Posts

Interface Solutions for Safety and Regulation Testing and Monitoring

Among the many challenges we help to solve, safety and the stringent requirements for helping to make products safer for all types of users is top of the list. Interface’s solutions are known for quality and accuracy, which are at the forefront of all decisions used for safety and regulation testing. It is one of the top reasons consumer product makers choose Interface force, torque and weighing test and measurement solutions.

Everyone involved in the production and sale of products have a role to play in ensuring product safety and compliance with regulations, from the manufacturer to the retailer of any product. They are all responsible for designing, testing, and producing safe products.

Manufacturers have the primary responsibility for ensuring that products are safe and compliant with regulations. Governments have the authority to establish safety standards and regulations for products and to enforce these standards through inspections, fines, and recalls. Independent testing labs are used to conduct safety and compliance testing. These labs provide impartial and objective test results. Retailers also have a responsibility to ensure that the products they sell are safe and compliant with regulations. By working together, they can help to promote public trust in products and reduce the risk of accidents and injuries.

In engineering, the safety and regulation testing of products is crucial for ensuring that products are safe for use and meet industry standards. This type of testing helps to identify potential hazards and design flaws that could harm consumers or cause damage to property. It also ensures that products comply with regulations and standards set by governing bodies such as the Consumer Product Safety Commission (CPSC) and the International Electrotechnical Commission (IEC). This helps to protect consumers, promote public trust in products, and reduce the risk of liability for manufacturers. By performing safety and regulation testing, engineers can help to ensure that products are reliable, effective, and trustworthy.

Safety and regulation testing helps manufacturers in several ways:

  1. Liability reduction: By ensuring that products meet safety standards and regulations, manufacturers can reduce their risk of liability in the event of accidents or injuries caused by their products.
  2. Consumer trust: Consumers are more likely to trust and purchase products that have been tested and found to be safe and compliant with regulations.
  3. Marketability: Products that meet safety and regulation standards are more likely to be accepted in the market and sold to a wider range of customers.
  4. Brand reputation: A company’s reputation is closely tied to the safety and quality of its products. By demonstrating a commitment to safety and compliance, manufacturers can enhance their brand reputation and build consumer trust.
  5. Cost savings: Investing in safety and regulation testing can help manufacturers identify and correct design flaws before products are mass-produced, reducing the cost of recalls and liability claims.

We work with manufacturers of heavy machinery, vehicles, consumer goods, medical devices and pharmaceuticals, and even aircraft and rocket ship builders. All these industry experts know that precision test and measurement solutions are essential for eliminating the serious threat to humans when their inventions and products are not thoroughly tested and monitored properly.

Testing is the first step in the process of ensuring safety. Interface load cells and torque transducers are used to test a wide variety of parameters related to force. For instance, Interface provides solutions for projects involving the testing of cranes and ensuring that these massive machines are able to lift the weight that the particular product’s specifications allow. This ensures safety for the user and those on the ground by putting the machine through rigorous testing using load cells to measure the cranes maximum limits with various loading conditions. Watch a quick demonstration video of crane safety test solutions from Interface.

In addition, force measurement can be used to measure small and precise forces during the testing phase. One such example is the use of load cell load buttons to measure the clamping force of a vascular clamp used in surgery. This force needs to be tightly tuned in regulation with stringent medical requirements. Forces too small or large could have serious repercussions for the patient. This is a simple test that makes a dramatic difference in which the clamp force is applied to these miniature load cells and the force signal is sent to the tester.

One specific requirement that Interface has a great deal of experience in supplying solutions is for torque testing on lug nuts, bolts and other assembly equipment. While tightening these parts may seem like a simple process, industries like automotive and aerospace have strict requirements for the exact tightness and tolerance for bolts. We provide torque testing system devices that evaluate these parameters accurately to meet those regulations. Any misstep in tightening can lead to severe failure that puts the user at significant risk, not to mention pedestrians when it comes to the automotive industry.

The next use of force measurement in the realm of safety is by using sensors for real time monitoring. Load cells and torque transducers can be designed into a product to allow for monitoring of the product in use, telling the user when it needs to be repaired. They can help by notifying the user if a vehicle or machine is holding weight above its capacity, or if there is potential failure of a machine or product.

For instance, machines on a production line can be monitored and irregular data can show that it needs to be brought down briefly for repairs. Having machines with issues that are not noticed do not only affect efficiency, but it can also pose a threat to nearby workers. Additionally, monitoring something like a crane is also a way to ensure it is not overloaded.

These applications provide notable examples of how force measurement can guarantee meeting safety requirements and regulations, as well as monitoring for safe conditions in real time. To provide a visual example, we have developed several applications notes, a few of which we have included below.

