Posts

Fueling Global Demand for Interface Solutions

Increasing demand for quality, accurate and reliable sensor technologies is global.  Interface products are used on every continent and across all types of industries. As manufacturers and product innovators make advances in what they build and test, there is a direct correlation to the growth in precision test and measurement tool requirements we supply.

The overall sensor market in 2022 is expected to continue its fast past growth, estimated between 8-12% across all types of sensors. In force measurement, this pace is consistent with the experience in the global markets we serve in Africa, Asia, Australia and Oceania, Europe, Middle East, South and North America.

Represented by hundreds of sensors experts around the world, Interface distributors continue to experience growth in market share and Interface product users.  In fact, Interface’s fastest growing markets are represented in our global network.  Solutions that utilize our precision load cells, torque transducers, multi-axis load cells and instrumentation are all experiencing high growth worldwide.

What is impacting the greatest international growth for all types of sensors technologies?  According to market analysis and based on Interface’s experience, it’s being fed by:

  1. Miniaturization of Products and Sensors Used in Testing and OEMs
  2. Industrial Automation and Robotics
  3. Innovation in Aerospace and Automotive
  4. IoT – Internet of Things

Our direct experience in demand for Interface solutions outside of the US is related to these areas and specifically new products and expanding use cases. First, we recently launched our Global G Series products to meet this demand. This specialty product is sold exclusively outside the US. These products are designed and manufactured in the International System of Units (SI), with the same precision and accuracy of all Interface products.

The Global G Series is a global standard product line that is designed for applications that require miniature load cells and for OEM solutions used for automation of machines and components.  The markets that are experiencing the highest growth internationally include:

For example, innovative markets like electric vehicles and hydro-electric energy are growing rapidly domestically and in international markets. These industries rely on force testing to optimize these new technologies.

The Asia-Pacific market is currently our fastest growing market. Interface provides products for this market across all industries including automotive, aerospace, test and measurement and more. As mentioned above, the alternative energy, aerospace and electric vehicle market is a big area for Interface and the Asia-Pacific plays a big role in these areas.

Electric vehicle design and manufacturing requires a precise level of accuracy to improve energy efficiency, minimize weight and maximize vehicle range. For instance, battery technology is a major global focus; therefore, maximizing power output using force testing is the key to improving vehicle design. To achieve this, test and measurement solutions need to be as accurate as possible. Interface also provides high accuracy torque transducers, load cells, load washers and more for two areas of electric vehicle testing: laboratory testing to optimize system performance and production testing to ensure product quality.

Another application for force measurement in Europe is force testing on off-shore hydro-electric power plants. This is a great fit for Interface because we have developed an entire lineup of load cells and other products that are submersible. For this project specifically, we provided submersible WMC load cells. This is one example of an innovative application for renewable energies, and this is another market that is growing rapidly both domestically and internationally.

One of the consistent top selling products in both regions and industries are wireless load cells. In our 2022 Test and Measurement Industry Trends blog, detailed some of this growing demand for wireless force measurement solutions. Wireless systems are helping manufacturers simplify the integration process and create a cleaner safer test environment with far less wiring. It is especially helpful in industries like aerospace or automotive, where large factories want to transmit data across the facility without needing a mess of wires getting in the way.

For wireless needs, Interface supplies its Wireless Telemetry System (WTS) which offers sensor transmitters, receivers, and displays. High accuracy, high quality measurement is interfaced with simple yet powerful configuration and monitoring software and gives sensor manufacturers and integrators the complete flexibility to build their own sensor modules around it. The system easily replaces wired systems, reducing installation and maintenance costs.

One area that Interface is also investing in internally is recalibration services to serve all customers across the world. Many of our customers are becoming more aware of and utilizing these services, as we are continuing to grow this capability amongst international customers who are utilizing Interface products for the first time.

Interface’s presence in the international market is growing quickly. Interface is looking forward to seeing where and how we can supply the best in force measurement solutions to enable innovation around the world.

Source: Tyler Pettit, Application Engineer International Markets

Where to Find 50 New Force Measurement Application Notes

One of the advantages we have at Interface is that our application engineers and solutions experts are constantly recommending Interface load cells, torque transducers, instrumentation and accessories for a wide range of projects and programs.  In this fortunate position, it enables our team to explain why and how these solutions work through a series of illustrative application notes. We detail the problem statement, the products required to achieve the desired outcome, and the measurable results in every Interface application note.

