Posts

Interface and Infrastructure Markets Form a Perfect Partnership

Infrastructure projects are growing, as investment continues to climb for projects related to rebuilding, renewing and innovating applications in this sector. These global investments come from public and private organizations as demands to address roads, bridges, water supplies, transportation, energy systems, and broadband requirements for the 21st century grow.

Experts who focus on infrastructure acknowledge these are means for civil existence and prosperity. Interface understands that our role in supporting the design, testing, manufacturing, constructing and maintenance required in infrastructure needs a top supplier of force measurement solutions.

Interface force measurement solutions have and are currently used around the world for infrastructure projects including bridges, generators, dams, waterways, transportation structures, construction projects, cranes and lifting apparatus, and heavy machinery.

Interface supplies durable and accurate sensor technologies used in testing equipment, technology, vehicles, tools and machines used in all types of infrastructure subsectors. We also find our products often designed into structures for regulatory and safety monitoring, whether that be to maintain tunnels or support wind generating farms.

Interface details force measurement products we commonly provide to those working and supporting the infrastructure sector in our Infrastructure Solutions Brochure. You can see some of these products in our Infrastructure Solutions video.

Interface load cells, load pins, instrumentation, multi-axis sensors, and torque transducers are top choices for those engaged in infrastructure projects and testing. Sensors are commonly used in measuring the related hardware used for industry products and structures. The types of infrastructure projects that Interface has supplied measurement solutions for includes transportation systems, communication structures, water and electrical facilities, and numerous inventions that are used to build, support, and maintain them, as outlined in Infrastructure Projects Rely on Interface.

Our expert engineers can help design customizable force measurement solutions for all types of applications that require sensors for OEMs and to be used in the actual structure for continuous measuring and monitoring. We have engineered sensor products used for civil engineering designs and infrastructures used in structural monitoring, vibrational monitoring, load bearing testing, tunnels, bridges, and road construction. The range of projects are broad, so we are highlighting a few below that highlight our capabilities when accuracy, quality and reliability matter in design, testing, construction, and assessing current and limitations for safety requirements.

Hydraulic Jacking System Testing

An equipment manufacturer needed to test their hydraulic jacking system’s ability to lift heavy loads and objects, like a bridge during construction. They wanted to monitor the forces being applied to ensure the hydraulic jack is not only safe to use, but works well enough to avoid any potential structural issues. Interface’s 1200 Standard High Capacity Load Cell can be attached in between the hydraulic jack and a heavy load. The load cell measures the forces of the hydraulic jack as it lifts the load cell located in between the jack and the object. With the 9890 Strain Gage, Load Cell, & mV/V Indicator, the customer is also able to see the results in real-time. Read more here.

Aerial Lift Overload Control

A manufacturing company for aerial lifts wanted to test its self-propelled boom lift to ensure it can operate at heavy capacities when in use, and at different angles. They also wanted to prevent any accidents in case of a lifting overload, for the safety of any working individual who uses it. Interface’s solution was to attach the 3A160 3-Axis Force Load Cell to the bottom of the bucket of the boom lift. The multi-axis sensor provides high accuracy results, which were displayed using the 920i Programmable Weight Indicator and Controller in real time. The manufacturing company tested their aerial boom lifts and determined it was safely operable when maximum capacities has been reached in use. Read more here.

Truck Weighbridge Monitoring

A transportation company needed to record the weight or loads being carried by their vehicles. They would like a wireless weighing bridge that is able to transmit, log, and display the results in real time. Interface suggests installing multiple WTS 1200 LowProfile™ Load Cells under a weighbridge. When a truck drives over it, the load cells will transmit the force results wirelessly to the WTS-BS-4 Industrial Base Station connected to the customer’s PC with provided Log100 software. The WTS-LD2 Wireless Large LED Display can also display the weight inside for the driver to see in real time. The customer was able to measure, log, and graph the different loads their trucks carried wirelessly onto the weighbridge with success, providing for safe passage across transportation ways. Read more here.

Hydropower Turbine Generator Monitoring

A customer wanted to monitor and detect any turbine generator faults in their hydroelectric power plant located on a river. Interface’s solution was to use the T2 Ultra Precision Shaft Style Rotary Torque Transducer and attach it to the turbine generator with Interface’s Shaft Style Torque Transducer Couplings. When water from the river pushes through the penstock to the outflow, it moves the turbine blades, creating electricity through the generator shaft. Torsion measurements can be graphed and logged with the 9850 Torque Transducer and Load Cell Indicator catching any unusual fluctuations and vibrations. Using this solution, the customer was able to monitor, graph, and log the torque measurement results of the turbine generator. Read more here.

