Posts

What is Static Error Band Output?

Static error band (SEB) measures the accuracy of a measuring device. Under static loading conditions, it is defined as the maximum deviation of the device’s output from a best-fit line through zero output. SEB includes the effects of non-linearity, hysteresis, and non-return to minimum load.

Static Error Band (SEB) Definition: A band encompassing all points on the ascending and descending curves centered on the best-fit straight line. It is expressed in units of %FS.

SEB is typically expressed as a percentage of full scale (FS), the maximum load the instrument can measure. For example, a load cell with a SEB of 0.1% FS would have a maximum error of 0.1% of its full-scale capacity.

SEB is an essential specification for measuring instruments used to make precise measurements, such as load cells, pressure transducers, and temperature sensors. A high SEB indicates that the device is inaccurate, and its measurements may be unreliable.

How to Calculate SEB

  • Collect a series of calibration data points for the instrument under static loading conditions.
  • Plot the calibration data on a graph, with the instrument’s output on the y-axis and the applied load on the x-axis.
  • Fit a best-fit line through the calibration data points.
  • Calculate the maximum deviation of the calibration data points from the best-fit line.
  • Express the maximum deviation as a percentage of the full scale.

SEB is a helpful metric for comparing the accuracy of different measuring instruments. It is also important to note that SEB is only one measure of an instrument’s accuracy. Other factors, such as repeatability and reproducibility, should also be considered when selecting a device for a particular application.

What is SEB Output?

SEB output is the computed value for output at capacity derived from a line best fit to the actual ascending and descending calibration points and through zero output. It measures the accuracy of a measuring instrument under static loading conditions.

SEB Output Definition: The output at capacity is based on the best fit straight line.

The SEB output is the maximum deviation of the calibration points from this best-fit line. SEB output is typically expressed as a percentage of full scale (FS). SEB output is an essential specification for load cells and other measuring instruments used to make precise measurements.

Why Interface Uses SEB Output Instead of Terminal Output

In the absence of alternate specific instructions, Interface uses the SEB output instead of the terminal output in straight-line scaling of a transducer to a digital indicator or analog signal conditioner. On average, the SEB output line yields the least error over the transducer range relative to the calibrated points.

SEB stands for Static Error Band and is a band on either side of a straight line through zero that is positioned to have equal maximum error above and below the line. The line extends from zero to the SEB output. The line considers both ascending and descending calibration points.

The plot below allows error visualization relative to the SEB and terminal output lines for a typical load cell calibration curve with ascending and descending points.

In this example, the SEB equals 0.03%FS, and the SEB line is no more than 0.03%FS away from any calibration point. The terminal line, in contrast, has a maximum deviation from calibration points of 0.05%FS. The plot shows that the ascending calibrated curve and the SEB line cross near 80%FS, often a more common measurement area in an application than 100%FS.

Source: Levar Clegg

Benefits of Using SEB Output

  • SEB output is a more accurate measure of the load cell’s accuracy than terminal output.
  • SEB output is less sensitive to environmental factors and noise than terminal output.
  • SEB output is easier to understand.
  • SEB output confirms that the measurements are accurate and the results are reliable.

How does a test engineer use SEB Output when selecting a load cell and instrumentation system?

Test engineers use SEB Output when selecting a load cell and instrumentation system to ensure the system is accurate enough for the intended application. The selection of a load cell is often based on an SEB Output that is less than the required accuracy of their application. For example, if an engineer needs to achieve measurements with an accuracy of 0.1%, they will select a load cell with a SEB Output of less than 0.1% FS.

It is crucial to consider the instrumentation system’s accuracy to measure the load cell’s output. The instrumentation system should have an accuracy equal to or greater than the accuracy of the load cell.

For additional information about specification values, be sure to watch this short clip from our Demystifying Specifications Webinar Recap

Test and measurement professionals can select an accurate, reliable, valuable load cell and instrumentation system following these tips.

Force Measurement Sensors are Essential to Modern Industrial Machinery

 

Industrial machinery plays a vital role in the global economy. It helps to improve productivity and efficiency, and it is essential to produce many of the goods we rely on daily.

Industrial machinery use cases range from equipment used in manufacturing and construction to transportation and robotics. Force measurement sensors and instrumentation play a critical role in ensuring industrial machinery’s safe and efficient operation.

Interface sensor technologies, including our load cells and multi-axis sensors, provide critical data for various machinery designs and functions. Interface analog and digital instrumentation products are available to amplify, condition, and display the signals from force measurement sensors.

The accuracy of force, torque, and weight measurements guide industrial machinery’s design and performance mechanisms.

What types of industrial machinery are using Interface measurement products today?

  • Machine tools used for grinding, drills, and lathes
  • Fabrication apparatus used for bending, shearing, and welding
  • Assembly equipment for production environments that include conveyor belts, robotic arms, and picking devices
  • Testing, quality control, and safety inspection equipment
  • Heavy equipment operational controllers for forklifts, cranes, and hoisting gear
  • Construction machinery such as loaders, bulldozers, and lifts

Industrial machinery is prevalent in manufacturing vehicles, aircraft, consumer goods, medical devices, and pharmaceuticals. Heavy-duty machinery is standard in energy production, mining, forestry, agriculture, and transportation.

The machines’ quality heavily depends on the accuracy of measurements used in the initial design, retrofitting, production, and practice. Interface products provide the products that enable machines to operate at peak performance safely and efficiently. Learn more in our new Interface Industrial Machinery Solutions, a part of Industrial Automation market offerings.

