Posts

Interface Powers Smart Transportation Solutions

Smart transportation refers to integrating advanced technologies and intelligent systems in the transportation sector, including infrastructure and vehicles, improving efficiency, safety, and sustainability.

The transportation industry is getting smarter with advancements in autonomous driving and electric vehicles, unmanned aerial vehicles, electric airborne vehicles, high-speed trains and light rails, and transportation ways. Behind these innovations are critical test and monitoring solutions that help engineers ensure absolute safety and quality during development and in use for real-time monitoring.

Interface transducers measure force, torque, or weight for testing and integration into smart transportation systems. Our load cells, torque transducers, scales, load pins, tension links, and multi-axis sensors provide vital measurement data for design, development, testing, and performance monitoring in various smart transportation applications.

A few examples of smart transportation inventions and use cases that utilize Interface advanced sensor technologies include:

  • Smart Cargo Monitoring: Load cells are installed in trucks, trailers, or shipping containers to monitor the weight and distribution of cargo. These load cells provide real-time data on the load’s weight, ensuring compliance with weight limits and preventing overloading, which can lead to safety hazards and increased fuel consumption.
  • Structural Testing of Vehicles: During physical testing, load cells and torque transducers measure forces and loads applied to vehicle structures. This includes crash tests, structural integrity evaluations, and load capacity assessments. The data obtained helps engineers analyze vehicles’ structural performance and safety characteristics, enabling improvements in design and manufacturing processes for smart transport.
  • Infrastructure Load Data Acquisition: Load cells can be employed in roads, bridges, and other transport infrastructure as part of the load data acquisition systems. These systems measure the dynamic forces and loads experienced by vehicles. By attaching load cells to strategic points on the vehicle, such as suspension components or the chassis, engineers can capture data related to acceleration, braking, cornering forces, and road-induced vibrations. This information aids in vehicle development, durability testing, and optimization of suspension and chassis designs. They also help design durable civil engineering projects and infrastructure.
  • Intelligent Weighing Systems: Load cells can be incorporated into weighing systems at weigh stations or toll booths. By measuring the weight of vehicles passing through, these systems can accurately determine toll fees, enforce weight restrictions, and gather data for traffic management and planning purposes.
  • Smart Suspension Systems: Load cells are integrated into suspension systems of vehicles, such as trucks and buses, to monitor load distribution and adjust suspension settings accordingly. This helps optimize vehicle performance, enhance stability, and improve ride comfort.
  • Load Sensing Axles: Load cells can be installed in axles to measure the weight of individuals or sets of wheels. This information is crucial for load balancing, tire pressure monitoring, and detecting potential axle overload situations.

Since the beginning of “Smart Mobility,” Interface has supplied force-sensing solutions for electric or self-driving vehicles. Specifically in automotive, Interface has developed and supplied precision force and torque test and measurement systems that meet all components’ demands for superior testing requirements. The automotive market is subjected to extremely strict regulations. Therefore, testing and measurement are critical for safety, reliability, durability, and overall smart vehicle performance.

In the context of smart rail transport and railways, force measurement is crucial in testing and evaluating rail vehicles, including locomotives, passenger trains, and freight wagons. Load cells and force sensors are utilized in numerous ways. Load cells are used in braking systems to measure the forces exerted during braking maneuvers. This allows design engineers to assess the effectiveness of automated braking systems and ensure compliance with safety standards. The same types of sensors can be used to measure the vertical, lateral, and longitudinal forces acting on the bogies (wheelsets) of rail vehicles enabling smart operating conditional adjustments.