Bridge Seismic Force Monitoring

A customer wanted to monitor seismic activity that occurs to a bridge by using force sensors and then continuously monitoring bridge forces before, during and after earthquakes occur. The customer also preferred a wireless solution so they would not need to run long cables on the bridge. Using Interface’s LP Load Pin custom made to fit their needs along Interface’s WTS Wireless Telemetry System for continuous force monitoring the designed solution was able to take place without long cables. The solution allowed the customer to monitor continuous loads, log information to the cloud and review information. Read more here.

Interface’s work with all facets of the infrastructure industry spans far and wide. Interface is a supplier of choice and key partner for providing reliable sensors and instrumentation solutions used in testing and monitoring of both the infrastructure and the equipment used to upgrade and refine it.

ADDITIONAL RESOURCES

Infrastructure Industry Relies on Interface Force Measurement

Infrastructure Projects Rely on Interface

Interface Solutions Designed for Infrastructure Challenges

Monitoring the Seismic Force of a Suspension Bridge

 

 

 

Infrastructure Industry Relies on Interface Force Measurement

The safety and stability of the structures and facilities that are used by towns, cities, organizations, governments and countries are essential to their successful operations. In the design and construction, it is a requirement to ensure that every component measures up to the standards that protect those that depend on their functionality.

Test and measurement are critical in every stage of any infrastructure project. Civil engineers, project managers, institutions, construction companies utilize sensor technologies today. This includes load cells, torque transducers, instrumentation, multi-axis sensors, load pins and load shackles and wireless technologies.  The infrastructure industry has long depended on Interface’s durable and reliable products for all types of projects, from early conception through maintenance.

Where are Interface infrastructure industry measurement solutions used today? Interface has been a supplier to entities around the world that are involved in every type of infrastructure projects including complex transportation systems, versatile communication structures that cross all types of terrain, water and electrical power sites, as well as new inventions that are used to build, support, and maintain various structures around the world.

Infrastructure Case Study

In our recent infrastructure case study, Infrastructure Projects Rely on Interface, we detail different use cases in the multi-trillion dollar global industry. There is no shortage of opportunity to invest in infrastructure and ensuring that every project meets the rigid regulatory requirements means a test plan is essential throughout the entire process.  Every test plan needs accurate and quality measurement solutions that are capable of structural monitoring, load bearing testing, vibrational monitoring, construction equipment and material testing use cases.

Here are just a few of the project types that depend on Interface solutions:

  • Roads, Streets and Highways
  • Waste Management
  • Mass Transportation Vehicles
  • Energy and Power Generation
  • Bridges and Tunnels
  • Railways
  • Airport Structures and People Movers
  • Dams and Water Supply
  • Telecommunications and Satellite

Beyond construction, Interface is supplying equipment manufacturers for use in construction and infrastructure maintenance projects. In the application note, Aerial Lift Overload Control, we provided a top manufacturing company for aerial lifts precision tools to test its self-propelled boom lift. The solution needed to ensure the lift could operate at heavy capacities when in use, and at different angles. The lift required a design that was proven to prevent any accidents in case of a lifting overload, for the safety of anyone working on or near the equipment. Interface proposed used our three multi-axis sensor model 3A160 3-Axis Force Load Cell to the bottom of the bucket of the boom lift. The 3A160 3-Axis Force Load Cell provides high accuracy and the measurements could be displayed using the 920i Programmable Weight Indicator and Controller in real time. The company was able to use these products to test their aerial boom lifts and determined it was safely operable at maximum capacities

You can get more insights on how we play a pivotal role in the infrastructure industry in these application notes and references:

Concrete Dam Flood Monitoring App Note

Hydropower Turbine Generator Monitoring App Note

Interface Solutions for Waste Management Applications

Force Measurement Solutions for the Construction Industry

Interface Crane Use Cases and Application Notes

Seismic Application for Interface Load Pins

Interface Solutions Designed for Infrastructure Challenges

Interface Infrastructure Case Study

Interface Solutions Designed for Infrastructure Challenges

All infrastructure, big and small, needs to be designed with safety and durability in mind. Take for instance the massive amount of design, engineering and quality control that goes into a suspension bridge requires testing before and after it’s built. Not only does it need to be constructed with supreme accuracy, but it also needs to be tested and monitored constantly to ensure it’s safe for use, especially as often infrastructure projects are exposed to extreme elements.