Regulatory Medical Device Stent And Catheter Testing

A customer needed to apply known forces to stents and catheters to ensure they pass all necessary strength and flexibility testing. Interface suggested an MBP Overload Protected Beam Miniature Load Cell be placed behind the guide wire for the stent or catheter. The motor will spin the linear drive and push the load cell and guide the wire through the testing maze. The MBP Overload Protected Beam Miniature Load Cell is connected to the DIG-USB PC Interface Module. All forces are measured and stored on a computer. Using this solution, the customer was able to perform required testing and logged, followed by being able to review results and take actions as needed. Get more information about this testing in our Stent and Catheter Testing App Note.

Equipment Safety with Bolt Tension Monitoring

A customer wanted to monitor the tension of the bolts that are used on their industrial large metal pipes. Interface suggested installing multiple LWCF Clamping Force Load Cells, each connected to WTS-AM-1E Wireless Strain Bridge Transmitter Modules. The load cells were installed under the tightened bolts on the pipes and measured the compression forces from the bolts. The real-time results were transmitted wirelessly from the WTS-AM-1E’s to the WTS-BS-6 Wireless Telemetry Dongle Base Station when connected to the customer’s PC. Real-time results from the LWCF’s were displayed using provided Log100 Software. Interface’s load cell monitoring system successfully monitored the compression forces of the bolts in real time.

Public Safety Bridge Seismic Force Monitoring Solution

A customer wanted to monitor seismic activity that occurs to a bridge by using force sensors and then continuously monitor bridge forces before, during, and after earthquakes occur. The customer also preferred a wireless solution so they would not need to run long cables on the bridge. Using Interface’s LP Load Pin custom made to fit their needs, alongside the Interface WTS Wireless Telemetry System, continuous force monitoring was able to take place without long cables, allowing the customer to monitor continuous loads, log information to the cloud, and review information. Read Bridge Seismic Force Monitoring Solution App Note for more information.

If you are looking for accurate and dependable solutions to assist with testing and monitoring for safety and regulatory requirements, contact us.

ADDITIONAL RESOURCES

Crane Block Safety Animated Application Note

Load Cells for Consumer Product Applications

Interface Solutions for Production Line Engineers

CPG Bike Frame Fatigue Testing

MARITIME Crane Block Safety Check

Crane Safety Requires Precision Measurements Ship to Shore

Entertainment Venue Force Measurement and Monitoring Solutions

 

Interface Solutions for Production Line Engineers

Due to the influence of IoT, AI and big data, the role of production line engineer has become far more critical as manufacturers demand peak efficiency. These engineers need to stay current in automation technologies used to design, build, and monitor a production line for the benefits of decreasing speed to market, lowering costs, and improving outputs at the highest quality standards.

Among the many software and hardware solutions these individuals must also understand connected sensors are among the most important. Sensors are the nervous system of an automated production line, telling which machines must perform certain tasks, when, and how. They are a source for smart factories and smart manufacturing.

Sensors modernize manufacturing, assembly, and production lines by enabling real-time monitoring and control of the production process.

Measurement solutions provide accurate data on production parameters such as temperature, speed, pressure, force, and other relevant variables, which can then be used to optimize the production process, detect, and resolve problems in real-time, and prevent downtime. Additionally, sensors can be integrated into industrial IoT systems to provide valuable insights and analytics that can help manufacturers make data-driven decisions.

One of the sensor types that play a key role in these automated production lines are force sensors. Force sensors can be used by production line engineers across several different facets of an automated line. When designing a manufacturing line, there are quite a few factors that go into the full system. This includes process monitoring, quality control, predictive maintenance, energy management and inventory management. Force sensors play a role in each of these types of data points and processes.

For instance, a production line engineer can install sensors onto a machine that outputs a great deal of torque and monitor that torque to ensure the components creating that force are running smoothly, or if there are certain indicators that say it needs to be pulled off the line briefly for maintenance. When products on the line trigger certain force parameters such as weight, this can also tell the automated production line it is ready for the next stop in the process. Production line engineers design these lines around the sensing capabilities available and connected force sensing products have made a major difference in helping things become more efficient.

There is another automated process that also requires force sensors that is used as part of a manufacturing line, or as a standalone system – robotics. Production line engineers are doing a great deal of research and development into robotics to automate process that are repetitive, or far too delicate for human hands. Force sensors, in this use case, are used in both the testing of robotics to ensure accuracy or developed into the robotics to monitor certain functions over time.

Robotics can improve assembly and production processes, leading to higher efficiency, improved quality, and reduced costs. As technology continues to advance, the use of robotics by production line engineers in assembly and production is likely to become even more widespread.