Smart Transportation Sensors for Stopping Train Derailment

Force measurement systems can measure the contact forces between the wheels and the track. This enables the assessment of wheel-rail interaction, including wheel-rail forces, lateral forces, and rolling resistance. Such data helps optimize track design, wheel profile selection, and maintenance practices to ensure safe and efficient railway operations. Our Pillow Block Load Bearing Load Cell is a great solution for monitoring trains on a track in motion. When our PBLC1 is installed on a track, and the train runs across it, the sensor can provide a signal to a station elsewhere in the world. If any force indicators suggest that there could be a problem with the weight the train is holding or the train itself, the sensor can also trigger an automatic shutdown of the train. These sensors could prevent major damage from train derailments and other train-related incidents by detecting errors before they inflict damage. This is a critically important application as innovators begin to release high-speed trains for cross-country travel.

Smart Trucking Weighing Solution

In this use case, a smart transportation trucking company truck company needs to record the weight or loads being carried precisely. They would like a wireless weighbridge to transmit, log, and display the results in real-time. Interface suggests installing multiple WTS 1200 LowProfile™ Load Cells under a weighing bridge. When a truck drives over it, the load cells will transmit the force results wirelessly to the WTS-BS-4 Industrial Base Station connected to the customer’s PC with the provided Log100 software. The WTS-LD2 Wireless Large LED Display can also display the weight inside of the driver monitor at all times.

Smart Vehicle Crash Walls

Improving vehicle safety is smart. Interface suggests using multiple 3A400 3-Axis Force Load Cells for this use case and attaching them to the back of a cement crash wall. When connected to the BX8-HD44 Interface BlueDAQ Series Data Acquisition System, force result measurements will be recorded and displayed on a computer. The sensors measure the force of impact for all their different vehicle crash testing demonstrations, providing high-accuracy data to make the vehicles safer.

Electric Vehicle Structural Battery Testing

As electric vehicles push advancements in efficiency gains, structural battery packaging is at the forefront for optimization in smart transportation. This drives the need to validate structural battery pack design in terms of life expectancy against design targets and crash test compliance and survivability.  Interface’s solution to this challenge included the 1100 Ultra-Precision LowProfile Load Cells in line with hydraulic or electromechanical actuators in the customer’s test stand. Also utilized were 6A 6-Axis Load Cells to capture reactive forces transmitting through pack structure. Multi-axis measurement brought greater system-level insight and improved product success. The structural tests validated the battery pack’s strong structural design using this solution.

Interface solutions for smart transportation are growing alongside the pace of innovation as we work with industry demands to provide solutions for what comes next.

Read more in our case study Interface’s Crucial Role in Vehicle and Urban Mobility Markets

ADDITIONAL RESOURCES

Making Products Smarter with Interface OEM Solutions

Testing Labs Choose Interface High Accuracy Products

Modernizing Infrastructure with Interface Sensor Technologies

Interface’s Steering Role in All Types of Transportation

Interface Weighing Solutions and Complete Systems

EV Battery Testing Solutions Utilize Interface Mini Load Cells

Bridge Seismic Force Monitoring Solution App Note

IoT Drone Parcel Delivery

Testing for Commercial Drones and Parcel Delivery

 

Testing Labs Choose Interface High Accuracy Products

Specialists focused on testing applications work in a variety of testing lab environments. In each lab, technicians rely on the tools to collect and report on data that is used to make products safer, guarantee performance, ensure quality, and to meet the strict industry standards and requirements. Accuracy in testing data is dependent on the precision measurement devices and instrumentation used to capture the results.

We supply lab engineers with high-accuracy sensor technologies used to complete rigid test requirements. Interface is the top provider of test and measurement products used for structural and material testing, static and fatigue testing, torsion effects, tension tests, calibration testing, and environmental testing. Read more in Types of Force Measurement Tests 101.

Our standard high precision load cells, torque transducers, multi-axis sensors, and instrumentation are used on every continent for T&M. Based on our quality and performance, we are the chosen supplier to calibration and testing labs. We see our products used today for continuous improvement programs, advancements in smart manufacturing and new product designs.

If it must be measured, Interface has a solution. Our products are designed for small and large testing facilities, including calibration-grade load cells, load frames and test stands, along with data acquisition systems. The wide variety of our force measurement solutions designed for testing labs means we play a role in every industry that is making a physical product and the test labs that validates the products performance.

