Posts

Making Products Smarter with Interface OEM Solutions

Products need to be smart in today’s world. Whether it is consumer or commercial, people expect added functionality in everything. From coffeemakers and exercise equipment to large industrial machinery used in massive infrastructure projects, sensors play a crucial part in making these products smarter.

Sensor technologies allow smart products to collect and manage important user data, monitor products usage for durability and safety, enable automation, and personalize user applications and experiences. Original equipment manufacturers of these smart products and their components are eager to find quality sensors that provide robust features ideal for modern day user requirements.

Force sensors are key to making products smarter, performing with greater accuracy, and enhancing overall quality. Force sensors have the unique ability to perform multiple tasks at a time, including real-time monitoring and executing automation features with precision.

Interface partners with engineers and product designers to offer OEM solutions intended to be directly implanted into a product, or retroactively installed to make products smarter. With our unique assortment of custom and off-the-shelf load cells, torque transducers and instrumentation options, including wireless components, our force sensors are created to help enhance the smart products of today and tomorrow.

Interface’s white paper Turning an Active Component Into a Sensor details of how Interface works with OEMs to design sensors into products or retrofit them into existing products. To further illustrate the range of options available with Interface’s sensors and instrumentation, we have detailed additional application notes to give you a broader perspective of utilizing force sensors for OEM solutions.

Robotic Surgery Arm

A biomechanical medical company wanted to gather force, torque, and tactile feedback from their robotic arm during invasive surgery. The surgeon’s movements are mirrored by the robotic arm during surgery, and it is essential all haptic force feedback is measured to ensure safety during invasive surgery. Several of Interface’s force and torque measurement products were used in this OEM robotic arm. These include the ConvexBT Load Button Load Cell, SMTM Micro S-Type Load Cell, and the MRTP Miniature Overload Protected Flange Style Reaction Torque Transducer. Force results were collected when connected to the 9330 Battery Powered High Speed Data Logging Indicator and viewed via a laptop. Each one of Interface’s load cells and torque transducers played a part in the ensuring the safety and functionality of robotic arms during invasive surgery. The force feedback that was measured from the robotic arm ensured that the robot used the perfect amount of force when using surgical tools that create incisions during surgeries. It also measured the torque being produced, ensuring the robot arm was moving smoothly and at the right speeds.

PRV (Pressure Relief Valve) System

A manufacturer wanted to conduct a PRV test (pressure relief valve test) on their valve installation and monitory equipment when under a full pressure load. The purpose was to ensure safety and reliability for customers while the product was in use. They also wanted to be able to record and graph the results. As part of an OEM system that is used by their customers, Interface suggested installing the 1200 Standard Precision LowProfile™ Load Cell to a test frame on top of the pressure relief valve. As pressure is increased onto the spring in the valve, it pushes forces onto the load cell. Results can be recorded using the 9330 Battery Powered High Speed Data Logging Indicator. Using this solution, the manufacturer’s customers are able to successfully determine the exact amount of force it requires for their valve to release when under a pressure load, increasing longevity and safety of the product overall.

Bolt Tension Monitoring

A customer wanted to monitor the tension of the bolts used in installation of industrial pipes. Interface suggested installing multiple LWCF Clamping Force Load Cells, each connected to WTS-AM-1E Wireless Strain Bridge Transmitter Modules. The load cells are installed under the tightened bolts on the pipes as part of the technology solution to measure forces. The load cells measure the compression forces from the bolts, and the real-time results are transmitted wirelessly from the WTS-AM-1E’s to the WTS-BS-6 Wireless Telemetry Dongle Base Station. Real-time results from the LWCF’s are displayed using provided Log100 Software. Interface’s load cell monitoring system successfully monitors the compression forces of the bolts in real-time, which is an important installation solution for the OEM.

Smarter products, connected factories, and higher efficiency are all made possible through sensors. Interface force sensors are the leading solutions for enabling automation, real-time monitoring and accurate data collection for OEM applications.

Interface force sensors make consumer and commercial products smarter. Learn why OEMs choose Interface to activate products with sensor technologies and more about Interface’s capabilities and solutions for OEMs here.

