Posts

Fitness Equipment Makers Require Extreme Accuracy

Interface’s specialty is building solutions for the testing and monitoring of parts and total systems that move and create force. One of the industries where this is critical is the fitness industry. Equipment and fitness machines, whether designed for in-home use or in professional athlete training facilities, needs to perform safely and accurately.

Utilizing Interface sensors and instrumentation, the performance of different fitness apparatus is measured in various testing protocols throughout the product’s lifecycle. Rigorous tests are performed during each phase: R&D, design, manufacturing, and after-market use. These tests look at performance data, as well as measure reliability, durability, fatigue, and safety of the equipment. Manufacturers of fitness devices also utilize feedback from sensors to monitor user experiences in real-time. This means they need accurate data for all types of user profiles, strength variability, weights, and experience levels.

The global fitness market also needs a testing solutions partner as the industry is looking at solid growth over the next few years. In fact, Allied Market Research predicts that the fitness market will reach $14.8 billion by 2028, registering a CAGR of 3.3% year-over-year during this assessment period.

Interface recently captured a series of use cases for how our test and measurement products are used in the fitness industry for testing and in OEM applications. You can read the entire case study here: Interface Measures Fitness Equipment with Extreme Accuracy.

Addressing Challenges in Making Fitness Equipment

In the development of fitness equipment, a lot goes into the manufacturing and engineering process to ensure equipment is safe and reliable for users. Taking a treadmill as an example, the wheels that move the running surfaces must withstand varying speeds and levels of force over extended periods of time. This requires torque and stress testing. Additionally, the sensors on the handrails that send out a pulse to measure the user’s heart rate needs to provide accurate data in health and wellness uses. Manufacturers are looking to install sensors into their equipment that measure various forces and provide fitness data to the user, or data that doctors can use to monitor patients while working out. These makers and product designers for fitness equipment need sensors that can be easily designed into the product or customized to fit into existing products to enable smart functionality and IoT capabilities.

Interface Fitness Equipment Test & Measurement Solutions

Interface provides a variety of measurement solutions used by manufacturers and testing engineers in the fitness equipment sector. This includes our load cells, torque transducers, multi-axis sensors and miniature load cells, along with the popular wireless products and instrumentation. Our products have been used across a wide variety of fitness applications, including elliptical, leg press, rowing machines, bicycles both mobile and stationary, and physical training and therapy equipment. Interface sensor technologies are preferred by product design engineers in this field because of the precision, accuracy, range of options, and quality.

The following application notes examples provide an overview of how Interface serves the fitness industry:

Designing Fitness Equipment and Machines

A fitness machine manufacturer wanted multiple load measurement systems for their different fitness machines such as the elliptical, leg press, rowing machine, and the cable machines used in gyms of all types. The goal of designing sensors into the equipment is to ensure the machines are functioning properly to prevent injuries. The sensors can also be used for trainers who want to conduct strength and endurance tests. Interface provided a combination of products including the WMCFP Overload Protected Sealed Stainless Steel Miniature Load CellSSB Sealed Beam Load Cells, and AT103 Axial Torsion Force and Torque Transducers. Paired with Interface’s proper instrumentation, the forces can be measured, graphed, and displayed during the testing stage. Interface’s products all effectively measured forces needed for those working out or undergoing athletic training regiments. Not only did it ensure the designed machines were working properly, but it also helped those using them to track their endurance performance and consider future design enhancements based on consumer use. Read more about this use case.

 

 

Treadmill Rehabilitation

A medical device maker wanted a force measurement system for their experimental rehabilitation treadmill for patients that have pelvic mobility difficulties. For example, patients who have had strokes tend to have difficulty walking. Their goal was to measure the forces applied on the pelvis when the patient is walking on the treadmill and catch any pelvic deviations. The treadmill had a special harness with two actuators on either side of the patient when in use. Interface suggested installing two WMC Sealed Stainless Steel Miniature Load Cells to the actuators, which will measure the forces applied on the pelvis of the patient. Force results would be measured using the SI-USB4 4-Channel USB Interface Module, which could also be graphed and logged on the customer’s computer with supplied VS3 software. Using this solution, the medical company was able to catch different pelvic deviations in their experimental rehabilitation treadmill using Interface’s products. Learn more here.

Bike Power Pedals

A bike manufacturer wanted to evaluate the functionality of their power pedals. They needed a reliable system to measure how much force the cyclist pushes down onto the bike pedals, and they preferred a wireless system that can be paired with their computer to review data results. Interface suggested four Model SML Low Height S-Type Load Cells installed within the bike’s pedals. The four SMLs are paired with two WTS-AM-4 Wireless Strain Bridge Transmitter Modules, which will transmit the force data from the cyclist to the WTS-BS-6 Wireless Telemetry Dongle Base Station Dongle connected to the customer’s computer. The products Interface provided allowed the bike manufacturer to measure the pedal power applied by the cyclist. Read more here.

Interface load cells, torque transducers, and data acquisition systems are ideal for many fitness applications, especially those designed for IoT connectivity. Interface offers products that measure all types of force across the necessary fitness applications. Additionally, if we don’t have a product that works for your exact challenge, our custom solutions team will work alongside your design and test engineers to create the most effective and efficient solution based on the unique specifications.