Testing Labs and Types of Testing Using Interface Solutions

General Automotive Test Labs:

  • Component and Sub-Component Level Testing
  • Suspension Testing
  • EV Battery Testing

Automotive Driveline Testing:

  • Engine Performance and Durability Tests
  • Motor Efficiency Testing
  • Power Analyzation (Electric)

Aerospace Testing:

  • Full Scale Structural Static Testing
  • Component Fatigue Test
  • High Precision Thrust Testing
  • Simulators
  • Wind Tunnel Testing

Geotechnical and Civil Testing

  • Concrete or Asphalt Core Testing
  • Soils Testing

General Structural and Component Testing

  • General Push and Pull
  • Design Proofing
  • Life Cycle Fatigue Validation

Medical Device Testing:

  • Prototyping
  • PPAP Validation and FDA Certification
  • Device Lifecycle Testing

Consumer Product Testing Labs:

  • Design Validation
  • Material Testing
  • Fatigue and Failure Tests

Interface recently highlighted testing lab applications in our Test Lab Essentials Webinar. Here you can see the lab use cases and products as they are reviewed by our applications experts.

Each of these testing types requires different force testing equipment, and our experts work directly with testing lab professionals to determine the products or systems they need for single and ongoing test requirements.

As testing technologies becomes increasingly complex, off-the-shelf products may not meet the needs of every Interface customer. We lend engineers expertise in test and measurement to support unique and custom requirements to get the right sensor, instrument, and system in place.

Since our first load cells were designed five decades ago, we have built millions upon millions of load cells and torque transducers used in testing labs around the world. Our products are built to withstand the rigor and requirements needed for high quality and reliable data collection in test and measurement. Our test customers depend on us for proving accuracy, consistency, and reliability in performance.

ADDITIONAL RESOURCES

Interface and Testing Lab Applications

Testing Lab Essentials Webinar

Engine Dynamometer App Note

Consumer Product Testing Case Study

Interface Solutions for Safety and Regulation Testing and Monitoring

Metrologists and Calibration Technicians 101

Motor Test Stand

GS-SYS04 Gold Standard® Portable E4 Machine Calibration System

Electric Vehicle Structural Battery Testing

Furniture Fatigue Cycle Testing App Note

Regular Calibration Service Maintains Load Cell Accuracy

 

Hydraulic Press Machines and Load Cells

A hydraulic press is a machine that uses a hydraulic cylinder to generate a compressive force by applying a fluid, typically oil, to a piston. The hydraulic press works on the principle of Pascal’s Law, which states that when a fluid is subjected to pressure, it transmits that pressure equally in all directions.

Load cells are commonly used in hydraulic presses to measure the force or weight of the load that is being applied to the press. Load cells are essentially transducers that convert a mechanical force into an electrical signal. Load cells play a critical role in ensuring the safety, quality, and efficiency of hydraulic press operations, as they allow operators to monitor and control the force being applied to the workpiece with a high degree of accuracy and precision.

In a hydraulic press, the load cell is typically placed between the ram of the press and the die, where it can measure the force that is being applied to the workpiece as defined in our Press Forming and Load Monitoring use case. The load cell is usually connected to a readout or display that shows the operator the amount of force being applied to the workpiece. This readout may be a simple analog or digital display, depending on the specific hydraulic press and load cell being used in the machine.

Hydraulic presses are widely used in manufacturing industries such as automotive, aerospace, construction, and consumer goods. They are used for applications such as metal forming, punching, stamping, bending, and assembly. The presses are used to produce consistent and high-quality parts in a cost-effective manner.

Popular load cells for hydraulic presses are Interface’s Rod End Load Cells. In a hydraulic press, a load is applied to a piston or ram using hydraulic pressure, and the force generated by the press is used for various forming, shaping, or compression processes. A rod end load cell is typically installed at the end of the piston or ram, where it can measure the tension or compression force being applied during the pressing operation. The data acquired from the rod end load cell can be used for a variety of purposes, such as monitoring the force applied to the press to ensure that it is within the desired range, controlling the press operation, or capturing data for quality control or process optimization purposes. Rod end load cells provide accurate and reliable force measurement in hydraulic presses.