Here at Interface, we have a great deal of experience in developing solutions for industrial automation and manufacturing lines. We have developed a few application notes to outline how production line engineers use our sensor solutions and force measurement products.

6-Axis Force Plate Robotic Arm

A customer wanted to measure the reaction forces of their robotic arm for safety purposes. The reaction loads occur at the robotic arm’s base; therefore, they needed a force measurement system at the base of the robotic arm. Interface suggested using their force plate option to install at the base of the robotic arm. Four 3-Axis Force Load Cells were installed between two force plates, then installed at the bottom of the arm. This creates one large 6-Axis Force Plate. The sensors force data is recorded and displayed through the two BX8 Multi-Channel Bridge Amplifier and Data Acquisition Systems onto the customer’s PC or laptop. Interface’s 6-Axis Force Plate was able to successfully measure the reaction forces of the customer’s robotic arm. Read more here.

Press Load Monitoring

Press forming is a method to deform varied materials. For instance, materials such as steel can be bent, stretched, or formed into shapes. A force measurement solution is required to monitor the forces being applied by the press forming machine. This ensures quality control and traceability during the production process. For large press forming machines, Interface recommends installing the 1000 High-Capacity Fatigue-Rated LowProfile™ Load Cell. When the material is placed under the punch plate to form a shape, the force applied is measured by the 1000 Series Load Cell. The force results captured is sent to the INF-USB3 Universal Serial Bus Single Channel PC Interface Module, where results can be graphed and logged on the customer’s PC with provided software. Interface’s force measurement products and instrumentation accurately monitored and logged the force results of the press force machine, ensuring zero-error production performance. Learn more about this application here.

Snack Weighing and Packaging Machine

A snack manufacturing brand wanted to weigh the amount of their snacks that is automatically dispersed into the bags during the packaging process. In this case, they wanted to weigh their potato chips being packaged. The company also wanted to ensure the potato chips are at the exact weight needed due to regulatory standards to be distributed out to consumers in the public. Interface’s solution was to use multiple SPI Platform Scale Load Cells, and install it to the potato multi-head weigher and packaging machine. The SPI Platform Scale Load cells were installed inside of the mount that attaches the head weigher to the packaging machine. Force results from the potato chips were read by the load cells and sent to the ISG Isolated DIN Rail Mount Signal Conditioner, where the customer is able to control the automated production from their command center. Using this solution, the customer was able to determine the weight of the potato chips being distributed into their bags with highly accurate results. They also were able to control the automated production process with the provided instrumentation. They will use this same weighing method for other snacks that need to be packaged. Read about the solution here.

Production line engineers turn to Interface due to our quality, accuracy, and reliability. Our products are used to test, monitor in real time, and created automated processes within a manufacturing line. As automation and robotics grow, you will continue to see new applications for sensors in this sector.

ADDITIONAL RESOURCES

IoT Industrial Robotic Arm App Note

Quality Engineers Require Accurate Force Measurement Solutions

Vision Sensor Technology Increases Production Reliability

Force Measurement Solutions for Advanced Manufacturing Robotics

Robotics and Automation are Changing Modern Manufacturing at Interface

Industrial-Automation-Brochure-1

 

Making Products Smarter with Interface OEM Solutions

Products need to be smart in today’s world. Whether it is consumer or commercial, people expect added functionality in everything. From coffeemakers and exercise equipment to large industrial machinery used in massive infrastructure projects, sensors play a crucial part in making these products smarter.

Sensor technologies allow smart products to collect and manage important user data, monitor products usage for durability and safety, enable automation, and personalize user applications and experiences. Original equipment manufacturers of these smart products and their components are eager to find quality sensors that provide robust features ideal for modern day user requirements.

Force sensors are key to making products smarter, performing with greater accuracy, and enhancing overall quality. Force sensors have the unique ability to perform multiple tasks at a time, including real-time monitoring and executing automation features with precision.

Interface partners with engineers and product designers to offer OEM solutions intended to be directly implanted into a product, or retroactively installed to make products smarter. With our unique assortment of custom and off-the-shelf load cells, torque transducers and instrumentation options, including wireless components, our force sensors are created to help enhance the smart products of today and tomorrow.

Interface’s white paper Turning an Active Component Into a Sensor details of how Interface works with OEMs to design sensors into products or retrofit them into existing products. To further illustrate the range of options available with Interface’s sensors and instrumentation, we have detailed additional application notes to give you a broader perspective of utilizing force sensors for OEM solutions.