How Interface Measurement Solutions Used in Industrial Machinery

Machine Safety Monitoring

Interface products are used for monitoring the performance of machines and for management in sensing potential problems before they cause a failure. Interface measurement technologies are used in construction machinery to enable operators to gauge the force applied to materials, preventing overexertion and potential damage. Read Interface Solutions for Safety and Regulation Testing and Monitoring

Heavy Machinery and Lifting Equipment

In material handling equipment, force sensors help prevent accidents and injuries. Interface load cells, including load pins and shackles, monitor loads, weight, and distribution. Learn more about lifting solutions in our Engineered Solutions for Lifting Webinar.

Manufacturing and Production Machines

Manufacturers rely on Interface sensor solutions in industrial machines such as injection molding machines to monitor the force applied to the mold or how they are used in machines to ensure correct product packaging. The efficiency of machines is enhanced by correctly measuring the forces applied during different operations. Force sensors help ensure products are assembled correctly and within tolerance on production lines.

Industrial Automation Machines and Robotics

Interface sensors in industrial machines such as robots allow for more precise and delicate tasks that measure force at touch and throughout the entire operation. In machine tools, load cells assist in monitoring cutting forces and prevent damage to tools and workpieces. In robotic arms and automated assembly lines, force sensors provide precise force application during welding, riveting, and material handling.

Benefits of Using Interface Products in Industrial Machinery

  • Improved safety: Load cells can help prevent accidents and injuries by monitoring the weight and distribution of loads and ensuring that machines operate correctly.
  • Increased productivity: Force measurement sensors can help improve machines’ efficiency by optimizing the force applied during different operations. Force measurement sensors can help reduce machine downtime and enhance the quality of products with accurate data, helping to make intelligent decisions.
  • Reduced waste and operating costs: Measurement devices can help to reduce costs by preventing machine failures and improving the quality of products.

Force measurement sensors and instrumentation are essential components of modern industrial machinery. They ensure the safe, efficient, and productive operation of these machines. Contact Interface application engineers to evaluate the best sensor technologies for your specific test and measurement pe failures and improving the quality of products.

ADDITIONAL RESOURCES

Hydraulic Press Machines and Load Cells

Sanding Machine Force Monitoring

Interface Solutions for Machine Builders

Metal Press Cutting Machine

Laser Machine Cutting Force App Note

Ice Machine Weighing

Force Measurement Testing Improves Products and Consumer Safety

Cobot Safety Programming

Crane Capacity Verification App Note

Universal Load Cells 101

In the force measurement testing world, versatility has tremendous value. That is why some of Interface’s most popular products are designed to provide adaptability for a broad spectrum of testing and force monitoring processes. From standard tension and compression LowProfile Load Cells to Interface’s multi-axis sensors that can measure up to 6 axes for additional data, these products are engineered for universal use cases.

Universal load cells offer the ability to measure both tension and compression forces in testing and monitoring applications. Universal load cells provide the ability to capture data on both forces. They are designed for a broad scope of force or weight measurement applications such as weighing scales, material testing machines, and industrial automation equipment.

These types of load cells are ideal for installations where the load may change from tension to compression, and vice versa, such as in rope and chain testing. Universal load cells also suit a wide variety of product and material destructive testing as it is robust and easily mounted in a range of applications.

Top Benefits of Universal Load Cells

Range of Standard Capacities: Universal load cells are diverse in dimension and capacities. From miniatures like our model ULC, which is the world’s most accurate ultra-low capacity tension and compression load cell measuring loads from 0.1 to 2 N (10.2 grams to 500 gmf) to 1000 Series High Capacity Fatigue Rated LowProfile Load Cell capable of measuring tension and compression over a million pounds of force, Interface has a range of universal options. The requirements of any testing program will define the type of load cell.

Versatility: Universal load cells can measure force in multiple directions, including compression, tension, and shear forces.

Adaptable Accessories: Universal load cells can be used in conjunction with various accessories and fixtures to suit specific applications. This includes bases, mounting hardware, adapters, cables and protective enclosures. Wireless sensor options are in high demand for universal load cells.

Engineered to Order: Interface offers engineered to order and customization of our load cells to further the application use and flexibility of use.

Products such as universal load cells are appealing to highly regulated industries like aerospace, defense, automotive, and industrial automation. In controlled testing, engineers must meet stringent standards of performance measurement for components, equipment, and machinery.

Another area in which universal load cells standout is in material testing. Measuring tension and compression provides critical force data when testing a material that will be used in system that needs to be both strong and flexible for safety and quality purposes.

One of Interface’s most popular load cell model, the 1200 series, is universal. For example, Interface’s Model 1200 and 1201 Series IO-Link Universal Load Cells are pancake style load cells which are IO-Link compatible with an open standard serial communication protocol that allows for the bi-directional exchange of data from sensors and devices.  We also offer a 1200 and 1201 Series 3-Wire Amplified Universal Load Cell.

Features and benefits of the 1200 and 1201 Series IO-Link Universal Load Cell include:

  • Proprietary Interface strain gages
  • Temperature compensated
  • Eccentric load compensated
  • Low deflection
  • Shunt calibration
  • Tension and compression
  • Compact size
  • 3-wire internal amp choice of 4-20 mA, ±5V, ±10V, 0-5V, 0-10V

Patient Hoyer Lift

A Hoyer lift is used to move patients. A medical equipment manufacturer would like a force system to weigh disabled patients and measure the maximum force when using the equipment. Interface’s WTS 1200 Precision LowProfile Wireless Load Cell is attached to the top of the Hoyer lift. The tension and compression force results are wirelessly transmitted to the medical personal’s computer through the WTS-BS-6 Wireless Telemetry Dongle Base Station. Interface’s wireless force system was able to measure the amount of weight a patient while also clarifying the maximum capacity the Hoyer lift can hold during use. Read more about this application here.

