cases.

Engineered Solutions for Lifting Webinar

Interface’s technical webinar Engineered Solutions for Lifting details measurement devices used in lifting equipment, machines, and vehicles to improve operations and safety. Interface load cells and instrumentation are used to operate cranes, hoist heavy objects, and measure forces in infrastructure projects. Interface experts answer how load cells are used in safety monitoring for lifting equipment. Learn about Interface sensor products suited for integration into existing equipment and test and measurement projects.

Center of Gravity Testing in Robotics Demands Precision Load Cells

As the use of robotics expands across industries and the types of robotic motions grow in complexity, advanced testing using quality measurement solutions is essential. Contact momentum and gross measurements of indicators are not enough for sophisticated robotics. With the requirements for robots and cobots to have fluid and inertial movement capabilities, control and feedback demand maximized feedback and resolution.

Related to the testing of inertia, load shifting, and interaction, is defining the center of gravity for robots’ actions and applications. The center of gravity (CoG) of a robotic system is a critical factor in its stability and performance.

The CoG is the point at which the entire weight of the system is evenly distributed. If the CoG is not properly located, the system may be unstable and prone to tipping over, which could damage the robot.

For any robotic application that deploys advanced mobility features, the center of gravity can affect the way the system moves. It can also impact the exactness of its movements. Thus, it is essential to use measurement solutions that are highly precise. See: Advancements in Robotics and Cobots Using Interface Sensors.

Why Robotic Engineers Care About CoG Testing

  • Stability: The CoG is a major factor in determining the stability of a robot. If the CoG is not properly located, the robot may be unstable and prone to tipping over. This can be a safety hazard, and it can also damage the robot. It is an expensive mistake to not have stability proven before moving forward with the design.
  • Performance: The CoG can also affect the performance of a robot. If the CoG is located too high, the robot may be less maneuverable. If the CoG is located too low, the robot may be less stable. By optimizing the CoG, robotic engineers can improve the performance of the robot and use for actions that rely on exact movement.
  • Safety: In some industries, such as manufacturing, medical and aerospace, there are safety regulations that require robots to have a certain CoG. For example, in the automotive industry, robots that are used to weld cars must have a CoG that is below a certain point. By testing the CoG of their robots, robotic engineers can ensure that they are meeting safety regulations.

There are different methods for determining the CoG of a robotic system. One common method is to use strain gage load cells. Not all load cells are designed for precision measurement. Interface specializes in precision. Center of gravity testing demands strict measurement. For example, Interface compression load cells are often used in center of gravity testing for robotics because they are very accurate and can measure remarkably small forces.

Interface load cells measure force, and they can be used to determine the weight of a system at different points. By measuring the weight of a system at different points, it is possible to calculate the location of the CoG.

Interface load cells used for center of gravity testing are typically in our miniature load cell line, due to the size of the installation and testing environment. Miniature load cells are easily embedded into robotics, as well as can be used for continuous monitoring.

Surgical Robotic Haptic Force and CoG

Robots used for surgery often utilize haptic force feedback for ensuring that the surgeon does not apply too much force, creating harm or greater impact on the patient. Haptic is the use of force, vibration, or other tactile stimuli to create the sensation of touch. In the context of invasive surgery, haptic force feedback from robotics is used to provide the surgeon with feedback about the forces they are applying to the patient’s tissue. CoG testing can help to prevent the robotic arm from tipping over during surgery.

CoG testing is important for haptic force feedback in invasive surgery because it ensures that the robotic arm is stable and does not tip over during surgery. The CoG is the point at which the entire weight of the robotic arm is evenly distributed. If the CoG is not properly located, the robotic arm may be unstable and prone to tipping over. This can be a safety hazard for the surgeon and the patient.

CoG testing is also used to optimize the design of the robotic arm for haptic force feedback. CoG testing using precision load cells can verify the performance of the robotic arm in haptic force feedback applications. After the robotic arm has been designed and optimized, CoG can ensure that the robotic arm is able to provide the surgeon with the feedback they need to perform surgery safely and accurately.

Robotic Center of Gravity on Production Line

A company is developing a new robotic arm that will be used to simulate human behavior on a manufacturing product line. The robotic arm will be used to pick and place products, and it is important that the arm is stable and does not tip over. To ensure the stability of the robotic arm, the company needs to determine the CoG of the arm. The load cell is placed on the arm, and the arm will be moved through a range of motions. The data from the load cell will be used to calculate the CoG of the arm.

CoG Testing and Multi-Axis Sensors

Multi-axis load cells are growing in use for robotics testing to provide data across 2, 3 or 6 axes at any given time. These high functioning sensors are ideal for robotic tests where there are simulations of human behaviors. This is detailed in Using Multi-Axis Sensors to Bring Robotics to Life.

To perform CoG testing using precision load cells, a robotic system can be placed on a platform that is supported by the load cells. We call these force plates. The load cells measure the weight of the system at different points, and the data is then used to calculate the location of the CoG. Visit our 6-Axis Force Plate Robotic Arm application note to learn more about force plates and multi-axis sensors.


Benefits Of Using Precision Load Cells for CoG Testing:

  • Interface precision load cells provide advanced sensors functional beyond contact and simple indicator measurement, to maximize robotic feedback and optimize performance.
  • Interface precision load cells can provide accurate measurements of the weight of a robotic system at different points.
  • Interface precision load cells are repeatable and dependable, which means that the results of CoG testing are consistent when testing robots and cobots.
  • Interface precision load cells are easy to use, which makes them a practical option for CoG testing and integration into the actual robot.

There are several benefits to using an Interface Mini Load Cells, like our ConvexBT Load Button Load Cell or MBI Overload Protected Miniature Beam Load Cell for high accuracy CoG testing.

First, the miniature load cell is small and lightweight, which makes it easy to attach to the robotic arm. Second, the load cell is designed for precision measurement, which ensures that the CoG of the arm is accurately determined. Third, the quality of Interface precision load cells provides repeatable and dependable measurement, which means that the results of CoG testing are consistent.

Using a miniature load cell of high accuracy is a valuable way to test the CoG of a robot used to simulate human behavior on a product line. This ensures that the robot is stable and does not tip over, which is critical for safety and efficiency.

In addition to testing the CoG of a robotic arm, other tests for these types of robotics include the weight of the arm, the distribution of the weight of the arm, and the friction between the arm and the surface it is moving on. By considering these factors, it is possible to accurately determine the CoG of a robotic arm and ensure that it is stable and safe to operate.

There are many factors that can affect the accuracy of CoG testing using load cells, including the design, capacity and range of measurement of the load cells, the stability of the platform, and the distribution of the weight of the system.

CoG testing is an important part of the design and development of robotic systems. By determining the CoG of a system, it is possible to improve its stability and performance. If you are interested in learning more about CoG testing using Interface precision load cells, please contact us.

ADDITIONAL RESOURCES

Types of Robots Using Interface Sensors

Robotic Grinding and Polishing

Collaborative Robots Using Interface Sensors

Advancements in Robotics and Cobots Using Interface Sensors

Using Multi-Axis Sensors to Bring Robotics to Life

Robotic Surgery Force Feedback

IoT Industrial Robotic Arm App Note

Force Measurement Solutions for Advanced Manufacturing Robotics

Reduced Gravity Simulation

Tank Weighing and Center of Gravity App Note

 

Automation-and-Robotics-Case-Study