Interface Rod End Load Cell Models:

Load cells used for hydraulic presses typically have a high accuracy and sensitivity, as even small variations in the applied force can have a significant impact on the quality and consistency of the resulting workpiece. They are also designed to withstand the high forces and pressures that are typically involved in hydraulic press operations. There are numerous applications and use cases for hydraulic press testing, including:

Automotive and Aerospace Manufacturing: Hydraulic presses are used extensively in the manufacturing of automotive and aerospace components, where they are used to form and assemble various parts. Testing the press is important to ensure that it can handle the high forces and pressures involved in these applications.

Material Testing: Hydraulic presses are commonly used in material testing applications to test the strength and durability of various materials such as metals, plastics, and composites. The press can apply a controlled and measured amount of force to the material being tested, allowing for accurate and repeatable testing results.

Metal Forming: Hydraulic presses are often used in metal forming applications such as stamping, punching, and bending. It is important to test the press to ensure that it can apply the required force and that the resulting parts meet the necessary specifications. Read more in our Metal Press Cutting Machine application note.

Construction: Hydraulic presses are used in the construction industry for applications such as concrete forming and brick laying. The presses are used to apply a controlled amount of force to the concrete or bricks, ensuring that they are formed to the correct shape and size.

Recycling: Hydraulic presses are used in the recycling industry to compact waste materials such as cardboard, plastic, and metal. The presses are used to create dense bales of these materials that can be more easily transported and recycled.

Rubber and Plastic Molding: Hydraulic presses are also used in rubber and plastic molding applications, where they are used to form complex shapes and designs. Testing the press is necessary to ensure that it can apply the required force and that the resulting parts meet the necessary specifications.

Hydraulic presses are used in a wide range of industries and applications where a controlled and precise amount of force is required. They are used to produce high-quality parts and products in a cost-effective manner, while also ensuring safety and efficiency in the production process.

ADDITIONAL RESOURCES

Metal Bending Force

Press Forming and Load Monitoring

Interface Solutions for Material Testing Engineers

Tensile Testing for 3D Materials

Testing Lab Essentials Webinar Recap

OEM: Tablet Forming Machine Optimization

Force Measurement Solutions Demonstrations at Automotive Testing Expo

Interface experts are returning to Novi, Michigan, to demonstrate new and popular force measurement solutions at the Automotive Testing Expo.  The focus of this year includes our multi-axis sensors, axial torsion and torque transducers, miniature load cells, wireless and testing rig solutions, instrumentation, along with our precision load cell technologies for all types of automotive testing and equipment used in the industry.

New SuperSC for Automotive Industry

One of the demonstrations will be Interface’s new SuperSC S-Type Miniature Load Cell. This new product is an economical general purpose load cell with a compact design that measures tension and compression in one unit. It offers high performance capacities in a form factor 80% smaller and 50% lighter than other models of s-type shear beam load cells.

The SuperSC is an ideal product in end of line validation testing for automotive, individual automotive component testing, and fatigue or life cycle testing. It is versatile for machines, component tests, integration into a manufacturing or assembly line for real-time force monitoring.

Many automotive testing labs rely on an actuator for fatigue or lifetime expectancy testing. Without force measurement, testers can only tell when the product reaches failure. The SuperSC can provide early warnings on component performance and life degradation.

SuperSC comes in 12 capacities ranging from 25 to 1K lbf and 100 N to 5 kN. Six designs for international standards of measurement (metric) and six for imperial standards. They are environmentally sealed with an IP66 rating and offer high stiffness with low detection and is insensitive to off-axis loading.