If you need a little more flexibility in your testing and monitoring system, Interface universal load cells may be a great option for you.  The choice of a specific load cell will depend on factors such as the required load capacity, accuracy, environmental conditions, and signal compatibility with the rest of the measurement or control system.

ADDITIONAL RESOURCES

Interface 101 Series

Wireless Telemetry Systems 101

Load Cell Sensitivity 101

LowProfile Load Cells 101

ITCA Tension and Compression Load Cell

 

Interface New Product Releases Fall 2023

Interface has added new load cells and instrumentation to our expansive measurement solutions catalog. The Fall 2023 new product releases include several standard products, along with options for engineered to order and custom solutions.

The Interface product line is one of the most extensive in the world of test and measurement. We want to make it easier to navigate models based on your requirements. Interface has a series of guides that can help you choosing the right load cells, miniature load cells, torque transducers, couplings, DAQ systems and instrumentation. Visit our online product selection tools.

ICPA STAINLESS STEEL COMPRESSION LOAD CELL

Interface’s new ICPA compression load cells are built to exacting standards with submersible versions available. The standard product is durable, versatile and easy to integrate into existing machines and equipment. There are several options available in standard capacities and dimensions including domed top (supplied with or without a loading cap), integral carry handles, mounting base, integral connectors and internal analog/digital signal amplifiers. The standard product is constructed from stainless steel and IP-rated. It can be customized to specific requirements. Download the ICPA datasheet.

Primary ICPA features and benefits:

  • Ranges: 2 to 1000 MT (4.4K to 2204K lbf)
  • Stainless steel construction
  • Environmentally sealed to IP67
  • Submersible version available upon request
  • Options: Special electrical connections, integral signal conditioning
  • Model options: Domed top and loading cap, mounting base and handles
  • TEDS (Transducer Electronic Data Sheet) option
  • Custom ranges and sizes available

BSC4D-BT PORTABLE 4-CHANNEL BLUETOOTH DATA LOGGER

Interface’s new BSC4D-BT Portable 4-Channel Bluetooth Data Logger is designed for wireless measurement data acquisition with wire strain gage sensors. It is also suitable for connecting strain gage full bridges and half bridges. For quarter bridges (120 Ohm, 350 Ohm, and 1000 Ohm), there is a connection option in three-wire technology. Data is transmitted by radio via the Bluetooth Standard 2.0+EDR with serial port profile (SPP). The range is 20-meters in buildings or up to 100 m when in direct line of sight. Current consumption is less than 150 mA. When not in use, current consumption is under 10 mA. A battery can be charged at 5V supply voltage via an integrated charge regulator. Download the BSC4D-BT datasheet.

Primary BSC4D-BT Portable 4-Channel Bluetooth Data Logger:

  • IP65 housing with integrated battery
  • Long distance Bluetooth interface
  • 4 channels
  • Inputs for mV/V / 0 – 5 V / PT1000
  • Measuring ranges 2 mV / V / 10 mV / V, mV/V quarter and half-full bridge options
  • 4 digital inputs and outputs
  • Data rate up to 450 Hz

BSC1-HD SINGLE CHANNEL PC INTERFACE MODULE WITH ANALOG OUTPUT

The new Interface BSC1-HD Single Channel PC Interface Module with Analog Output is a single channel signal conditioner with both digital and analog input and output. The BSC1-HD also has optional RS232, RS422, and CANopen protocols.  Download the BSC1-HD datasheet.

Primary BSC1-HD Single Channel Module with Analog Output features and benefits:

  • 24-bit
  • mV/V input (+/-10mV/V) and Analog Input (0-10VDC)
  • Analog Output (standard +/-5V)
  • LCD Display (to 200,000 digits display resolution)
  • Compatible with Interface BlueDAQ Software
  • RS232, RS422 or Optional – CANopen
  • Trigger input
  • Options include: 4-20mA Output, 0-10V Output, CANopen and +/-5V Output

Amplifier channel has a fixed gain settings and is not adjustable for specific load cell output signals. Thus, the amplifier output will typically 0.5V per mV/V of load cell output.

SGA AC/DC POWERED SIGNAL CONDITIONER

Interface versatile SGA Signal Conditioner is now offered as a series. There are eight configurations available for this popular instrumentation product. The SGA features user selectable outputs of ±10V, ±5V, 0-10V, 0-5V, 0-20mA and 4-20ma. This product is DC or AC powered with switch selectable filters from 1 to 5kHz and is packaged in a sealed ABS enclosure. This product supports shunt calibration and a wide range of gain settings. To review all the SGA options, go here.

NEW! 8 SGA Configuration Models Now Available

  1. SGA: Amplifier with no power cord
  2. SGA-WPC: Amplifier with power cord
  3. SGA-RSC: Amplifier with Remote Shunt Calibration option and no power cord
  4. SGA-RSC-WPC: Amplifier with Remote Shunt Calibration option and includes a power cord
  5. SGA-DCI: SGA-D with Isolated Power Supply option and no power cord (DC Power Only). Also allows for 9-36 VDC Supply
  6. SGA-BCM: Amplifier with Bridge Completion option and no power cord
  7. SGA-BCM-WPC: Amplifier with Bridge Completion option and includes power cord
  8. SGA-DRMK: DIN Rail Mounting Kit option for model SGA.