Among the various tools and technologies used to build and test infrastructure designs, sensors play a substantial role. Interface has served infrastructure industry suppliers and customers since our founding more than 50 years ago. Force and torque measurement products including Interface load cells, torque transducers, load pins, load shackles, tension links and instrumentation are involved in a wide variety of infrastructure applications including construction and maintenance of bridges, roads, transportation systems, communication structures, water and electrical facilities, and numerous inventions that are used to build, test, support, maintain and monitor performance of these critical projects around the world.

Accuracy and reliability of Interface solutions are a key factor in measuring structures and components that are exposed to hazardous or weather-related conditions, heavy loads and constant use. Our precision load cells, rugged load pins, wireless and digital instrumentation, along with multi-axis sensors and robust torque transducers are a top choice for those engaged in infrastructure engineering projects and testing.

A few examples of how Interface products have been used on infrastructure applications over the years are noted below. The following examples are also found with many others here /solutions/infrastructure/. 

Concrete Dam Flood Monitoring

A customer was looking for a solution to monitor a concrete dam and be notified when it reached high flooding levels. Interface provided WMC Miniature Sealed Stainless Steel Load Cells with multiple WTS-AM-1E Wireless Acquisition Modules connected to the load cells. This solution proved to be small enough and perfect for measuring compression and tension on the dam. The WMC Modules are installed on the arch of the dame and transmit data and notify the customer through Interface’s Wireless Telemetry System when flooding occurs. Check out the application here.

Hydropower Turbine Generator Monitoring

When a customer wants to monitor and detect turbine generator faults in their hydroelectric power plant located on a river, Interface can provide a T2 Ultra Precision Shaft Style Rotary Torque Transducer and attach it to the turbine generator with Interface’s Shaft Style Torque Transducer Couplings. When water from the river pushes through the penstock to the outflow, it moves the turbine blades, creating electricity through the generator shaft. Torsion measurements can be graphed and logged with the 9850 Torque Transducer and Load Cell Indicator catching any unusual fluctuations and vibrations. Using this solution, the customer can monitor, graph, and log the torque measurement results of the turbine generator. Learn more here.

Bridge Seismic Force Monitoring Solution

A customer wanted to monitor seismic activity that occurs to a bridge using force sensors to continuously monitor activity before, during and after earthquakes. They also wanted a wireless solution to avoid running long cables on the bridge. Interface provided an LP Load Pin custom made to fit the need. The load pin was used in conjunction with our WTS Wireless Telemetry System to monitor the force on the load without cables. Using this solution, the customer was able to monitor continuously, log results to the cloud and review the data. Read more here.

This is just a brief example of the applications throughout the infrastructure industry that Interface supports. A long list of additional applications that use Interface products includes:

Highways and Bridge Construction and Monitoring

Concrete Dam Measurement and Flood Monitoring

Transportation Heavy Equipment Testing

People Movers for Airports

Train Brakes Testing

Power Generation Equipment

Geotechnical Monitoring

Road Load Tests

Weight Bridges and Transportation Scales

Truck and Aircraft Weighing

Housing Mainframe and Skyscraper Construction Monitoring

Building Foundation Capacity Measurement

Bridge Seismic Force Monitoring

In-Motion Rail Weighing

Cranes and Heavy Object Lifting

Structural Testing and Telecommunication Structures

Conveyor Belts

To learn more about Interface and our solutions for Infrastructure and other key industries, please visit our solutions page at www.interfaceforce.com/solutions/.

Testing the Reins

Think of nearly any piece of hardware, especially those with moving components, and chances are a force measurement device was used in its development and testing.

Interface supplies load cells, torque transducers, load pins, tension links, and data acquisition devices utilized in testing hardware components for automobiles, drones, rocket engines, medical devices, bridges, watercraft, and everything in-between including for horses.

The applications for our products grow broader every year, so much so that we are rarely surprised with the ingenuity and innovation abound. There are no limitations, including in the equipment utilized in core agriculture markets, which comprises of products used in the equine industry.

In one customer’s project, were able to provide valuable sensor technology for a test and measurement project for products used with horses. Included below is a brief preview of the two new applications notes we developed based on the specific requirements for this equine industry design.

A customer came to Interface needing to quantify the poll pressure on the bridle of a horse. We created a solution using both a Wireless Telemetry System (WTS) and a Bluetooth® Telemetry System (BTS) Equine Bridle Tension System, with two SMA Miniature S-Type Load Cells in both the line of the reins and that of the cheekpiece on one side of the horse to study the dynamic response of the cheekpiece tension to rein tension in the ridden horse. Utilizing the WTS or BTS, the valuable data can be displayed and recorded in real time.