AxialTQ Demonstration

Another product that will be a focus is the revolutionary AxialTQ™ Wireless Rotary Torque Transducer. Designed for the automotive industry, this transducer is common for advanced torque tests and in the electric vehicle markets. Interface presented a new white paper that provides comparative research related to the AxialTQ product, demonstrating its performance related to other offerings. Read AxialTQ Technical White Paper Details Comparative Testing.

To learn more about AxialTQ, watch this video demonstration.

Automotive Testing Applications

Interface will also be showcasing brake pedal load cells, our robot using multi-axis sensors, digital and portable instrumentation and custom solutions designed specifically for auto test engineers. One of these solutions that we will be sharing is our Electric Vehicle Structural Battery Testing application.

EV Battery Structural Testing

Structural EV battery testing is core to optimization as innovation drives electric vehicle battery design and sustainability. Automotive manufacturers and component testing engineers need to validate structural battery pack design for life expectancy against design targets, as well as crash test compliance and survivability. Working with the EV battery maker, Interface’s recommendation is our 1100 Ultra-Precision LowProfile Load Cells for use in-line with hydraulic or electromechanical actuators within the test stand. Interface’s 6A Series 6-Axis Load Cells are also used to capture reactive forces transmitting through pack structure. Multi-axis measurement brings greater system level insight and improved product success.

Bluetooth® Brake Pedal Animated Application Note

Additional Automotive Solutions and Resources

EV Battery Testing Solutions Utilize Interface Mini Load Cells

Electric Vehicle Battery Monitoring App Note

Torque Measurement for Electric Vehicles

Automotive Head Rest Testing App Note

Fine-Tuning Testing Solutions for Championship Racing Vehicles

Automotive Window Pinch Force Testing

Automotive Head Rest Testing Animated Application Note

Automotive + Vehicle Brochure

 

Electric Vehicle Battery Load Testing Feature and Application

The demand for quality load cell sensors and testing technology solutions in the electric vehicle market is high. This extends into the innovations and testing related to electric vehicle batteries. Design engineers and automotive manufacturers are looking for ways to extend the life of the EV battery, while also seeking ways to maximize overall vehicle performance.

Interface application engineers have been working to provide standard and custom solutions to EV battery manufacturers and testing labs for R&D, prototyping, and performance monitoring. It has sparked recent publications to reach out to Interface to discuss the types of force measurement devices that are being used, along with supportive instrumentation for various tests related to the electric vehicle market.

We’ve captured one of these use cases in the new application note, Electric Vehicle Structural Battery Testing.

The initial requirements for this application were to validate structural battery pack design, both in terms of life expectancy against design targets as well as crash test compliance and survivability.  Interface recommended utilizing 1100 Ultra-Precision LowProfile Load Cells in-line with hydraulic or electromechanical actuators within a structural test stand. The 6-Axis Load Cells were used to capture reactive forces transmitting through pack structure. These multi-axis sensors provide more measurement data and brings greater system level insight and improved product success. Using this configuration, the tests performed using Interface’s force measurement products validated the battery packs strong structural design. Read more here.

Recently we shared our experience in working with companies to provide load cells for testing batteries.  The details of this interview with DesignNews are highlighted in a brief excerpt below. Read the entire article here.

BATTERY LOAD TESTING PRESENTS NEW OPPORTUNITIES FOR INTERFACE

By Dan Carney at DesignNews

The Arizona force management specialist is finding new opportunities for its load cells testing batteries.  In addition to measuring the strength of the battery case, it is also important for automakers to measure the pressure of the cells inside the case. In both situations, force management solutions from Interface, Inc. (Scottsdale, Arizona) are beneficial.

“FEA and computerized modeling get the customer most of the way there,” observed Interface vice president of global sales Brian Peters in a phone interview with Design News. “Automotive OEMs are spending more time on various structural development testing,” he said. “They are push-pull, multi-axis similar to what we see with aerospace fuselage testing.”

This is important because, in addition to the torsional loads normally applied to the battery box in the course of normal driving, there is also the need to model for worst-case crash scenarios.