The purpose of our app notes is to show the range of capabilities for products we offer, as well as inspire product designers, engineers, and testing professionals to expand how they use sensor technologies. We also increased our industry solutions to highlight a growing interest of how our products are used in agriculture, maritime and infrastructure force and torque measurement projects.

In 2021, Interface produced a record 50+ new application notes.  We have so many application notes, we even produced a first ever complete Interface Applications Catalog.  The type of applications we detailed this year range from space docking to golf swing testing, with everything in between. You can find applications for livestock weighing, crash wall testing, crane safety regulation and even commercial fishing line tests.

Every application note includes a graphic that highlights how the test project is designed and how the products work together. All our illustrated application notes can be found here.  We also have a collection of animated application notes you can watch here.

So if you didn’t keep up with every application note we added this year, here is a quick reference:

AUTOMOTIVE AND VEHICLE

Automotive Head Rest Testing

Pre-Installation Sealing Sensor Testing

Automotive Window Pinch Force Testing

Airbag Connector Testing

Vehicle Crash Test Load Cell Wall

Torque Measurement for Electric Vehicles

TEST AND MEASUREMENT

Garbage Truck On-Board Weighing

Bike Helmet Impact Test

Bike Handlebar Fatigue Testing

Mobile Force System

Gaming Simulation Brake Pedal

Mountain Bike Shocks Testing

Spring Compression Testing

Proving Theoretical Cutting Forces of Rotary Ultrasonic Machining

Fitness Equipment and Machines

6-Axis Load Cell Solutions using Raspberry Pi

Mouse Touch-Pad Force Testing

Treadmill Force Measurement

Veterinary Weighing Scales

E-Bike Torque Measurement

Bike Power Pedals

Bike Load Testing

Bike Frame Fatigue Testing

Golf Club Swing Accuracy

Golf Ball Tee

INDUSTRIAL AUTOMATION

Commercial Food Processing

6-Axis Force Plate Robotic Arm

INFRASTRUCTURE

Aerial Lift Overload Control

Concrete Dam Flood Monitoring

Hydraulic Jacking System Testing

AGRICULTURE

Tractor PTO Torque Testing

Silo Grain Dispensing

Poultry Feeder Monitoring

WTS Equine Bridle Tension System

BTS Equine Bridle Tension System

Livestock Weighing System

Tractor Linkage Draft Control

Chicken Weighing

Silo Monitoring and Weighing

MEDICAL AND HEALTHCARE

Tablet Machine Hardness Tester Calibration

Dental Handpiece Torque Check

Interventional Guidewire Quality Inspection

Tablet Hardness Testing

AEROSPACE AND DEFENSE

Space Dock Capture Ring Force Testing

Aircraft Yoke Torque Measurement

Aircraft Screwdriver Fastening Control

Landing Gear Joint Testing

Aircraft Engine Hoist

Rescue Helicopter Hoist Test

MARTIME

Mooring Quick Release Hooks (QRH)

Commercial Fishing Wire Rope Testing

Mooring Line Tension Testing

Crane Block Safety Check

Crane Capacity Verification

Crane Force Regulation

We would like to send a special thank you to our illustration and design team of Lauren O’Hagan and Scott Whitworth for all their work in creating this array of illustrations, along with a special shout out to Ken Bishop and Keith Skidmore that help us create all these application stories.

What’s new in 2022? Stay close to our Interface IQ Blog and watch our updates on the homepage and solutions for new inspirations and unique examples how engineers and product designers are thinking about using our sensors,

Recap of Latest Spin on AxialTQ Webinar

Interface recently hosted a new webinar in our ForceLeaders series that highlighted the revolutionary AxialTQ product.  The event reviewed the bearingless wireless rotary torque transducer design and detailed component specifications, why test engineers prefer the AxialTQ, and use cases for this precision measurement system.

If you were not able to attend the Latest Spin on AxialTQ event, you can watch the entire recording online here.

The revolutionary AxialTQ was first introduced in 2018. The design originated from the popular HRDT product that utilized a rotor stator gap design as a single component. After hundreds of users, we started the product engineering exercise to see how we could advance the soon-to-retire HRDT and evolve it into something that would perfectly fit current market conditions.

As technologies were changing testing protocols and requirements, such as for electric motors, alternative energy hardware, space vehicles and industrial machine automation, we wanted to add new functionality. Jay Bradley and the Interface engineering team began the process by looking at DIN size optimization, shorter stators, additional coupling options, advanced software configurations and simple “drop-in” replacement parts with a modular design.

After thousands of design hours and testing, Interface released the AxialTQ. The specialized product is a unique combination of accuracy, reliability and ease of use that redefines the standard torque measurement device in terms of function and durability.