Primary and Optional SGA features and benefits:

  • User selectable analog output ±10V, ±5V, 0-10V, 0-5V, 0-20 mA, 4-20 mA
  • 110 VAC, 220 VAC OR 18-24 VDC power
  • Switch selectable filtering 1 Hz to 5 kHz
  • Single channel powers up to 4 transducers
  • Selectable full scale input range 0.06 to 30 mV/V
  • Switch selectable offset ±70% FS
  • Sealed ABS enclosure
  • Model SGA-RSC can remotely activate a shunt calibration by closing a relay on the related RSC module
  • Model SGA-DCI offers with isolated 12/24V power supply
  • Model SGA-BCM has a bridge completion module for both quarter and half bridges
  • Option: AC Power Cord (PWRCRD-SGA-110)
  • Option: DIN Rail for mounting available by request

4850 BATTERY POWERED BLUETOOTH WEIGHT INDICATOR

The new Interface 4850 Bluetooth Digital Indicator is a wireless capable digital indicator housed in a stainless steel NEMA 4X enclosure. It comes with a large 0.8” LCD display for easy readout of up to 50,000 display divisions and can drive up to 8-350Ω load cells. All setup parameters may be entered via the front panel keys. A full duplex RS-232 port or optional Bluetooth module can transmit data on demand or continuously to match the input requirements of a wide variety of peripheral devices including printers, remote displays and computers. This is a high quality instrumentation solution with Bluetooth capabilities. Review the 4850 weight indicator specifications here.

Primary 4850 Digital Indicator features and benefits:

  • Full front panel configuration
  • Drives up to eight 350 ω load cells
  • Full front panel calibration, multipoint cal – linearization
  • Units- lb, kg, g, and oz
  • Stainless steel swivel stands and enclosure
  • Easy to read LCD display with up to 50,000 graduations
  • Power requirements – 4-14 vdc
  • Battery is 6-volt 3 ah internal rechargeable lead acid
  • Options for analog output: 16-Bit, 0-5 VDC, 4-20 mA and built-in relays (6V or 12V)

Beyond our standard load cells, transducers, and instrumentation, we also offer options for engineered to order, OEM sensors, and complete custom systems. If you need any assistance in selecting the right products for your test and measurement applications, please contact us.  If you have questions about these new products, capacities, capabilities, or specifications, we are here to help.

ADDITIONAL PRODUCT RESOURCES

How Does Tensile Testing Work?

Tensile testing, also known as tension testing, is a type of mechanical test used to determine how a material responds to a stretching force. This test helps evaluate the mechanical properties of an object, such as metals, polymers, composites, and various other materials.

Performing a tensile test applies a load to specimen, and gradually increasing the load sometimes until failure or destruction. The tensile data is analyzed by using a stress-strain curve.

Interface stain gage load cells are commonly used in tensile testing due to their high precision and sensitivity. They work by measuring the strain in a material, which is directly related to the applied force. This strain data is then converted into force measurements. Learn more in Tension Load Cells 101.

Tensile testing is fundamental in test and measurement. It is used by researchers, testing labs, and engineers across industries including infrastructure, medical, manufacturing, aerospace, consumer goods, automotive, energy, and construction.

How Tensile Testing Works

Tensile testing is essential in materials science and engineering to understand the material’s behavior under tension and to ensure its suitability for specific applications.

First, a specimen of the material is prepared with a specific shape and dimensions. This sample is carefully controlled to meet testing standards based on the test plan.

Interface supplies a variety of load cells for these tests. The load cell is typically mounted in a tensile testing machine. The tensile test machine has two separate jaws, one of which will move away from the other at a controlled rate during the test. As it moves away, it is pulling on the material, stretching it until it the test is complete, or it breaks. This is also referred to as testing to failure or destruction. The controlled rate is called the strain rate, and materials will behave differently under different strain rates.

The specimen is then securely mounted in a testing machine, which is usually called a tensile testing machine or universal testing machine. The load cell is positioned in such a way that it bears the load applied to the specimen during the test.

Load cells are commonly used in tensile testing to measure and record the force or load applied to a specimen during the test. These sensor devices are crucial for accurately determining the mechanical properties of materials under tension.

The testing machine applies a pulling force (tensile force) to the specimen along its longitudinal axis. The force is gradually increased at a constant rate, causing the specimen to elongate.

As the tensile testing machine applies a pulling force to the specimen, the load cell measures the force in real-time. This force measurement is typically displayed on a digital instrumentation device or recorded by a data acquisition system.

The recorded data, including the applied force and the corresponding elongation or deformation of the specimen is usually plotted on a stress-strain curve for analysis. The stress-strain curve provides valuable information about the material’s mechanical properties, including its ultimate tensile strength, yield strength, Young’s modulus, and elongation at break.

Engineering Checklist for Tensile Test Plans

  • Identify the Purpose of the Tensile Test
  • Select the Material and Test Standard
  • Define the Mechanical Properties
  • Determine the Specific Mechanical Properties for Evaluation
    • Common properties include tensile strength, yield strength, modulus of elasticity (Young’s modulus), elongation, reduction in area, stress-strain curve characteristics
  • Establish Test Conditions
    • Include temperature, strain rate and testing environment
  • Define Sample and Specimen Requirements
  • Determine Measurement Accuracy Requirements
  • Prepare Instrumentation and Equipment
  • Plan for Data Recording and Reporting
  • Review Compliance Requirements and Safety Standards
  • Document Test Plan
  • Publish Verification and Validation Processes
  • Report Results

Defining measurement requirements for tensile tests by specifications is a crucial step in ensuring that the tests accurately and reliably assess the mechanical properties of materials.