“You have basic (noise, vibration, and harshness) torsional rigidity requirements, but then you have the crash requirements,” Peters noted. “How do you model, test, and have successful test results? When you run the full system into the barrier, sometimes the outcome is hard to model.”

ADDITIONAL RESOURCES

Feature Article Highlights Interface Solutions for EV Battery Testing

EV Battery Testing Solutions Utilize Interface Mini Load Cells

Electric Vehicle Battery Monitoring

Interface Helps to Power the Electric Vehicle Market Forward

Test and Measurement for Electric Vehicles

Torque Measurement for Electric Vehicles App Note

The Future of Automotive is Electric

Feature Article Highlights Interface Solutions for EV Battery Testing

In the recent article, Force sensors find opportunity in electric vehicles, battery assembly by Dan O’Shea of Fierce Electronics, the feature details increasing use of force measurement technologies in the EV industry.

In this must-read piece, Brian Peters was interviewed to share Interface’s role and growing support for the testing of electric vehicle components including electric vehicle battery testing.

In the article, the author highlights the different use cases for sensor technologies in the EV market. Interface shared our experience in supplying vehicle force measurement solutions for EV batteries chemical mixing, batch weighing scales, battery assembly machines, tension monitoring, material tests, structural tests and more.

Dan writes, “In the automotive sector, one of the most important areas where force sensor technology can play a role is in the manufacturing of electric vehicle batteries, as well as testing and monitoring batteries for quality assurance.”

He continues, “Brian Peters, vice president of global sales at Interface Force Measurement Solutions, told Fierce Electronics that the need for force sensors in EV battery applications has grown rapidly as more new automakers and battery manufacturers have appeared on the scene and consumer interest in EVs has risen.”

An example of one of these applications is detailed in use case of Electric Vehicle Battery Monitoring.

ELECTRIC VEHICLE BATTERY MONITORING

Interface’s customer was designing a system to monitor lithium-batteries used in electric vehicles. Typically, lithium-batteries are measured through ICV to monitor and analyze life and performance. Interface suggested using our LBM Compression Load Button Load Cell in between two garolite end plates, and measuring the force that is created from cell swelling or expansion. Instead of monitoring through voltage (ICV), this method is based on measured force (ICF). Paired with the 9330 Battery Powered High Speed Data Logging Indicator, force results can be displayed, recorded, and logged with supplied software. 

Additional Resources

Interface Automotive Force Measurement Solutions

Automotive + Vehicle Brochure

Advancing Auto Testing with Interface Measurement Solutions

Torque Measurement for Electric Vehicles App Note

Interface Helps to Power the Electric Vehicle Market Forward

The Future of Automotive is Electric

Test and Measurement for Electric Vehicles

 

 

EV Battery Testing Solutions Utilize Interface Mini Load Cells

Automotive components undergo rigorous testing to meet regulatory standards, guarantee performance, and ensure consumer safety. These components continually require investment in innovation to meet the expressed governmental, consumer and commercial use requirements.

One of the vehicle components that is undergoing intense change is the battery. The market is heavily focused on increasing mileage use and life, which includes the shift from single-use lithium batteries to lithium-ion batteries which are rechargeable.

These customer sentiments are noticeable in the growing global electric vehicle (EV) and hybrid electric vehicle (HEV) demands for sustainable and longer-lasting battery solutions. Customer satisfaction and commercial applications are closely intertwined with a vehicle’s ability to travel longer distances without refueling or charging. The demands and changes drive robust test and measurement programs to bring new battery models and designs to market.

In 2021, it is estimated the EV battery market exceeded 38% of total battery sales. As technology continues to improve the lifecycle and reducing battery costs, Precedence Research estimates 32% CAGR through 2030. This translated to $46B in the US alone of market share, while Asia Pacific is leading the production of EVs and overall demand for the EV batteries. Based on global adoption of electric vehicles, supported by government initiatives and an intense focus on reduced carbon emissions, the EV battery market is expected to continue expanding around the world.