ADDITIONAL RESOURCES

Interface OEM Solutions Process

OEM: Candy Stamp Force Testing

OEM: Medical Bag Weighing

OEM: Prosthetic Foot Performance

OEM: Snack Weighing and Packaging Machine

OEM: Tablet Forming Machine Optimization

OEM: Industrial Robotic Arm

OEM: Chemical Reaction-Mixing

Contact our OEM specialists and let us help you to make your products smarter and more equipped to meet the demands of tech-savvy users.

Interface’s Steering Role in All Types of Transportation

Interface serves a wide variety of industries that design and manufacture movers of people and objects. The transportation sector consists of companies that assist in the movement people or goods, as well as supporting infrastructure. Whether it is automobiles or planes, trains or helicopters, spacecraft or water vessels, Interface provides solutions to help test and measure force, weight, torque, lift and more.

The safety, quality and reliability of the overall transportation industry are all important considerations in design, build and performance. Human safety being the most critical requirement of any transport vehicle or structure.

This means that stringent testing is necessary to confirm the design of every part and system on a vehicle. Force measurement sensors can used to test a wide variety of factors on every type of invention that moves or transports a person or thing. From the torque of an electrical vehicle engine to the weight distribution of an aircraft, these types of tests help to refine the designs of components, vessels, and vehicles, confirming safety and dependability.

All Interface product categories have a role in the testing of all these transportation entities.  Many of our sensor technologies are also ideal for performance monitoring and integration into product designs, whether it’s for ongoing measurement of weighing ship cargo with load pins, load shackles and tension links or using our torque transducers for engine testing on e-bikes, automobiles, trucks, buses, and other transport vehicles.  If it moves, it needs to be measured. Our force and torque solutions are ideal for every segment of this market sector.

Let’s take a quick tour of a few application examples that demonstrate the different products we provide that are helping get people and objects safely moving down the road, on the rails, in the air and even into space.

Wind Tunnel Testing

A major aerospace company was developing a new airplane and needed to test their scaled model for aerodynamics in a wind tunnel, by measuring loads created by lift and drag. Interface offered a Model 6A154 6-Axis Load Cell which was mounted in the floor of the wind tunnel and connected to the scaled model by a stalk. A Model BX8-AS was then connected to the sensor to collect data. The wind tunnel blew air over the scaled model creating lift and drag, which was measured and compared to the theoretical airplane models. Software in the PC converted raw data signals to actual force and torque values at the stalk. Using this solution, the company was able to analyze the collect data and made the necessary adjustments in their design to improve the aerodynamics of their theoretical airplane models. Read more.

Garbage Truck On-Board Weighing

A garbage disposal company wanted to test the load capacity of their garbage truck bins so they know when it reached maximum capacity. Interface’s solution was to customize and install 4 SSB Sealed Beam Load Cells under the garbage box body, on either side. When trash continues to be piled inside the box body, it will push more force down onto the SSB Sealed Beam Load Cells. When maximum load capacity has been reached, the results can be reviewed and displayed when connected to the 482 Battery Powered Bidirectional Weight Indicator in real time. With this system, the customer was able to test the maximum load capacity of the garbage bin attached to the truck, so they know when to empty the truck’s garbage at the transfer station. Read more.

Engine Head Bolt Tightening

 

 

 

 

 

An industrial automation company was building an automated assembly machine for an auto manufactur­ing plant. They needed to tighten all head bolts on an engine on their assembly line to a specific torque value. Having the head bolts precisely and consistently tightened to the engine block is critical to the operation of the engine. Several Interface Model T33 Spindle Torque Transducers were installed in their new machine to control torque, angle, and ensure the head bolt was properly tight­ened. The square drive of the T33 allowed the customer to fix their tool directly to the end of the torque sensor, streamlining the installation. When the machine comes down and screws on the engine head bolts the torque and angle profile are sent to the customer’s machine controller. Based on the feedback received by the machine controller, the automation will pass the engine to the next step in the assembly line or fail and have the engine evaluated further. This allowed the customer to ensure the head bolts were correctly installed according to manufacturer specifications, producing an engine that meets performance and reliability expectations of the auto manufacturing plant. Read more.