Robotic Surgery Arm

A biomechanical medical company wanted to gather force, torque, and tactile feedback from their robotic arm during invasive surgery. The surgeon’s movements are mirrored by the robotic arm during surgery, and it is essential all haptic force feedback is measured to ensure safety during invasive surgery. Several of Interface’s force and torque measurement products were used in this OEM robotic arm. These include the ConvexBT Load Button Load Cell, SMTM Micro S-Type Load Cell, and the MRTP Miniature Overload Protected Flange Style Reaction Torque Transducer. Force results were collected when connected to the 9330 Battery Powered High Speed Data Logging Indicator and viewed via a laptop. Each one of Interface’s load cells and torque transducers played a part in the ensuring the safety and functionality of robotic arms during invasive surgery. The force feedback that was measured from the robotic arm ensured that the robot used the perfect amount of force when using surgical tools that create incisions during surgeries. It also measured the torque being produced, ensuring the robot arm was moving smoothly and at the right speeds.

PRV (Pressure Relief Valve) System

A manufacturer wanted to conduct a PRV test (pressure relief valve test) on their valve installation and monitory equipment when under a full pressure load. The purpose was to ensure safety and reliability for customers while the product was in use. They also wanted to be able to record and graph the results. As part of an OEM system that is used by their customers, Interface suggested installing the 1200 Standard Precision LowProfile™ Load Cell to a test frame on top of the pressure relief valve. As pressure is increased onto the spring in the valve, it pushes forces onto the load cell. Results can be recorded using the 9330 Battery Powered High Speed Data Logging Indicator. Using this solution, the manufacturer’s customers are able to successfully determine the exact amount of force it requires for their valve to release when under a pressure load, increasing longevity and safety of the product overall.

Bolt Tension Monitoring

A customer wanted to monitor the tension of the bolts used in installation of industrial pipes. Interface suggested installing multiple LWCF Clamping Force Load Cells, each connected to WTS-AM-1E Wireless Strain Bridge Transmitter Modules. The load cells are installed under the tightened bolts on the pipes as part of the technology solution to measure forces. The load cells measure the compression forces from the bolts, and the real-time results are transmitted wirelessly from the WTS-AM-1E’s to the WTS-BS-6 Wireless Telemetry Dongle Base Station. Real-time results from the LWCF’s are displayed using provided Log100 Software. Interface’s load cell monitoring system successfully monitors the compression forces of the bolts in real-time, which is an important installation solution for the OEM.

Smarter products, connected factories, and higher efficiency are all made possible through sensors. Interface force sensors are the leading solutions for enabling automation, real-time monitoring and accurate data collection for OEM applications.

Interface force sensors make consumer and commercial products smarter. Learn why OEMs choose Interface to activate products with sensor technologies and more about Interface’s capabilities and solutions for OEMs here.

ADDITIONAL RESOURCES

Interface OEM Solutions Process

OEM: Candy Stamp Force Testing

OEM: Medical Bag Weighing

OEM: Prosthetic Foot Performance

OEM: Snack Weighing and Packaging Machine

OEM: Tablet Forming Machine Optimization

OEM: Industrial Robotic Arm

OEM: Chemical Reaction-Mixing

Contact our OEM specialists and let us help you to make your products smarter and more equipped to meet the demands of tech-savvy users.

Interface Solutions are Designed and Built to Last

Interface was founded by a visionary and entrepreneur, Richard F. Caris, who believed that if you designed and built dependable, quality, and accurate products, you would also build a sustainable company that will last generations.

His passion is what drives Interface today, sustaining his legacy and commitment to design products that revolutionize industries around the world. Interface, now owned by his two daughters, is a women-owned manufacturing and technology company that started in a garage and now is one of Arizona’s most enduring businesses. The company that started in 1968 continues to maintain its headquarters and productions facilities in the heart of Scottsdale, Arizona.

Today, we are the trusted partner and supplier of global test and measurement solutions for testing labs and by makers of robots, rockets, medical devices, airplanes, industrial automation and farming equipment, new energy products, vehicles of all types, along with maritime and entertainment inventions.

Interface’s purpose is simple, we enable innovation that improves people’s lives and keeps them safe.

When it comes to building products that last, we are adamant about control and quality throughout the entire process. Every stage, from design engineering, machining, strain gage manufacturing and assembly, our team works to ensure the highest degree of performance possible for everything we manufacture.

It is not uncommon for Interface to get service requests for products that we built decades ago, in fact several decades ago. It is the depiction of what Mr. Caris planned for, and what we continue to strive for every day. Interface is a company that offers products built to last.