The testing of batteries is growing in complexity with the increase in number of cells, modern designs, materials, cycles, installation, vehicle models, certifications and charging equipment to name a few. Battery simulation and real battery integration testing are two examples of commonly used T&M programs used to validate battery adaptability and use requirements. In battery testing, accuracy and quality of the measurement devices are vital. The following are the most common battery types today:

  • Lithium-ion Battery
  • Lead-Acid Battery
  • Sodium-ion Battery
  • Nickel-Metal Hydride Battery
  • Others

Due to the market shift to EVs, the lithium-ion battery is the number one battery type today. The domination of the lithium-ion battery exceeded all other battery types in 2021. Manufacturers of EVs prefer partnering with OEMs of newer model Li-ion batteries because they are lighter in weight and have higher energy density. The following details one of many Interface solutions offered to automotive component and battery manufacturers.

Electric Vehicle Battery Monitoring

The EV battery manufacturer required a system to monitor their lithium-ion batteries. Normally, lithium-ion batteries are measured through voltage and current measurements or (ICV) to analyze and monitor the battery life. In consultation with the design and testing engineers, Interface recommended a solution that required installing the LBM Compression Load Button Load Cell in between two garolite end plates, and measuring the force due to cell swelling or expansion. Instead of monitoring through voltage (ICV), this method is based on measured force (ICF). To monitor the testing, the load cell was paired with the 9330 Battery Powered High Speed Data Logging Indicator. This instrumentation solution provides the ability to display, record and log the force measurement results with supplied software.  To review the results and complete application note, go here.

Interface has long partnered with auto manufacturers and suppliers of various parts and components to provide a large range of automotive industry test and measurement solutions.  This includes sensors and instrumentation solutions for the development, testing and performance monitoring of all types of batteries, with growing interest for lithium-ion battery testing.

Interface will be discussing this and other force measurement solutions at the upcoming Auto Test Expo in Europe. Join us in Stuttgart or contact our application engineers to collaborate on a testing solution that works for your next project.

Additional Automotive Industry Resources

Interface Automotive Force Measurement Solutions

Driving Force in Automotive Applications

Test and Measurement for Electric Vehicles

The Future of Automotive is Electric

AxialTQ Technical White Paper Details Comparative Testing

WTS Brake Pedal Force Testing

Automotive + Vehicle Brochure

Automotive Window Pinch Force Testing App Note

Automotive Head Rest Testing App Note

Advancing Auto Testing with Interface Measurement Solutions

Interface Automotive Force Measurement Solutions

Interface introduced our load cells to the auto and vehicle industry more than five decades ago. Quality and precision sensor technologies are essential to manufacturing and production for vehicles.

Interface force measurement devices are used for critical testing in both commercial and industrial vehicle design and production to ensure safety and reliability in the automotive industry.

As the industry has evolved and transformed, so has the products we supply to our customers in this market. Our range of solutions continues to expand in functionality and capabilities as complexities of testing throughout the entire journey, from component design and prototyping to rigorous safety testing of every piece of equipment progresses.

By creating highly responsive, critically accurate, and safer load cell and torque sensors, we are seeing our products used in all types of test and measurement applications, including:

  • Engine dynamometers
  • Lug nut assembly
  • Airbag connector testing
  • EV battery testing
  • ICE and EV motor torque testing
  • Equipment fatigue testing
  • Motor test stands
  • Brake and clutch pedal force
  • Engine head bolt tightening
  • Vehicle crash test walls
  • Race car suspension testing
  • Transmission gear box and gear mesh
  • Autonomous vehicle tests

Research and development facilities with precision application requirements favor our 1200 Series LowProfile™ Load Cells with their special moment compensated design. These are used in auto manufacturer assembly lines in a variety of production monitoring and verification applications. Our exceedingly accurate LowProfile™ Load Cells have even been used in NASCAR and IndyCar garages for testing individual springs and entire vehicle suspensions.

Preview Interface products used in the automotive and vehicle markets in this new solutions video.