Engineers prefer the new AxialTQ because of the time-proven sensing element with longer active area providing greater measurement sensitivity while being less vulnerable to shock loads.  The high-resolution digital electronics are state-of-the art. Uniquely, the large gap design up to 6 mm axial and 12 mm radial minimizes contact damage which is important at high-speed testing. It has 120-degree partial loop antenna on the stator to make installation easier.

Specialized design features of AxialTQ make it a great fit for test and production applications.

  • Crash-proof design for maximum reliability
  • Industry-leading gap to prevent damage to rotor stator at full speed
  • Simultaneous analog and digital outputs, enables real-time control and data collection
  • Interchangeable stators and output modules minimize parts inventory
  • Versatile design and wide range of configurations to match any application
  • Hardware is self-configuring
  • New advanced software with added features and logging capabilities
  • Rotor and stator coils designed using printed circuit boards for durability

The AxialTQ rotor sensing element and electronics are the heart of the system. It has a rugged design for all types of torque measurement applications.  It comes in 8 torque capacities. The status assembly matches to the rotor DIN size and is interchangeable with equipment DIN size rotor assemblies, increasing usability.  The USB digital output module has galvanic isolation on all outputs and has standard IP65 ingress protection.  It enables real-time control and accurate data collection.

Keith Skidmore shared several use cases during the presentation, including engine dynamometers, motor test stands and other automotive production line applications.

The AxialTQ is designed for testing anything that spins. It’s ideal in testing and production of hydraulic motors, EVs, helicopters, aircraft, and drones, along with windmills and industrial fans.  It’s great for testing forklifts, off-road and utility vehicles as wells as tractors and watercraft.  AxialTQ is also generally used for measuring torque on industrial motor assemblies, pumps, appliances, braking systems, and motor vehicle accessories.

Watch the entire webinar below to hear Keith and Jay share tips, specifications, frequently asked questions and how to get the most out of your torque measurement applications.

Learn more about AxialTQ here.

Advancing Auto Testing with Interface Measurement Solutions

What classifies as the automotive industry involves a complex and dynamic mix of suppliers, makers and designers of all types of vehicles, as well as prototypes of the changing demands and requirements of consumers both big and small.  Whether we look at where we are today with hybrid and electric motors, or autonomous rigs and people movers in test now, one thing that is constant is Interface’s role in providing vital measurement solutions for testing and real-time performance monitoring in the automotive and vehicle markets.

Automotive is one of the industries in which Interface has worked with since the introduction of our first load cells more than five decades ago. Force and torque measurement is critical to testing at every stage of design and manufacturing. Our sensor solutions, instrumentation and accessories are used across all facets of component development, including the testing of engines and exterior bodies, tires, batteries, fuel pumps and more.

Interface products are used for crash walls, brake testing, energy storage tests in the lab, seat belt and headrest testing, just to name a few. The fact is torque and force play a major role in making the vehicle move and ensuring it’s safe for drivers and pedestrians alike.  Interface is showcasing some of these solutions at the upcoming Automotive Test Expo. Registration to attend is free.

As the industry evolves, so do we. In fact, our advanced product AxialTQ was created for the automotive industry for testing of EVs. This revolutionary torque transducer is now used in all types of line production, assembly and part, including:

  • Internal Combustion Engine (ICE) Lab Testing and End of Line (EOL) Testing
  • Drivetrain Lab Testing
  • Automotive Accessory Lab Testing
  • Electric Vehicle (EV) Motor EOL and EV Lab Testing

For more about this dynamic product, you can watch our latest AxialTQ Webinar here.

Interface supplies high quality, precision load cells to automotive manufacturers, including custom one-off sensors and special application-specific designs. Standard off-the-shelf models such as our 2400 series , our 3200 series Stainless Steel LowProfile™ Load Cells, and our WMC Miniature Load Cell family are popular with machine builders and used anywhere a rugged stainless steel load cell is required.

Research and development facilities with precision applications favor our 1200 Series LowProfile™ Load Cells with their special moment compensated design. These are used in auto manufacturer assembly lines in a variety of production monitoring and verification applications. Our exceedingly accurate LowProfile™ Load Cells have been used in NASCAR and IndyCar garages for testing individual springs and entire vehicle suspensions.

A moment compensated Interface load cell has as much as 1,000 times less error from side load or moment as our competitor’s products. And many of our sensors feature 10x mechanical overload protection, which helps protect against unintended loads. Our Model BPL Load Cell is a very LowProfile™ load cell used for measuring force on gas, brakes or clutch pedals.