Tensile Testing Terms to Know

Stress: Stress is the force applied per unit cross-sectional area of the specimen and is usually denoted in units of pressure. Stress is calculated by dividing the measured force by the cross-sectional area of the specimen. The load cell’s force measurement ensures that the stress values are accurate and precise. Simply, stress is the amount of force applied over a cross-cross-section.

Strain: Strain represents the relative deformation of the material and is the change in length (elongation) divided by the original length of the specimen. Strain is the amount of elongation in a sample as it is stretched or squashed.

Elastic Region: In the stress-strain curve, the initial linear region where stress is directly proportional to strain is known as the elastic region. Here, the material returns to its original shape when the load is removed.  As soon as a material is placed under any load at all, it deforms. Visually, the deformation may not be noticeable, but right away, the material is deforming. There are two types of deformation: elastic (not permanent) and plastic (permanent).

Yield Point: The yield point is the stress at which the material begins to exhibit permanent deformation without an increase in load. It marks the transition from elastic to plastic deformation.

Ultimate Tensile Strength (UTS): UTS is the maximum stress the material can withstand before breaking. It is the highest point on the stress-strain curve. If the material is loaded to its UTS, it will never return to its original shape, but it can be useful in engineering calculations, as it shows the maximum, one-time stress a material can withstand.  Load cells can detect the exact moment of specimen failure, such as fracture or breakage. This information is crucial for determining the ultimate tensile strength and other mechanical properties of the material.

Elongation at Break: Elongation at break is the amount the specimen stretches before it breaks, expressed as a percentage of the original length.

Load cells can also be used for real-time monitoring and control during the test. Test operators can set specific load or strain rate parameters to control the testing machine’s operation and ensure the test is conducted within specified conditions.

Load cells play a safety role by providing feedback to the testing machine’s control system. If the load exceeds a certain threshold or if the load cell detects an anomaly, the testing machine can be programmed to stop or take corrective actions to prevent damage to the equipment or ensure operator safety.

To discuss Interface products and experience in tensile testing, be sure to reach out to our global representatives in the field or contact us. We are always here to help!

Bending Beam Load Cell Basics

Bending beam load cells are a versatile and cost-effective solution for many weighing and force measurement applications. These types of miniature load cells are small in dimension, which makes them ideal solutions for compact testing environments and for embedding into machines or products for continuous performance measurement.

The use of bending beam load cells expands across industries and applications, for weighing scales, medical devices, industrial process controls, robotic designs, packaging machinery and civil engineering projects.

How Bending Beam Load Cells Work

A bending beam load cell converts a force applied to it into an electrical signal by measuring the flexure of the beam. This is done by attaching strain gages to the beam. When the beam bends, the strain gages change their resistance, which is then converted into an electrical signal by a Wheatstone bridge circuit. The output signal is proportional to the applied load.

The bending beam load cell is bolted to a support through the two mounting holes. Under the covers, you can see the large hole bored through the beam. This forms thin sections at the top and bottom surface, which concentrate the forces into the area where Interface’s proprietary strain gages are mounted on the top and bottom faces of the beam. The gages may be mounted on the outside surface, as shown, or inside the large hole.

The compression load is applied at the end opposite from the two mounting holes, usually onto a load button that the user inserts in the loading hole.

MB Miniature Beam Load Cell

MB MINI BEAM LOAD CELL

The Interface Model MB is a miniature beam load cell used in test machines and a variety of low capacity applications.

  • Standard Capacities are 5 to 250 lbf (22.2 N to 1.11 kN)
  • Proprietary Interface temperature compensated strain gages
  • Performance to 0.03%
  • Low height – 0.99 in (25.1 mm)
  • Eccentric load compensated
  • ±0.0008% /˚F – max temperature effect on output
  • Low deflection

MBI Overload Protected Miniature Beam Load Cell

Interface’s Model MBI Overload Protected Miniature Beam Load Cell has better resistance to off-axis loads then other similar load cells and is fatigue rated.

  • Standard capacities from 2 to 10 lbf (10 to 50 N)
  • Proprietary Interface temperature compensated strain gages
  • Performance to 0.03%
  • Low height – 1in max
  • ±0.0008% /˚F – max temperature effect on output
  • 10x overload protection

MBP Overload Protected Miniature Beam Load Cell

Our Model MBP series Mini load cells provide a similar performance to Model MB series with the added safeguard of internal overload protection. This patented overload protection is accomplished via hard stops that are EDM machined into the load cell flexure. This provides a greater overload protection (2.5-10lbf ±1000% of full scale capacity, 100 N ±500% of full scale capacity), giving the user added protection in more severe applications.

  • Standard capacities from 2 to 10 lbf (10 to 50 N)
  • Proprietary Interface temperature compensated strain gages
  • 10x overload protection
  • Low height – 0.99 in (25.1 mm)
  • ±0.0008% /˚F temp. effect on output
  • 5′ Integral Cable (custom lengths available upon request)
  • NIST Traceable Calibration Certificate

MBS Parallelogram Load Cell

The Interface MBS Parallelogram load cell is made of lightweight aluminum construction and highly suitable for medical and robotics applications.

  • Capacities from 2.2 to 10 lbf (9.8 to 44.5 N)
  • Lightweight
  • Nonlinearity error 0.02% FS
  • Ideal for OEM applications

Double Bending Beam Cells

A very useful variation on the bending beam design is achieved by forming two bending beams into one cell. This allows the loading fixtures to be attached at the threaded holes on the center line, between the beams, which makes the sensitive axis pass through the cell on a single line of action.