ADDITIONAL RESOURCES

Bike Frame Fatigue Testing Application Note

E-Bike Torque Measurement

Why Product Design Engineers Choose Interface

Golf Club Swing Accuracy

Golf Ball Tee

Interface’s Steering Role in All Types of Transportation

Interface serves a wide variety of industries that design and manufacture movers of people and objects. The transportation sector consists of companies that assist in the movement people or goods, as well as supporting infrastructure. Whether it is automobiles or planes, trains or helicopters, spacecraft or water vessels, Interface provides solutions to help test and measure force, weight, torque, lift and more.

The safety, quality and reliability of the overall transportation industry are all important considerations in design, build and performance. Human safety being the most critical requirement of any transport vehicle or structure.

This means that stringent testing is necessary to confirm the design of every part and system on a vehicle. Force measurement sensors can used to test a wide variety of factors on every type of invention that moves or transports a person or thing. From the torque of an electrical vehicle engine to the weight distribution of an aircraft, these types of tests help to refine the designs of components, vessels, and vehicles, confirming safety and dependability.

All Interface product categories have a role in the testing of all these transportation entities.  Many of our sensor technologies are also ideal for performance monitoring and integration into product designs, whether it’s for ongoing measurement of weighing ship cargo with load pins, load shackles and tension links or using our torque transducers for engine testing on e-bikes, automobiles, trucks, buses, and other transport vehicles.  If it moves, it needs to be measured. Our force and torque solutions are ideal for every segment of this market sector.

Let’s take a quick tour of a few application examples that demonstrate the different products we provide that are helping get people and objects safely moving down the road, on the rails, in the air and even into space.

Wind Tunnel Testing

A major aerospace company was developing a new airplane and needed to test their scaled model for aerodynamics in a wind tunnel, by measuring loads created by lift and drag. Interface offered a Model 6A154 6-Axis Load Cell which was mounted in the floor of the wind tunnel and connected to the scaled model by a stalk. A Model BX8-AS was then connected to the sensor to collect data. The wind tunnel blew air over the scaled model creating lift and drag, which was measured and compared to the theoretical airplane models. Software in the PC converted raw data signals to actual force and torque values at the stalk. Using this solution, the company was able to analyze the collect data and made the necessary adjustments in their design to improve the aerodynamics of their theoretical airplane models. Read more.

Garbage Truck On-Board Weighing

A garbage disposal company wanted to test the load capacity of their garbage truck bins so they know when it reached maximum capacity. Interface’s solution was to customize and install 4 SSB Sealed Beam Load Cells under the garbage box body, on either side. When trash continues to be piled inside the box body, it will push more force down onto the SSB Sealed Beam Load Cells. When maximum load capacity has been reached, the results can be reviewed and displayed when connected to the 482 Battery Powered Bidirectional Weight Indicator in real time. With this system, the customer was able to test the maximum load capacity of the garbage bin attached to the truck, so they know when to empty the truck’s garbage at the transfer station. Read more.

Engine Head Bolt Tightening

Enging Bolt TighteningAn industrial automation company was building an automated assembly machine for an auto manufactur­ing plant. They needed to tighten all head bolts on an engine on their assembly line to a specific torque value. Having the head bolts precisely and consistently tightened to the engine block is critical to the operation of the engine. Several Interface Model T33 Spindle Torque Transducers were installed in their new machine to control torque, angle, and ensure the head bolt was properly tight­ened. The square drive of the T33 allowed the customer to fix their tool directly to the end of the torque sensor, streamlining the installation. When the machine comes down and screws on the engine head bolts the torque and angle profile are sent to the customer’s machine controller. Based on the feedback received by the machine controller, the automation will pass the engine to the next step in the assembly line or fail and have the engine evaluated further. This allowed the customer to ensure the head bolts were correctly installed according to manufacturer specifications, producing an engine that meets performance and reliability expectations of the auto manufacturing plant. Read more.

Bicycle Load Testing

A mountain bike manufacturing company wanted a system that measures their bike frames load capacities and vibrations on the frame. They also want to ensure the bike’s high quality and frame load durability during this final step of the product testing process. Interface suggested installing Model SSMF Fatigue Rated S-Type Load Cell, connected to the WTS-AM-1E Wireless Strain Bridge, between the mountain bike’s seat and the bike frame. This will measure the vibrations and load forces applied onto the bike frame. When a heavy load is added to the seat, the SSMF Fatigue Rated S-Type Load Cell measures the vibrations and load forces applied to the bike to indicate any stress points through a number of cycles. The results will be captured by the WTS-AM-1E and transmitted to the customer’s PC using the WTS-BS-6 Wireless Telemetry Dongle Base Station. This solution helped the mountain bike manufacturing company gather highly accurate data to determine that their bikes met performance standards through this final testing cycle. Read more.

These are just a brief example of the work we do in transportation. Interface systems have been involved in projects with boats, races cars, construction vehicles and even rocket ships. Manufacturers turn to Interface because of our track record for accuracy and the transportation industry relies on this data to keep its customers safe.

For additional insights and ideas related to transportation solutions, here are a few more posts to read.

Interface Plays a Role in Testing Bicycles

Evolving Urban Mobility Sector for Test and Measurement

Interface’s Crucial Role in Vehicle and Urban Mobility Markets

Measurement Technologies for Boats, Yachts and Watercraft

Interface and The Race to Space

Driving Force in Automotive Applications

To review more application notes pertaining to transportation or to talk to an application engineer about your next project, contact us or call us at 480-948-5555.