With a wide range of automotive vehicle load cell sensors, force and torque measurement capabilities, and features such as moment compensation, temperature compensation, and mechanical overload protection, Interface can help you design a solution perfect for your automotive application. In fact, here are a few examples of our products in action.

Airbag Connector Testing

Testing airbag connectors functionality is needed ensure perfect deployment to meet the ultimate test of saving lives. There are eight to twelve connectors installed in each vehicle, and tests are needed to be made in order to clarify the connectors are working effectively. The amount of force needs to be tested in order to see when an electrical current has triggered use.  Utilizing the WMC Sealed Stainless Steel Miniature Load Cell to the actuator of the test rig. The airbag connector is held in place at the bottom of the test rig. Forces are applied and measured using the 9330 High Speed Data Logger as the connector is pushed down to latch together.  Read more about this use case.

Seat Testing

During testing there was consistent overloading and replacing of the single-axis load cells. After a thorough inspection, it was discovered that this was due to bending moments that had never been quantified so a multi-axis sensor was defined as the best solution.  An Interface Model 6A68C 6-Axis load cell was installed in their existing test machine. The 6-Axis Sensor was intentionally oversized allowing the customer to measure the unidentified bending moments while preventing any damage. Data Acquisition and Amplifier BX8 was used to graph, log, & store the data collected at the sensor. Read more here.

Automotive Headrest Testing

When a manufacturer for automotive head rests wanted to test the durability of their products by conducting several fatigue tests and force tests on the head rests to make sure it meets durability and high-quality standards, Interface was able to help. The solution was to install Model 1000 Fatigue-Rated LowProfile™ Dual Bridge Load Cell to the customer’s actuator mechanism. This load cell is perfect for fatigue testing and reports highly accurate results through the fatigue cycling. The results are collected by using the SI-USB4 4-Channel USB Interface Module, which synchronizes the data directly from the load cell and the string pot (for measuring distance) to the customer’s computer. Using this system, the head rest manufacturer was able to get highly accurate data through the fatigue testing cycle. Watch the testing video in action!

 

Engine Dynamometer

Internal combustion engines are by far the most common power source for land vehicles. From a 2-stroke motor in a lawn mower, to a V-8 stock car engine, horsepower and torque are the benchmarks of engine performance. Engine manufacturers and aftermarket suppliers use an engine dynamometer (dyno for short) to accurately measure an engine’s performance. An engine dyno isolates an engine’s power output to help quantify its overall performance, applying a load directly to the engine and utilizing a load cell to measure the torque absorbed by the loading mechanism. Horsepower is then calculated using the torque and RPM of the engine. To conduct this test, a precision S-Type Load Cell is attached to a torque arm which “feels” the torque from the engine loading system. The Interface Model SSMF is a great choice because it is fatigue-rated for a number of fully reversed cycles and is environmentally sealed to withstand harsh environments. Utilizing the Model CSC Signal Conditioner provides a clear signal to a data-acquisition system. Using this test solution, the load cell reacts precisely with the amount of torque being produced by the engine and provides accurate signals to the data-acquisition system. Engineers are then able to analyze the power transfer for the engine and optimize for performance. Read more about this solution here.

For additional automotive solutions and use cases, go here.

Interface’s Steering Role in All Types of Transportation

Interface serves a wide variety of industries that design and manufacture movers of people and objects. The transportation sector consists of companies that assist in the movement people or goods, as well as supporting infrastructure. Whether it is automobiles or planes, trains or helicopters, spacecraft or water vessels, Interface provides solutions to help test and measure force, weight, torque, lift and more.

The safety, quality and reliability of the overall transportation industry are all important considerations in design, build and performance. Human safety being the most critical requirement of any transport vehicle or structure.

This means that stringent testing is necessary to confirm the design of every part and system on a vehicle. Force measurement sensors can used to test a wide variety of factors on every type of invention that moves or transports a person or thing. From the torque of an electrical vehicle engine to the weight distribution of an aircraft, these types of tests help to refine the designs of components, vessels, and vehicles, confirming safety and dependability.

All Interface product categories have a role in the testing of all these transportation entities.  Many of our sensor technologies are also ideal for performance monitoring and integration into product designs, whether it’s for ongoing measurement of weighing ship cargo with load pins, load shackles and tension links or using our torque transducers for engine testing on e-bikes, automobiles, trucks, buses, and other transport vehicles.  If it moves, it needs to be measured. Our force and torque solutions are ideal for every segment of this market sector.