Bicycle Load Testing

A mountain bike manufacturing company wanted a system that measures their bike frames load capacities and vibrations on the frame. They also want to ensure the bike’s high quality and frame load durability during this final step of the product testing process. Interface suggested installing Model SSMF Fatigue Rated S-Type Load Cell, connected to the WTS-AM-1E Wireless Strain Bridge, between the mountain bike’s seat and the bike frame. This will measure the vibrations and load forces applied onto the bike frame. When a heavy load is added to the seat, the SSMF Fatigue Rated S-Type Load Cell measures the vibrations and load forces applied to the bike to indicate any stress points through a number of cycles. The results will be captured by the WTS-AM-1E and transmitted to the customer’s PC using the WTS-BS-6 Wireless Telemetry Dongle Base Station. This solution helped the mountain bike manufacturing company gather highly accurate data to determine that their bikes met performance standards through this final testing cycle. Read more.

These are just a brief example of the work we do in transportation. Interface systems have been involved in projects with boats, races cars, construction vehicles and even rocket ships. Manufacturers turn to Interface because of our track record for accuracy and the transportation industry relies on this data to keep its customers safe.

For additional insights and ideas related to transportation solutions, here are a few more posts to read.

Interface Plays a Role in Testing Bicycles

Evolving Urban Mobility Sector for Test and Measurement

Interface’s Crucial Role in Vehicle and Urban Mobility Markets

Measurement Technologies for Boats, Yachts and Watercraft

Interface and The Race to Space

Driving Force in Automotive Applications

To review more application notes pertaining to transportation or to talk to an application engineer about your next project, contact us or call us at 480-948-5555.

Force Measurement Solutions for Bolt and Screw Fastening

Among the many applications of force measurement devices, one that appears to be a simple application can have a big impact on worker safety, productivity, waste reduction, assembly and product performance. In this new animated application note highlight, we take a look at the tools used for bolt fastening measurement.

Bolts and screws are used to secure different pieces or components together for nearly every product imaginable, especially when it comes to large machinery and even automobiles. The success of these products and the manufacturing of these components requires a strict level of detail that goes into the tightness of a bolt. It’s not like your typical “do it yourself” furniture where you just tighten a screw or bolt until you can’t anymore. The precision needed for certain objects to be tightened to the exact measurement is mandatory.

Interface provides measurement solutions for all types of industrial automation and toolset testing used in thousands of applications that ultimately are utilized in the building of products. In the example below, we provided devices that are used to determine the exact bolt force and tightness necessary. The goal of measuring the tightness is to avoid under or overtightening. As you can imagine, under tightening can cause components to come apart. However, over tightness can also cause significant damage to the pieces being bolted together.

Bolt Fastening Application

To show the process of measuring bolt tightness, check out this latest use case video demonstration.

For this bolt fastening application, the customer used an Interface Model LWCF Load Washer along with an Interface Model INF-USB3 Single Channel PC Interface Module to monitor force being applied during bolt tightening. The data transferred from the bolt clamping force load cell load washer with a thru-hole, to the instrumentation is displayed, logged and graphed directly onto a computer for analysis and performance testing.

This is a basic example of the test and measurement process, however, Interface also contributed to a number of real-world projects and created applications notes to provide an illustration. One of our favorites is when an industrial automation company was building an automated assembly machine for an automotive manufactur­ing plant.

The product engineers and testing team needed to tighten all of the head bolts on an engine on their assembly line to a specific torque value. Having the head bolts precisely and consistently tightened to the engine block is critical to the operation of the engine.

To measure this force, several Interface Model T33 Spindle Torque Transducers were installed in their new machine to control torque and angle and ensure the head bolt was properly tight­ened. The square drive of the T33 allowed the customer to fix their tool directly to the end of the torque sensor, streamlining the installation.

Using this solution, the head bolts were correctly installed according to manufacturer specifications, producing an engine that meets performance and reliability expectations of the auto manufacturing plant.

Here are additional solutions that showcase how Interface load cells, torque transducers, instrumentation and custom solutions are used for various tools and manufacturing processes across various industries.

Aircraft Screwdriver Fastening Control

Fastening Work Bench

Bolt Fastening Force and Torque

Interface Solutions for Robotics and Industrial Automation

Contact us to learn more how we can help you ensure the right fastening and machine control for your next projects.