Bending Beam Load Cell Applications

Material testing is a common application for bending beam load cells. This type of miniature load cell measures the forces applied to materials with a high degree of accuracy to determine stiffness, strength and durability of the specimen.

It is quite common to find bending beam load cells in industrial automation machines and robots to precisely measure the forces required for control, safety and efficiency. In robotics specifically, bending beam load cells will measure the force applied to the robot’s arms and grippers. The data is used to control the robot’s movements and to ensure that it is not damaging the objects it is handling.

Aerospace engineering have long used bending beam load cells in design, testing and manufacturing of aircraft and spacecraft. Automotive engineering use bending beam load cells to design and test vehicles for safety and reliability.

Due to Interface’s ability to custom design bending beam solutions that meet strict size, capacity and accuracy requirements, our products are commonly used in medical and healthcare applications.

Bending Beam Application for Medical Device Testing

In this application, the medical device product lab needs to apply known forces to stent and catheters to ensure they pass all necessary strength and flexibility testing. MBP Overload Protected Beam Miniature Load Cell is placed behind the guide wire for the stent or catheter. The motor will spin the linear drive, push the load cell, and guide the wire through the testing maze. The bending beam load cell connects to the DIG-USB PC Interface Module to record and store testing data for analysis. Read more.

Bending Beam Application for Vertical Farming

Vertical farming is the production of produce in a vertical manner using smart technology systems, while indoors using an irrigation system. A wireless force measurement solution is needed to monitor the amount of water being used, to ensure the produce is being watered just the right amount. Interface suggests installing four MBI Overload Protected Miniature Beam Load Cells under each corner of the trays of the produce to accurate measure the weight during watering. A JB104SS 4-Channel Stainless Steel Junction Box connects to each bending beam cell and to a WTS-AM-1E acquisition module. The device wirelessly transmits the sum weight to the WTS-BS-1-HA Wireless Handheld Display for multiple transmitters, and the WTS-BS-6 Wireless Telemetry Dongle Base Station. Interface’s Wireless Telemetry System monitored and weighed the amount of water being used on the produce in this vertical farming system to increase yield and conversation. Read more here.

Additional Resources

How Do Load Cells Work?

The Basics Of Shear And Bending Beams

Interface Mini™ Load Cell Selection Guide

Introducing Interface Load Cell Selection Guides

The Anatomy Of A Load Cell

Mini Load Cells 101

Load Cell 101 And What You Need To Know

Outlining Force Solutions for Structural Outrigging

Across a wide variety of industries, heavy machinery, maritime, construction, and other infrastructure often need additional structural support. This includes support that prevents equipment, vessels, and buildings from falling over, capsizing or collapsing.

Typically, the solution to provide this critical structural support comes in the form of an outrigger. For vehicles, both land and maritime, an outrigger is a projecting structure, with specific meaning depending on types of vessels, or the legs on a wheeled vehicle that are folded out when it needs stabilization.

For buildings, outriggers are interior lateral structural systems provided to improve the overturning stiffness and strength of high-rise buildings. It is a lateral load resisting system that is located within the building. The whole system consists of a core structure connected to the perimeter columns of the building.

These types of structural supports became popularized in the 1980s as an addition to high-rise buildings as they are effective up to 150 floors due to its unique combination of architectural flexibility and structural efficiency. Outrigging has been adapted for large vehicles and boats, such as large cranes that are extremely top heavy and can create balance problems, or yachts that need to be stabilized when stored out of water.

With the addition of these supports, various forms of testing need to be done to ensure the outrigger can support the vehicle or structure it is installed upon. This is where Interface’s force measurement testing and monitoring products are utilized in different outrigging applications.

Interface load cells are used by outrigging engineers, civil engineers and heavy equipment manufacturers, oil and gas, construction industry and marine equipment companies. Read more why Rigging Engineers Choose Interface Measurement Solutions.

The role of force measurement sensor technologies in outrigging is to provide high accuracy measurement of the outrigging equipment in test and actual use. The applications range from integration of sensors into outrigger equipment, to load cells for real-time monitoring of the physical structure using outrigger supports.

The most common Interface products used for outrigging include:

For example, Interface load shackle cells are used to measure the forces during outrigger testing as well as on the outrigger equipment that support the structure. The data from the sensor is critical information used to assess the structural integrity of the outrigger or structure and to identify any potential weaknesses.

Interface load cells, such as our load shackles or load pins, are typically placed in strategic locations on the outrigger or structure where the force is expected to be greatest. The load cell is then connected to a data acquisition system (DAQ) or indicator that records the force readings. The data can then be analyzed to determine the maximum force applied to the outrigger or structure, as well as the distribution of force over the structure.

Load cells can also be used to monitor the performance of outriggers or structures over time. This can be helpful in identifying any changes in the structural integrity that may be caused by wear and tear, environmental factors, or other factors. Utilizing instrumentation with alarm capabilities is helpful, as well as a tool for maintenance.

Load cells are an important safety feature in outrigging equipment. They can help to prevent accidents and ensure that the equipment is used safely. A load cell is used to prevent a crane collapse during the construction of a high-rise building in a large congested metropolitan city. The crane is used for lifting a heavy beam. The load cell alerts the operator when the load is too heavy.

Ultimately, force measurement provides several benefits to testing and monitoring different outrigger applications, including:

  • Increased safety: By measuring the force applied to the outrigger, a load cell can help to prevent overloading and damage to the outrigger. It is also valuable for continuous monitoring during lifting use cases, such as with a crane or heavy machinery.
  • Improved efficiency: By monitoring the performance of the outrigger, a load cell can help to identify any potential problems early on, which can help to prevent costly downtime.
  • Reduced risk: By providing accurate data on the force applied to the outrigger, a load cell can help to reduce the risk of accidents and injuries.