Let’s take a quick tour of a few application examples that demonstrate the different products we provide that are helping get people and objects safely moving down the road, on the rails, in the air and even into space.

Wind Tunnel Testing

A major aerospace company was developing a new airplane and needed to test their scaled model for aerodynamics in a wind tunnel, by measuring loads created by lift and drag. Interface offered a Model 6A154 6-Axis Load Cell which was mounted in the floor of the wind tunnel and connected to the scaled model by a stalk. A Model BX8-AS was then connected to the sensor to collect data. The wind tunnel blew air over the scaled model creating lift and drag, which was measured and compared to the theoretical airplane models. Software in the PC converted raw data signals to actual force and torque values at the stalk. Using this solution, the company was able to analyze the collect data and made the necessary adjustments in their design to improve the aerodynamics of their theoretical airplane models. Read more.

Garbage Truck On-Board Weighing

A garbage disposal company wanted to test the load capacity of their garbage truck bins so they know when it reached maximum capacity. Interface’s solution was to customize and install 4 SSB Sealed Beam Load Cells under the garbage box body, on either side. When trash continues to be piled inside the box body, it will push more force down onto the SSB Sealed Beam Load Cells. When maximum load capacity has been reached, the results can be reviewed and displayed when connected to the 482 Battery Powered Bidirectional Weight Indicator in real time. With this system, the customer was able to test the maximum load capacity of the garbage bin attached to the truck, so they know when to empty the truck’s garbage at the transfer station. Read more.

Engine Head Bolt Tightening

 

 

 

 

 

An industrial automation company was building an automated assembly machine for an auto manufactur­ing plant. They needed to tighten all head bolts on an engine on their assembly line to a specific torque value. Having the head bolts precisely and consistently tightened to the engine block is critical to the operation of the engine. Several Interface Model T33 Spindle Torque Transducers were installed in their new machine to control torque, angle, and ensure the head bolt was properly tight­ened. The square drive of the T33 allowed the customer to fix their tool directly to the end of the torque sensor, streamlining the installation. When the machine comes down and screws on the engine head bolts the torque and angle profile are sent to the customer’s machine controller. Based on the feedback received by the machine controller, the automation will pass the engine to the next step in the assembly line or fail and have the engine evaluated further. This allowed the customer to ensure the head bolts were correctly installed according to manufacturer specifications, producing an engine that meets performance and reliability expectations of the auto manufacturing plant. Read more.

Bicycle Load Testing

A mountain bike manufacturing company wanted a system that measures their bike frames load capacities and vibrations on the frame. They also want to ensure the bike’s high quality and frame load durability during this final step of the product testing process. Interface suggested installing Model SSMF Fatigue Rated S-Type Load Cell, connected to the WTS-AM-1E Wireless Strain Bridge, between the mountain bike’s seat and the bike frame. This will measure the vibrations and load forces applied onto the bike frame. When a heavy load is added to the seat, the SSMF Fatigue Rated S-Type Load Cell measures the vibrations and load forces applied to the bike to indicate any stress points through a number of cycles. The results will be captured by the WTS-AM-1E and transmitted to the customer’s PC using the WTS-BS-6 Wireless Telemetry Dongle Base Station. This solution helped the mountain bike manufacturing company gather highly accurate data to determine that their bikes met performance standards through this final testing cycle. Read more.

These are just a brief example of the work we do in transportation. Interface systems have been involved in projects with boats, races cars, construction vehicles and even rocket ships. Manufacturers turn to Interface because of our track record for accuracy and the transportation industry relies on this data to keep its customers safe.

For additional insights and ideas related to transportation solutions, here are a few more posts to read.

Interface Plays a Role in Testing Bicycles

Evolving Urban Mobility Sector for Test and Measurement

Interface’s Crucial Role in Vehicle and Urban Mobility Markets

Measurement Technologies for Boats, Yachts and Watercraft

Interface and The Race to Space

Driving Force in Automotive Applications

To review more application notes pertaining to transportation or to talk to an application engineer about your next project, contact us or call us at 480-948-5555.

Interface Multi-Axis Sensor Market Research

Recently, Interface commissioned an independent research report on multi-axis sensors demand and use cases. This is a product line that Interface has made significant investments in as more customers require increased load cell functionality and additional source data from their force sensors. The research results confirm that the current demand is in fact expanding worldwide, and the overall users and market size is expected to grow by double digits over the next six years.