Fundamental to Interface, made in the USA has long been a celebrated distinction of Interface’s core offerings, including our LowProfile Load Cells, known as the first precision pancake-styled low profile load cells in the market. In fact, Interface has been engineering force measurement solutions for more than 54 years and has more than 35,000 products to show for it.

Our dedication to our customers around the world to be a total solutions provider in force measurement has driven expansion of our core load cell and torque transducers to include an extensive line of multi-axis sensors, miniature load cells, instrumentation, accessories, custom solutions, OEM products and engineered to order designs.

What makes Interface different? Our core differentiator is precision. We are known for providing high accuracy, innovative solutions, engineering excellence, and quality products that our customers trust.

Additional key differentiators that make Interface a leader:

  • Interface is the world’s largest producer of low profile load cells.
  • Interface makes our own self-temperature compensated strain gages from our exclusive proprietary alloy.
  • Interface load cells are creep tested to the tightest specification in the industry.
  • Interface performs more than 100,000 calibrations every year in the world’s largest calibration lab.
  • Interface LowProfile™ load cell is moment compensated to minimize sensitivity to extraneous loads.
  • Interface’s Gold Standard Calibration System is the industry gold standard for test and measurement.
  • Interface is the only major load cell company offering a comprehensive system for customers to calibrate their own load cells.
  • Interface LowProfile™ load cells are individually calibrated and tested through a series of performance tests before they leave our facility.
  • Interface calibrations are NIST traceable. And our lab has A2LA accreditation for both load cell and torque sensor calibration.
  • Interface can modify and customize force measurement solutions, delivering the broadest variety of available options in the industry.

Read more about our full capabilities here.

Learn more about our dedicated team and the Interface story about a company that has long-stood the test of time. Interface is built to last.

Interface Company Brochure

Why Machine and Equipment Manufacturers Choose Interface

For innovators in the equipment and components manufacturing industry, data is everything. Quality data can make the difference between average and high-quality products and every bit of information gathered allows OEMs to make improvements that go a long way in performance and accuracy.

This is especially true in the design, test and evaluation of high-volume manufacturing where an increasing number of companies are implementing automation. To ensure consistent and repeatable quality, it’s important that there are capabilities to constantly gather data to monitor automated systems. If a machine is about to break or needs calibration, an automated system should be able to notify them without any human intervention.

How does an organization get more performance measurement data to improve its manufactured products? The answer we know best is with precision sensors. Sensors of all types, sizes, and shapes are being integrated into a wide variety of machines, equipment, and products to gather analytics that improve design and manufacturing. Interface is proud to contribute to this growing wave of big data requirements through our force and torque sensors.

Force sensors can be used in a number of different applications to help enable automation of certain process and systems. Essentially, force sensors are used as part of a controlled feedback loop. When a force is placed on a part within a product, the sensor can tell an electronic system to make something else happen.

As a simple example, force sensors could be placed inside of a large industrial dumpster outside of a manufacturing plant. When the dumpster nears full capacity, a signal could be sent to an automated compactor within the dumpster to make more space. It could also merely notify a waste management company to come and empty the dumpster.

Interface has worked on a number of what we call “OEM Solutions.” This term basically refers to our products that are typically high volume and have Interface sensor technologies integrated into the design and production. We often custom engineer and engineer these solutions to fit the exact requirements of the innovators and product design teams.

As a end-to-end manufacturer, we build to spec, manage the supply chain of sensors, and inventory for our OEM customers. When engineered-to-order requires thousands of products, they can rely on Interface as a trusted partner. Included below are a few examples of products that we provided our products to advance use, performance and quality. Read more about our custom OEM solutions and capabilities here.

Interface OEM Solution Examples

This first example is the design of force sensors in prosthetic limbs. An Interface force transducer provides feedback from a knee or elbow joint and tell an electric motor to move the limb in certain ways. This would allow someone without an arm or leg to have a wider range of movement and enjoy a variety of new capabilities.

Another example is the use of force sensors in the energy industry. Interface sensors can be used to optimize the process of energy production and extraction. In this scenario, a force sensor measures the rate at which the machine removes the source and provides data that tells the operator the most effective rate for getting the most most volume without overloading the mechanics. Not only does this allow for a more efficient process, it also adds another layer of safety to people and the environment. Interface was selected as the top energy solutions provider.

An interesting consumer packaged goods application example we provided a solution for included multiple Interface SPI Platform Scale Load Cells installed on a machine that filled potato chips into a bag. Force results from the potato chips are read by the load cells and sent to an ISG Isolated DIN Rail Mount Signal Conditioner. The supplier is then able to control the automated production from their command center. Using this solution, the manufacturer can determine the weight of the potato chips being distributed into their bags with highly accurate results – meaning every bag of chips is consistent in the amount of chips and total weight.