Within the real experimental system these sensors were used to test the tension resulting from the rider’s hands, the horse’s mouth and the bit, the elasticity of the equine mouth provides a “floating” fulcrum and a potential source of time-lag and decoherence between the dynamic rein and cheekpiece tensions. Because the cheekpiece is directly attached to the headpiece, we we’re able to assume that forces seen in the cheekpiece are those that are applied to the poll of the horse.

Want to learn more about this agriculture industry solution?  Be sure to read the Equine Industry WTS and BTS Bridle Tension System application notes.

How to Choose the Right Load Cell

Load cells are used to test and confirm the design of hardware, components, and fixtures used across industries and by consumers. From the structural integrity of an airplane to the sensitivity of a smartphone touchscreen, there’s a load cell available to measure force. In fact, here at Interface we have over tens of thousands of products used in force measurement, for all types of different applications.

How do engineers and product designers go about choosing the right load cell for a specific application or testing project?

Have no fear, Interface has put together a short guide on choosing the load cell that is right for you. This blog will cover the basic questions to answer when selecting a product, as well the most important factors affecting load cell choice.  Be sure to watch the online video, Load Cell Basics, that highlights key factors of consideration when choosing the right load cell for additional insights.

The basic questions you need to consider when selecting a load cell include:

  • What are the expected loads? What is the minimum and maximum load you’ll be measuring?
  • Is there any potential for higher peak loads than what you intend to measure? What are these expected peak forces?
  • Is it tension, compression, or both?
  • Will there be any off-axis loads? If so, what is their geometry? Do you want to measure them too?
  • Will it be a static, dynamic or fatigue measurement?
  • What is the environment in which you’ll be conducting your test? Will the load cell need to be sealed?
  • How accurate do your measurements need to be? Do they need to be at the highest accuracy of ±0.02-0.05% or within ±0.5-1%?
  • What additional features, accessories and instrumentation does your application require to complete a test?
  • Do you need standard electrical connectors or customized options? What about additional bridges or amplifiers?
  • How are you planning to collect and analyze the data output from the load cell?

Next, these are the most important factors affecting accuracy, which will have a heavy influence over the load cell you choose. It’s important to understand how your application and the load cell will be affected by each of the factors, which include:

  • Mechanical – Dimensions and Mounting
  • Electrical – Output and Excitation
  • Environmental – Temperature and Moisture

One of the most important factors in choosing the right load cell is understanding how it will be mounted for testing or as a component within a design. There are a wide variety of mounting types including threaded connections, inline, through hole or even adhesive. Understanding the mounting type that suits your application is critical to getting the correct data because a poorly mounted load cell will distort the results and can damage the load cell.

The mounting process also requires you to understand which direction the load is coming from, in addition to any extraneous loads that may be present. The load cell mating surface is also an important factor. For example, when using our LowProfile® load cells without a pre-installed base, the best practice is to ensure that the mating surface is clean and flat to within a 0.0002-inch total indicator reading and is of suitable material, thickness, and hardness (Rc 30 or higher). Also make sure that bolts are torqued to the recommended level.

If you’re conducting a fatigue measurement, it’s also important to address the frequency and magnitude of load cycles with your load cell provider. Factors to address include single mode versus reverse cycles, deflection versus output resolution, and material types. Interface offers a wide variety of fatigue-rated load cells that are perfect for these types of applications.

Another consideration in choosing the right load cell is the electrical signal. Load cells work by converting force into an electrical signal. Therefore, it’s important to understand the electrical output type necessary for your application, which could include millivolt, voltage, current or digital output. You can find the excitation voltage data on our website for each of our load cells. Additional considerations include noise immunity, cable length and proper grounding.

The environment is also a critical factor in ensuring accurate performance of your load cell. Interface provides load cells in a variety of material types including aluminum, steel, and stainless steel. Each material has a variety of properties that make them more suitable for different environments. For a more in-depth perspective on the different strengths and weaknesses of materials, please read our blog titled, Considerations for Steel, Stainless Steel and Aluminum Load Cells. For applications where load cells need to be submerged in liquid or enter an explosive environment, we also have a variety of harsh environment and IP rated load cells, in addition to load cells suitable for high humidity or splash resistance. Learn more about our intrinsically safe load cells here.

Learn more about choosing the right load cell in these online resources:

WATCH: Load Cell Basics with Keith Skidmore

WATCH: How to Choose a Load Cell with Design Engineer Carlos Salamanca

READ: Load Cell Field Guide

VISIT: Interface Technical Library

To learn more about choosing the right load cell for any application, connect with our applications engineers about the force measurement needs for your next project at 480-948-5555.