Included below is a brief overview of the state of the multi-axis, as well as an explanation of their overall purpose and why the growth of this type of test and measurement device continues to increase in popularity. We will also continue to break out the results of this research paper, so tune into the InterfaceIQ blog for more multi-axis research content. To learn more about these advanced sensors, view our ForceLeaders webinar Dimensions of Multi-Axis Sensors.

Multi-Axis Sensors Market Overview: The rise of IoT and Industry 4.0 had enabled automation. Machines continue to get smarter and can make split-second decisions using real-time data. Force measurement plays a key role in this transformation. Load cells that are tracking performance and reliability have more insights than ever before. They will continue to grow in their accuracy and capabilities. Load cell and sensor technologies are being used to identify precisely when and where something went wrong on a production line. Load cells will be growing in playing a key role in making production lines more efficient, less reliant on human resources and less costly.

There has been increased need for multi-axis sensors that measure and collect data points on up to six axes. Multi-axis sensors were invented because of the increased requirements for data, both in testing and during actual product use. And this is not slowing down anytime soon. Over the next decade, load cells will continue to keep up with the demand to handle more measurement data points. More sensors will need to be packed into a single device to collect more data with less equipment.

Five Key Take-Aways from Interface’s Multi-Axis Market Research:

  1. There is a growing requirement for high-performance sensor fusion of multi-axis sensor systems to enable the newly emerging technologies and highly demanding applications.
  2. Advancements in technology enabling effective components at a lighter and smaller size, such as the swift rise of unmanned vehicles in both the defense and civil applications and the increasing applications based on motion sensing, are the factors driving the multi-axis sensor use cases for testing and to embed into products.
  3. Digitizing force sensors is another trend changing our product innovators and manufacturer’s designs of machines and equipment through advanced measurement data. Many have strongly invested in more advanced digital electronics to efficiently harvest and store more data. Revolutions in industries and technologies is the dominant trend in force measurement, not to mention the entire manufacturing and engineering industry. Harnessing big data enables product users to remotely monitor assets and increase use of analytics.
  4. With network-connected force measurement through sensors and instrumentation, OEMs have greater control over testing and product development. Equipment using multi-axis sensors to track performance and reliability provide valuable data on how equipment is performing and predict when machines need maintenance.
  5. Global machine makers and equipment builders want smaller force sensors they can permanently install in the products. Smaller, wireless sensors are easier and less expensive to install. As more industrial networks are created to share higher-quality data, more and more sensors will be added to these machines.

What: Multi-axis sensors allow the user to measure forces and torques, which occur in more than one spatial direction, as with measurements in x- and y-direction. This allows manufacturers to obtain more data on a wider variety of axes, allowing them to make better design decisions and ultimately improve the product quality. A crucial focus is force measurement in manufacturing, where force transducers are frequently used to determine the force for weight measurement or in the process of production.

Why? Data-driven test and measurement is at the forefront of product development, especially in highly regulated markets like aerospace, automotive, medical, and industrial. One of the most significant applications for multi-axis sensors is seen in manufacturing facilities who want to integrate more autonomy and robotic processes. The goal is to streamline logistics procedures and reduce human errors and workplace accidents. The report also found that there is a great deal interest for last-mile delivery robots, either on the ground, on the sea or drones in the air.

Interface’s Role: Interface multi-axis load cells are ideal for industrial and scientific applications. They are used by engineers and testing labs in various industries and market segments including aerospace, robotics, automotive, advanced manufacturing, for medical devices and research. Our products designed to provide the most comprehensive force and torque data points on advanced machinery. With our industry-leading reliability and accuracy, these multi-axis sensors can provide the data our customers need to ensure performance and safety in their product design.

In fact, their unique capabilities are helping the medical industry optimize prosthetic designs and usability standards with multi-axis sensor testing. The automotive industry is using Interface’s multi-axis products in wind tunnels, and the military is using them to test the center of gravity in aerospace applications.

Here are a few applications use cases that show how multi-axis is advancing products in multiple industries:

Wind Tunnel

Seat Testing Machine

Friction Testing

Industrial Robotic Arm

Ball and Socket Prosthetic

Prosthetic Foot Performance

Syringe Plunger Force Measurement

Research was conducted independently by Search4Research.

Force Measurement Solutions for Bolt and Screw Fastening

Among the many applications of force measurement devices, one that appears to be a simple application can have a big impact on worker safety, productivity, waste reduction, assembly and product performance. In this new animated application note highlight, we take a look at the tools used for bolt fastening measurement.