These are all examples of OEM solutions that turn data into better efficiency or additional capabilities across three industries, while there are countless other applications for OEM solutions from Interface used in consumer goods, robotics and medical devices. From automation to quality control and safety, force measurement helps manufacturers create better products and better production facilities, resulting in a great customer experience.

Interface has invested a great deal of resources into our manufacturing processes and technologies to serve this market. We’ve improved automation in our facilities to lower costs and work directly with our customers to develop the perfect force sensor for every project that can be produced at volume. Not to mention, our propensity for developing the most accurate force sensors on the market mean high quality data and results every time.

To learn more about our OEM solutions, contact our OEM experts and let us know how we can help!
OEM Brochure Web

Force Solutions for Medical Tablet Forming Machines

In the medical and healthcare industry, accuracy is an absolute imperative in the devices used in every stage including diagnosis, surgery, health monitoring and even after care. This also applies to the specialized equipment used by pharmaceutical manufacturers, in both design and maintenance, when producing medicine and other healthcare related products.

When it comes to product development in the United States, not only do med devices and pharmaceuticals need to pass rigorous FDA regulations, but they must also be proven to serve patients and doctors safely. This results from robust test and measurement data requirements before seeking clearance. These same types of fundamental safety requirements of testing are also standard in most developed countries when seeking approvals before release.

Medical industry manufacturers turn to Interface because our force measurement solutions are designed for high performance test and measurement, in both accuracy and reliability. There is also a high demand for Interface’s ability to customize solutions to meet the exact requirements of these sensitive applications.

In a variety of medical device applications, one noted example is Interface’s role in providing various miniature beam and in-line load cell solutions with ten times the overload protection to protect against accidental shock loads. Our torque transducers provide rotary and reactive measurement to accurately track light movements required to control prosthetic fatigue testing, surgical equipment, knee or hip replacement and other medical devices. Other Interface solutions include multi-axis sensors for multiple channels of measurement in one housing. Read more about these types of medical applications here.

Interface provides force measurement solutions for a wide variety of products and machines that help biotechnology and pharmaceutical product engineers to design, test and manufacturer devices of all shapes and sizes. When it comes to equipment used in the manufacturing of medicine, Interface products are used to optimize production and reduce waste.

TABLET HARDNESS TESTING

In this application, a pharmaceutical tablet producer wanted to test and monitor the hardness of the tablets being created in their tablet forming machine. Interface’s SML Low Height S-Type Load Cell was mounted to the hardness device inside the tablet forming machine. The SML Low Height S-Type Load Cell was then connected to the 9870 High-Speed High Performance TEDS Ready Indicator to record the force measurements.

TABLET FORMING MACHINE OPTIMIZATION

For a tablet forming machine optimization project in Europe, a pharmaceutical tablet producer wanted to monitor the forces applied by the tablet forming machine in an effort to understand the relationship between raw material, die set, forming force, and motor cycle speed. The goal was to improve productivity and efficiency of the tablet forming process, while reducing losses such as cracked tablets or voids, by adding a dimension of feedback that could be used to assign specific press adjustment criterion for given inputs. An Interface Model WMC Sealed Stainless Steel Mini Load Cell 10K lbf was mounted in the section of the downward press bar. The machine was modified to accomplish this. The load cell was then connected to a Model 9320 Portable Load Cell Indicator to collect the needed data.

TABLET MACHINE HARDNESS CALIBRATION

Our partners in Germany also had the opportunity to work on a calibration project for a device that tested the hardness of tablets, such as a medicine in tablet form. The reason for this type of device is because medical tablets are overly sensitive to compression force when being formed and when ready to be shipped. If the tablets hardness isn’t tested properly, consistency in size and shape is nearly impossible. The need for force testing is because the device must provide very minimal and accurate forces to the tablet for product consistency. When this is applied to tablets that are used in medicine, accuracy in dosage is fundamental and an absolute necessity.

The customer required a unique solution to properly re-calibrate the device. They needed a mini-load cell the size of a sugar cube that replaces the tablets and fits horizontally in the tablet test-box. A special cable exit was also critical for the compression only calibration application.

Interface provided an MCC Miniature Compression Load Cell which can measure forces on its side with a special cable exit on the flat side that attaches to a calibration indicator, such as the Interface battery powered handheld indicator and datalogger Model 9330. The MCC load cell calibration set compares the applied forces with the hardness tester to make sure that the tablet hardness tester uses the correct force for future tablet hardness tests. The BlueDAQ software included in our indicator helps to log and compare the data of the MCC reference load cell.