Examples of how force measurement is used to test outrigger solutions in a variety of industries:

  • In the oil and gas industry, load cells are used to test the outriggers of offshore drilling rigs. This helps to ensure that the rigs are safe to operate in high-wind and wave conditions.
  • In the construction industry, load cells are used to test the outriggers of cranes and other lifting equipment. This helps to ensure that the equipment is safe to use and that it will not overload the outriggers.
  • In civil engineering, load cells are used to test the structural integrity of bridges and other structures. This helps to ensure that the structures are safe to use and that they will not collapse underload.

Outriggers play a critical role in the safety and support of vehicles, infrastructure projects and massive structures. Interface force measurement products also play a necessary role in safeguarding outriggers and the operators. If you have an outrigging use case and are wondering which products are best suiting for your specific requirements, contact Interface Application Engineers for help.

Construction Brochure

Interface Solutions Aid Pharmaceutical Industry

Among the many highly regulated and incredibly complex industries, the medical industry is highly dependent on tools and resources that are precise and measure with high accuracy.

The medical industry is a broad, encompassing hospitals, medical professionals, payers, medical devices and pharmaceuticals. In each sector, Interface has a long history of providing precision measurement solutions for R&D, prototyping, testing, manufacturing, packaging and monitoring use.

In every use case, safety of patients and quality of products is predicated on extreme accurateness. Throughout a pharmaceutical product’s life cycle, specialized measurement equipment and sensor technologies are used by scientists, engineers, researchers, lab technicians, regulators, quality groups and manufacturers. These instruments are utilized in design and maintenance to provide unmistakable evidence of process quality and safety.

Medical and healthcare companies, including those specifically in pharmaceuticals, turn to Interface because our high accuracy force measurement solutions are designed for reliable performance test and measurement projects. The science used in the pharmaceutical industry depends on quality measurement of force and weight. Interface load cells are designed for these types of precise requirements. There is also tremendous demand for Interface’s ability to customize solutions that meet the exact measurement requirements of these sensitive applications. Visit our new Interface Pharmaceutical Industry Solutions.

Interface supports a range of pharmaceutical applications including:

  • Weighing and distributing
  • Specimen testing equipment
  • Tablet hardness testing
  • Tablet forming machine optimization
  • Capsule filling machines
  • Quality control and safety
  • Mixing
  • Packaging and filling
  • Bioreactors and fermenters

Interface force measurement solutions are used for a variety of pharma-related products and machines that help biotechnology and pharmaceutical product engineers to design, test, and manufacture their products.  When it comes to equipment used in the manufacturing of medicine, Interface products are used to optimize production and reduce waste. Our miniature load cells are often integrated into machines and equipment to provide precision measurements during operations.

Types of Interface Load Cells Used by Pharmaceutical Companies

Pharmaceutical Tablet Forming Machine Optimization

A pharmaceutical tablet producer wanted to monitor the forces applied by the tablet forming machine to understand the relationship between raw material, die set, forming force, and the motor’s cycle speed. The goal was to improve productivity and efficiency of the tablet forming process, while reducing losses such as cracked tablets or voids, by adding a dimension of feedback that could be used to assign specific press adjustment criterion for given inputs. An Interface WMC Sealed Stainless Steel Mini Load Cell (10K lbf Capacity) was mounted in the section of the downward press bar. The machine was modified to accomplish this. The load cell was then connected to a 9320 Portable Load Cell Indicator to collect the needed data. After analyzing the data, the tablet producer was able to quantify adjustment levels by monitoring which forces produced the most optimal results for a given cycle speed, die set, and raw material. Productivity and efficiency were greatly improved by the enhancement of the data feedback.

Tablet Hardness Testing for Pharmaceuticals

A pharmaceutical producer wanted to test and monitor the hardness of the pills being created in their tablet forming machine. Interface’s SML Low Height S-Type Load Cell was mounted to the hardness device inside the tablet forming machine. The SML Low Height S-Type Load Cell was then connected to the 9870 High-Speed High Performance TEDS Ready Indicator to record the force measurements. The tablet producer was able to verify and test the specific hardness needed for their tablets being produced by their tablet forming machine.

Pharmaceutical Tablet Machine Hardness Calibration

A customer wanted to regularly recalibrate tablet hardness testers. The customer needed a miniature load cell the size of a sugar cube that replaces the tablets and fits horizontally in the tablet test-box. Therefore, a special cable exit was important for the compression only calibration application. In the past, the machines had to be rebuilt for calibrations, or a complex mechanism had to be integrated to enable vertical calibration. However, Interface’s MCC Miniature Compression Load Cell measures forces on its side with a special cable exit on the flat side that attaches to the calibration indicator, such as the Interface handheld indicator and datalogger Model 9330. The MCC load-cell calibration set compared the applied forces with the hardness tester to make sure that the tablet hardness tester uses the correct force for future tablet hardness tests. The BlueDAQ software helped to log and compare the data of the MCC reference load cell. The customer successfully verified and calibrated the tablet hardness tester machine horizontally to conduct accurate hardness testing on tablets in the future. Interface’s MCC Miniature Compression Load Cell was perfect due to its small size, and convenient to measure the forces on its side.

Like medical devices, pharmaceutical machines and products must undergo a variety of mission-critical tests before they are safe for distribution to uses. Interface products are selected by the pharmaceutical industry is due to our product’s accuracy and reliability, in addition to our deep experience in supplying solutions to those in the medical business.