Bolts and screws are used to secure different pieces or components together for nearly every product imaginable, especially when it comes to large machinery and even automobiles. The success of these products and the manufacturing of these components requires a strict level of detail that goes into the tightness of a bolt. It’s not like your typical “do it yourself” furniture where you just tighten a screw or bolt until you can’t anymore. The precision needed for certain objects to be tightened to the exact measurement is mandatory.

Interface provides measurement solutions for all types of industrial automation and toolset testing used in thousands of applications that ultimately are utilized in the building of products. In the example below, we provided devices that are used to determine the exact bolt force and tightness necessary. The goal of measuring the tightness is to avoid under or overtightening. As you can imagine, under tightening can cause components to come apart. However, over tightness can also cause significant damage to the pieces being bolted together.

Bolt Fastening Application

To show the process of measuring bolt tightness, check out this latest use case video demonstration.

For this bolt fastening application, the customer used an Interface Model LWCF Load Washer along with an Interface Model INF-USB3 Single Channel PC Interface Module to monitor force being applied during bolt tightening. The data transferred from the bolt clamping force load cell load washer with a thru-hole, to the instrumentation is displayed, logged and graphed directly onto a computer for analysis and performance testing.

This is a basic example of the test and measurement process, however, Interface also contributed to a number of real-world projects and created applications notes to provide an illustration. One of our favorites is when an industrial automation company was building an automated assembly machine for an automotive manufactur­ing plant.

The product engineers and testing team needed to tighten all of the head bolts on an engine on their assembly line to a specific torque value. Having the head bolts precisely and consistently tightened to the engine block is critical to the operation of the engine.

To measure this force, several Interface Model T33 Spindle Torque Transducers were installed in their new machine to control torque and angle and ensure the head bolt was properly tight­ened. The square drive of the T33 allowed the customer to fix their tool directly to the end of the torque sensor, streamlining the installation.

Using this solution, the head bolts were correctly installed according to manufacturer specifications, producing an engine that meets performance and reliability expectations of the auto manufacturing plant.

Here are additional solutions that showcase how Interface load cells, torque transducers, instrumentation and custom solutions are used for various tools and manufacturing processes across various industries.

Aircraft Screwdriver Fastening Control

Fastening Work Bench

Bolt Fastening Force and Torque

Interface Solutions for Robotics and Industrial Automation

Contact us to learn more how we can help you ensure the right fastening and machine control for your next projects.

 

 

 

Test and Measurement for Electric Vehicles

Among the many technologies that are making a significant impact on our society over the last few years, very few compare to the impact of electrical vehicles. As the world addresses climate change, investments in electric vehicle technology have risen greatly across nearly all the world’s largest vehicle OEMs.

Investments in this vehicle market segment are global. According to a McKinsey report, the global electric vehicle (EV) market was valued at $162.34 billion in 2019, and is projected to reach $802.81 billion by 2027.

As with any technology, as the market potential rises the need for engineering, manufacturing, and testing technologies and suppliers rise as well. Here at Interface, we’ve been preparing for the EV market for many years. In 2018, Interface released the AxialTQ Wireless Rotary Torque Transducer, designed primarily for the automotive industry and specifically crafted to test some of the more unique requirements for engine testing on electric vehicles.

FierceElectronics outlined this need in an article on EV testing, saying “wireless rotary torque transducers are the critical link in a test rig used to develop next-generation technologies for electric and hybrid vehicle powertrains.” Interface has addressed this need with AxialTQ.

At the heart of AxialTQ’s innovation is the rotor and high-precision sensing element technology, which when combined with next-generation electronics, produces industry-leading accuracy. Unique features of AxialTQ also allow the system to be fully customizable and flexible include its ability to use simultaneous analog and digital outputs to enable real-time control and data collection. Additionally, the flexible capability of the stator and output module mounting offers an infinite number of configurations to meet any application needs, like those involved in the torque testing of EV.

The automotive industry, their subsidiaries and partners are known for stringent and comprehensive testing protocols necessary for safety, performance and quality.  Areas that require high-performing force and torque sensor technologies for test and measurement include:

  • ICE Lab Testing
  • ICE End of Line Testing
  • EV Lab Testing
  • EV Motor End of Line Testing
  • Drivetrain Lab Testing
  • Accessory Lab Testing

Read more about the EV testing use cases in our post, The Future of Automotive is Electric. 

One area that continues to expand testing is for EV batteries.  With the increase in EV battery capacity and the development in the charging technology, various parameters such as temperature, current, and pressure changes have to be monitored to ensure that any increase or decrease outside their range of functioning is detected and solved while driving the vehicle. These conditions lead to the utilization of electric vehicle sensors, which monitor such temperature, current, and pressure surges in EVs.