In the past, the customer’s medical tablet machines had to be rebuilt for calibrations, or a complex mechanism had to be integrated to enable vertical calibration. With Interface’s new solution, the customer successfully verified and calibrated the tablet hardness tester machine horizontally to conduct accurate hardness testing on tablets in the future. Interface’s MCC Miniature Compression Load Cell was perfect due to its small size, and convenience in measuring the forces on its side.

Read more about these healthcare and medical applications in these posts:

Interface Solutions for Medical Devices and Healthcare

Interface Load Cells in Medical Applications

Interface Ensures Premium Accuracy and Reliability for Medical Applications

To see more of Interface’s solutions designed for the medical device industry, visit our solutions page at www.interfaceforce.com/solutions/medical-healthcare/.

Faces of Interface Featuring Jeff Boyd


Interface Regional Sales Director Jeffrey Boyd has a long history in the force measurement industry and is an incredible addition to the Interface sales team. You see, force measurement runs in Jeff’s blood!

Jeff originally got into the industry because he watched and listened to his dad talk about his experience at another force measurement manufacturer, Sensor Development. In fact, his dad actually helped start the company when he joined the owner shortly after the company was founded. You could say that Jeff was somewhat groomed for success in this field.

To prepare for his destined career, Jeff spent a few years at Oakland University. After that, he quickly joined up with his dad at Sensor Development. Jeff started in the calibration department, learning the ins and outs of strain gages, load cells, torque sensors and everything in between. After a few years, he was leading both the calibration services and customer service department. Jeff was in charge of ensuring customer satisfaction when products came in for repair, service or calibration.

After several years getting hands on with the products and developing critical expertise in the various sensors the company sold, Jeff decided it was time to transition into a sales role. He originally began as a sales engineer helping to develop customer quotes and working directly with the engineering department on custom applications. His success in sales lead him to become a regional sales manager in 2014.

From 2014 to 2017, Jeff served as regional sales manager for Sensor Development until it was bought out by HITEC Sensors and was renamed to HITEC Sensors Development. Jeff remained with HITEC for another four years before it was time for exploring new opportunities.

Due to his experience in the industry, Jeff was familiar with the Interface brand and our product’s reputation for quality and accuracy. Right about the time Jeff’s time with HITEC was coming to end, Interface had an opening for a Regional Sales Position due to Keith Skidmore‘s promotion to our specialized Custom Solutions team.

Jeff joined Interface in the Spring of 2021 and is a perfect fit, technically and professionally. Not only because of Jeff’s years of experience, also because he continues to live in Michigan and will be covering Interface’s Central U.S. region working with our manufacturer’s representative firm, Stress Analysis Services. He’ll be working with our sales reps, including John Guy, and our customers to ensure they get exactly what they require from Interface. He knows the area and knows the needs of the industry well.

As for why Jeff chose Interface, he says it’s because of the people. Throughout the interview process and during these first few weeks, Jeff mentioned how supportive and friendly his teammates and the leaders of the company are working to ensure his success. He also sees the trajectory that Interface is currently on and knows that he will have an opportunity to grow and thrive alongside Interface.

When he’s not helping customers find the perfect product or customer solution for their test and measurement needs, Jeff is spending time with his wife and his five grown sons and granddaughter. Living through the cold Michigan winters make vacationing to the warmth a must. Jeff and his wife frequently travel to Las Vegas and Arizona or any other warm state to escape. Though, they also like to spend some of their time cheering on their favorite football teams. Notably, the household is a bit divided when it’s game time. Jeff is also an avid golfer and spends a lot of his down time on the course.

We’re so glad to have Jeff on our team as our new ForceLeaders member and we can’t wait to see what we’ll achieve together in interest of our valued Interface customers.

The Role of Actuators in Force Measurement

One of the most common force measurement tests in the engineering and manufacturing world is called cycle testing. Cycle testing involves constant force being applied to a component or product over hours, days and even months. The goal is to test a product to find out how long it will last under the amount of force it will see in use in the real world.

Cycle testing is used throughout different industries. One of the most common applications of a cycle test is on something like airplane wings. The wings of an airplane are exposed to constant push and pull force to guarantee that they will hold up over many flights. Check out the wing fatigue testing application note here.

Another example is simple furniture tests, like a chair, to ensure it can withstand the weight of people of all sizes after years and years of use. These tests are designed to really push the limits on the product so engineers and manufacturers can confirm their designs and ensure safety and durability.

To carry out these tests, actuators are used to generate the force in cycle testing. An actuator is a component responsible for moving and controlling a mechanism or system. Actuators are small components that convert energy in a linear moment. There are a variety of different types of actuators including linear, rotary, hydraulic, pneumatic, and more. Each is designed to create force in different directions and on different axes.