Pharmaceuticals_InfographicPoster

ADDITIONAL RESOURCES

Spotlighting Medical Device and Healthcare Solutions

Force Solutions for Medical Tablet Forming Machines

Interface Ensures Premium Accuracy and Reliability for Medical Applications

Interface Solutions for Medical Devices and Healthcare

Interface Solutions for Safety and Regulation Testing and Monitoring

Accuracy Matters for Weighing and Scales

 

Interface Measurement Solutions Support Smart Cities

Various Interface load cell products are used in the development of smart cities. What is a smart city? A smart city is a municipality that uses data and interconnectivity to improve sustainability and quality of life.

According to the Smart City Index of 2023, London is leading the way in the development of its smart city infrastructure. Other top contenders for the lead are Zurich, Oslo, Barcelona, Taiwan, Singapore and New York. There are estimates are there are more than 140 smart cities today in various stages, and the number is growing. They are also showing tremendous potential to transform the way we live, consume, move and work. Most smart city infrastructure is in the early and mid-stages of development.

From research to engineering and building to maintenance, Interface force measurement solutions are being actively used in the design and testing of components used in smart city projects and systems. Force measurement data is valuable for assessing and improving the overall efficiency and sustainability of a city. Learn more by visiting our smart cities solutions here.

Load cells can be used to measure a variety of parameters in smart city design, development of infrastructure and resource management.

  • Interface LowProfile and Mini Load Cells are used to measure the force applied to a structure or object. This information can be used to assess the structural integrity of a building or bridge, or to optimize the design of a new product used in the smart city infrastructure.
  • Interface torque transducers provide data on the rotational equivalent of force. This information can be used to monitor the performance of heavy duty machinery and construction equipment, or to ensure that products are assembled correctly when building.
  • Specialized load cell technologies, like load pins, load shackles and tension links can be used to measure tension, lifting actions and weight, which is the force of gravity acting on an object. This information can be used to weigh products, to monitor the loading of transport vehicles, or to ensure materials or people are not overloading lifting equipment. Go to our Lifting Solutions and Weighing Solutions to learn more about the range of products available for smart city applications.
  • Interface wireless and Bluetooth solutions support the advance ICT (communications) requirements to easily capture accurate data without the cable. Our complete line of wireless telemetry systems and Bluetooth options support the advancements in digital optimization and feedback required for real-time data management.

By using sensors, data, and communications to improve human conditions of our cities, we can create more livable, sustainable, and equitable communities for the future.

SmartInfrastructure_InfographicPoster

How Load Cells and Sensor Devices are Used in Smart Cities

Load cells are versatile and essential tools for a diverse range of smart city applications. They provide accurate and reliable measurements that can be used to improve safety, resource management, and sustainability. Here are some examples of how force measurement solutions are used in smart cities.

  • Improving traffic management: Data acquired from load cells and sensors can be used to monitor the weight of vehicles on bridges and roads. This information can be used to optimize traffic flow and to prevent overloading of infrastructure. Force measurement data can also be used to monitor the movement of people and vehicles. This information can be used to identify potential hazards and to prevent accidents. Read: Interface Powers Smart Transportation Solutions
  • Smart waste management: Force measurement outputs can be used to monitor the weight of waste in bins. This information can be used to optimize waste collection routes and to reduce the amount of waste that is sent to landfills. Learn more in our IoT Waste Management Container Weighing App Note
  • Structural health monitoring: The data from load cells, torque transducers and multi-axis sensors can be used to monitor the structural integrity of buildings and bridges. This information can be used to identify potential problems before they lead to failure. Check out our post Interface Solutions for Structural Testing.
  • Smart farming and agriculture: Data from force measurement solutions can be used to monitor the weight of crops and livestock. This information can be used to optimize irrigation, fertilization, and harvesting. Learn more in our post Solutions to Advance Agriculture Smart Farming and Equipment.
  • Smart transportation: Creating a system of public transportation options, electric vehicles and bicycles, along with autonomous deliveries are part of smart city development projects around the world. Interface force measurement devices are critical in the development, testing and management of smart transportation.
  • Air quality systems: Force measurement data collected in real-time can be used to monitor the emission of pollutants from vehicles and factories. This information can be used to reduce pollution and improve air quality in smart cities.
  • Resource and energy management: Measurement data is important in production and optimization of critical resources like renewable energy and water, as well as for reducing waste and improving efficiency. Force measurement data can be used to monitor the energy consumption of buildings and infrastructure. This information can be used to identify opportunities for energy savings.

Smart cities use various Interface sensors technologies and other data collection instrumentation devices to track the use of resources and transportation. Overall, force measurement solutions are a valuable tool for improving the efficiency, sustainability, and safety of smart cities. As the use of sensors and other data collection devices continues to grow, we can expect to see even more innovative applications for force measurement data in smart city applications.

Keep watch of our smart city applications, as we learn more about how our products are being used in very smart and innovative use cases.

ADDITIONAL RESOURCES

Modernizing Infrastructure with Interface Sensor Technologies

The Rise in Digital Force Measurement Solutions

Why Civil Engineers Prefer Interface Products

Interface Powers Smart Transportation Solutions

Smart Pallet Animated Application Note

Making Products Smarter with Interface OEM Solutions

Solutions to Advance Agriculture Smart Farming and Equipment

Interface Solutions for Heavy Equipment

Vertical Farming for Sustainable Food Production on Earth and Beyond

Innovative Interface Lifting Solutions