Here are two highlights of automotive application notes.  You can find more about automotive and vehicle solutions here.

Tire Testing

A top tire manufacturer needed a solution that would provide data analysis for stress testing.  The research would provide advancements to their product by defining the tire’s dynamic control capabilities. In review with our application engineers, they detailed they need to measure both the torque and lateral force in their testing.

Interface recommended the new AT105 Contactless Force Torque Transducer. With the torque and lateral force testing requirements, they determined that the best option to review the results by display as well as with graphing is to connect the transducers to the 4-Channel USB Interface Module SI-USB4.  You can see the entire solution and results in the Tire Testing App Note.

MDPS Testing

A manufacturer wanted to test the power steering for their vehicles. They want to test the linkage tension and compression between the rack and pinion. On a test frame, Interface’s 1200 Standard Precision LowProfile™ Load Cell was installed at the end of the rack and pinion actuator. As the wheel is turned, the load cell tests the push and pull forces. Force measurements can be displayed in real time using the highly accurate 9870 High-Speed High Performance TEDS Ready Indicator. The 1200 Standard Precision LowProfile Load Cell successfully measured the tension and compression between the rack and pinion of the customer’s MDPS system. You can see the entire solution and results in the MDPS testing App Note.

Additional Resources:

Driving Force in Automotive Applications

Advancing Auto Testing with Interface Measurement Solutions

Automotive Window Pinch Force Testing

Test and Measurement for Electric Vehicles

 

Fine-Tuning Testing Solutions for Championship Racing Vehicles

As every championship race car team looks to find its competitive advantage, measured in seconds, Interface continues to play a pivotal role in ensuring accurate force measurement solutions are used to test the limits of every component used in motorsports.

The automotive industry has long depended on the quality and accuracy of Interface load cells, torque transducers, instrumentation, and multi-axis sensors.  Did you know it is also used in the competitive arena of auto racing?  Performance demands are constantly being pushed for all types of racing machines, whether it’s for NASCAR, IndyCar, or even the amateur level racing. What is known in the racing community is that engineers and manufacturers of equipment and parts used in these high-performance vehicles rely on Interface for precision testing solutions.

In our new case study, Building a Championship Race Car, we detail some of the specific sensor technologies used in the racing arena for high performance testing. We highlight how Interface’s TXY 2-Axis Load Cell is used in testing tires. Leading tire manufacturers, including SCCA sponsors, utilize these sensors to get precise test data on tire uniformity. The TXY has minimal cross talk across its strain gage bridges, ideal for this type of testing.

We also detail how our top load cell, the LowProfile, is frequently used in testing shocks, springs, and struts.  With any racing vehicle, control is fundamental, and the equipment used to maintain that control must be proven to meet the exceptionalism and requirements of racing professionals and their teams.

In this technical article, learn how the popular AxialTQ Torque Transducer, a bearing-less, compact wireless design, affords the test engineer suitable data collection for engine analysis, as well as brake HP calculations for active performance testing.

A competitive spirit runs deep within our Interface team, it’s what we do. We like to ensure our products are top class and help our customers win!  We also have first-hand experience in how our products are used in the racing arena. That experience affirms the positive performance effects of force measurement in auto racing.

Did you know that Interface’s Vice President of Sales, Brian Peters, has accomplished eight National Championships in Sports Car Club of America (SCCA) solo racing, and also competes in the One Lap of America cross-country, weeklong multi-competition racing event?

The annual SCCA National Championships draws more than 1,000 drivers from across North America to compete over two days. Wins are decided by mere thousandths of a second. Knowing how our products are used in high-performance racing environments, only fuels us more.

Performance and precision are critical and Interface force measurement solutions help to fine-tune critical racing vehicles, parts, and apparatus used to test different components in motorsports. We also like to say, it’s a competitive advantage. Read our case study to learn more.

Additional Resources

Powered by Interface Race Update from Brian Peters

Race Car Suspension Testing

Driving Force in Automotive Applications

Automotive and Vehicle