Actuators are very important because force measurement is fed back into a control loop and the actuator allows you to accurately control how much force you’re putting on a test article. As a basic example, if you wanted to measure how much force it takes to close a door, you would use an actuator to provide the door closing force while the load cell measures the amount of force given off by the actuator.

Interface often integrates actuators into load cells for custom solutions to use in rigorous use and cycle testing. These types of custom solutions are used by equipment and product manufacturers, OEMs, as well as product design and testing labs. There is increasing frequency for OEMs to integrate actuators into load cells for testing their automated testing lines or products in use for continuous feedback.

For example, mobile device manufacturers use a miniature–sized load button load cell like the ConvexBT to test the pressure sensitivity of the touch screen. By using an actuator, phone manufacturers can set up an automated test lines with an actuator integrated in the load button load cell to test each screen as they go across a test line. You can read more about ConvexBT in this new white paper.

Another major application for actuators is in calibration machines. To test if a load cell is calibrated correctly, an actuator applies force to the load cell being tested and a calibration grade Gold Standard Load Cell simultaneously. These measurements can tell the user if the load cell needs to be recalibrated or not because the actuator allows the user to create a very precise force measurement. If measurements on the test load cell are not the same as the control load cell, the user knows it is off calibration and it’s time to schedule a calibration service.

From custom solutions to calibration, if actuators are necessary for your next project learn how Interface can work with you to find a solution that meets your precise needs.

Read more about Gold Standard Calibration Systems here.

Learn about how Interface is a preferred provider of OEM solutions here.

Interface Engineered to Order Solutions

Load cells and torque transducers come in many different capacities, sizes and capabilities. They are used in nearly every industry that manufactures any type of hardware device or component. From testing minute forces on miniaturized medical devices, all the way up to measuring force in the construction of enormous suspension bridges or even rocket engines. The point is, there is no one size fits all in the force measurement world when performance matters.

What makes Interface uniquely the leader and is a true differentiator in the force measurement industry is our ability to provide engineered to order solutions to meet our customer’s exact application requirements.

Innovation across multitudes of industries has provided the opportunity to be more creative in utilizing Interface proprietary technology and engineering talent in the development of new force measurement devices. More and more we find ourselves leaning on our experts using our proprietary strain gages and product designs to develop solutions that meet the needs of our customer’s unique projects and end-products.

Through our work on modifications and custom solutions, we have expanded our product offerings to more than 37,000 uniquely designed products spanning across 52 years of development. Once initiating as a custom solution, many of these products have made their way into our catalog as standard products based on growing trends and larger demands.

There is also another form of customization, or more accurately termed modification, that we are seeing more and more as Interface grows our engagement with OEM customers. We call this “engineered to order” solutions. These solutions are different from full customization and critical in serving our diverse customers.

Designers and builders of high-volume products may have opted in the past for simplistic testing technology that lacks consistency, quality, accuracy and reliability. As product failures or customer satisfaction wanes based on performance, OEMs are driven to find force measurement solutions they can depend on for precise measurement and performance. This is also indicative of the times we are in utilizing advancements in production, technology and even robotics to produce products.

It is essential for product makers and engineers to find reliable solutions for accurately monitoring and testing product performance in real-time. In short, they need sensor capabilities that meet their product manufacturing volume, safety requirements and overall robust product performance standards. This is very typical in industrial markets where OEM customers want to monitor machines in the moment and more accurately predict fatigue or when a machine will need to be repaired, reducing overall downtime and saving money.

To best serve OEM customers and testing engineers with premium and affordable force measurement solutions, Interface offers engineered to order capabilities for the masses. Engineered to order means Interface can deliver force measurement solutions from our massive catalog that are modified to meet the features and specifications that our customers require, while still retaining the premium accuracy, quality and reliability Interface is known for across every industry we serve.

Interface Application Engineers work closely with our customers to determine the exact specs their product requires and deliver a manufacturing plan that meets their volume, accuracy and reliability needs through an engaged process. We plan, coordinate and team together to build the right product, for the right time and right price. Most importantly, we can modify most of our products in our entire catalog, giving flexibility within a precision line of solutions.

OEMs, product designers, and testing experts do not need to compromise performance. Interface’s engineered to order process combined with our automated production lines allows us to provide the same great quality force sensor our customers expect from an industry leader.

Interface excels when we partner with our customers in the earliest phases of development to ensure we provide the best solution, based on size, capacities and performance capabilities. By sharing design plans, we can collaborate with our customers to provide the best outcome. Ready to engage our experts?  Contact us here.