As outlined in our new Urban Mobility Case Study, one of the most integral pieces of technology is the battery used to run every piece of hardware and software in the car. One of the critical tests performed on EV batteries is compression testing. As an EV battery is charged and stores more electrons, it swells. If the packaging housing the batteries are not intelligently designed to compensate for this swelling, you could have a major problem. For this challenge, Interface can supply a WMC miniature load cell. The load cell will measure compression force as a battery goes through charge cycles on a test stand to determine the force given off as the battery swells. This allows our customers to design the proper packaging for the batteries.

Test and measurement and sensor technology are critical to optimizing parts and components in innovative and trending markets like the the electric vehicle market. Interface is proud to be a key supplier to these customers and we look forward to contributing to the continued growth of this important technology.

To learn more about Interface’s commitment to the automotive and EV industries, check out some of our top application notes and case studies here: www.interfaceforce.com/solutions/automotive-vehicle/.

 

Faces of Interface Featuring Brian Peters

It is not everyday we get to share a story about an accomplished engineer and sales leader who also doubles as a racecar driver.  Let us introduce you to our Global Sales Vice President, Brian Peters, who has a fascinating professional and personal background that came together because of his passion for all things automotive.

As a kid growing up, Brian was always interested in cars, and more specifically the mechanics of cars. His dream had always been to work with cars professionally in some capacity. This dream led him to pursue a mechanical engineering degree at Arizona State University (ASU). The thing he loved most about this experience was that the educational program was focused on a hands-on experience. During his time at ASU, he also earned an internship doing automotive component testing and accident reconstruction, which became his first foray into a profession in the automotive industry.

In this position, Brian also received his first experience working with load cells. Part of the job entailed testing seatbelts, airbags and other automotive components using force sensors. The load cells would be used to measure the resistance and force of these components in various situation. It just so happened that some of the load cells that Brian was working with were Interface load cells.

Later on in his career, Brian began looking for a new opportunity. Around the time of the 2008 economic downturn, he was referred to Interface who was looking to hire an application engineer. In 2009, Brian came on board as an Interface Application Engineer. His focus was on helping to solve force-related design and testing challenges across a wide variety of industries including automotive, aerospace, oil and gas and more.

His success with Interface helped in rise through the ranks to become a regional sales director, then national sales director. Most recently, Brian has been promoted to the position of global sales VP for Interface. In this role, Brian is responsible for all worldwide sales for Interface, including US manufacturer’s reps and international distributors. He works closely with his application engineers and regional sales team, as well as the outside sales network to ensure customers are happy and satisfied with their experience working with Interface products and services. He also continues to work directly with customers to help them solve complex challenges related to force and torque testing of new technology.

I feel very fortunate to be a part of the Interface team and take pride in the fact that Interface offers the most reliable and accurate product on the market and knows that each and every member of the organization works hard to maintain its 52+ year track record of excellence.” Brian Peters, Global Sales VP

Brian also enjoys the opportunity to solve customer needs across every industry. His love of automotive mechanics has expanded to other sectors and he loves to take on new challenges in these sectors. Brian also works closely with energy market leaders.  Read more from a recently contributed Article by Brian Peters 20 Most Promising Energy Tech Solution Providers 2020.

Brian’s automotive also passions persisted well outside of the workplace. Throughout his life he has remained connected to cars and racing. Brian is a regular on the racetrack, whether he’s racing or helping other drivers train.

He often competes in Sports Car Club of America (SCCA) racing, which involves precision driving through a designated course marked with cones. While not what you would consider a fast race in comparison to NASCAR and Indy Car Racing, the level of technical expertise and ability to handle powerful cars necessary to compete in SCCA is immense. Brian has even competed in SCCA championship events throughout his career in the sport. In addition, Brian also used to train drivers, both military and enthusiasts. But don’t take our word for it, check him out on the track!

In short, the automotive industry has had a major impact on Brian’s life, and he feels extremely fortunate to be able to keep up with this dream through his personal and professional work. However, above all else is family. Brian credits his ability to thrive professionally and continue with his dream of racing to his wife of 20 years and three young daughters. He expressed that their love and support has enhanced his life like nothing else could and without them he would not be in the position he is today.

We are thankful to have you on our team Brian and we are thrilled to finally be able to tell your awesome story. To learn more about the outstanding people that make Interface go, please subscribe to our blog for more Faces of Interface ForceLeaders profiles and host of educational material related to force measurement and it’s applications in real life at www.interfaceforce.com/blog/.