Posts

ForceLeaders Summit Milwaukee

ForceLeaders Summit is heading to Milwaukee, Wisconsin. The Interface sensor workshop brings together experts in force measurement detailing applications, products, FAQs, and technical tips. We detail load cells, transducers, multi-axis sensors, data acquisition, wireless systems, instrumentation, and more. Registration required, limited seating. The event takes place in Brookfield, just outside of Milwaukee.

Fatigue Testing with Interface Load Cells

Engineers rely on fatigue testing to ensure the safety and reliability of their product designs and structures. By understanding how materials behave under repeated loading, engineers can design components resistant to fatigue failure.

Fatigue testing requires accurate and reliable force measurement. Interface uses ‘fatigue-rated’ as an exact specification that defines a special class of load cell design and construction. Interface fatigue-rated load cells are designed to withstand the rigors of repeated loading, which makes them ideal for even the most demanding high cycle count fatigue testing applications.

In a typical fatigue testing setup, Interface fatigue-rated load cells are attached to the test specimen or the test machine, and the cyclic loading is applied according to the test protocol. The load cells continuously record the applied forces or stresses, allowing engineers and researchers to monitor how the material responds to repeated loading.

By analyzing the data from Interface load cells, researchers and material engineers can determine the material’s endurance limit, fatigue life, and stress-strain behavior. This information is invaluable for optimizing material selection, design, and manufacturing processes to enhance product performance and reliability while identifying fatigue and potential failure risks.

The use of fatigue-rated load cells and data logging instrumentation is necessary for most test and measurement applications, particularly when materials, parts, or assemblies are tested for destruction. This is true because an accurate record of the forces at every moment of the tests is the only way an engineer can analyze the stresses that occurred in the moments just before the ultimate failure. Read more about fatigue testing in our Interface’s Technical Library.

Interface Fatigue-Rated Load Cells

1000 Fatigue-Rated LowProfile® Load Cell

1000 High Capacity Fatigue-Rated LowProfile® Load Cell

1500 Low Capacity LowProfile® Load Cell

1208 Flange Standard Precision LowProfile® Load Cell

Profile of a Fatigue-Rated Load Cell

  • Design stress levels in the flexures are about one-half as high as in a standard LowProfile load cell.
  • Internal high-stress points, such as sharp corners and edges, are specially polished to avoid crack propagation.
  • Extraneous load sensitivity is specified and adjusted to a lower level than in a standard LowProfile load cell.
  • All Interface fatigue-rated load cells have a specified service life of 100 million fully reversed, full-capacity loading cycles.

No one can accurately predict exactly when the failure will occur, nor which part of an assembly will be the weakest link that eventually will fail. This is why high cycle count testing is the best way to measure fatigue life. To read more about fatigue testing and fatigue theory, consult Interface’s Load Cell Field Guide.

Fatigue Testing Applications

Interface fatigue-rated load cells are used in various industries, including aerospace, automotive, civil engineering, and manufacturing. They are used to test various products, from aircraft wings and landing gear to furniture and industrial machinery.

How Interface fatigue-rated load cells are used in fatigue testing:

  • Aerospace: Interface fatigue-rated load cells test the durability of aircraft wings, landing gear, and other aerospace components. This helps to ensure that aircraft can withstand the rigors of repeated takeoffs, landings, and flights. These load cells test the materials used for structures and even rockets.
  • Automotive: Interface fatigue-rated load cells test the fatigue life of engine components, chassis, and suspension systems. This helps to ensure that vehicles are safe and reliable and that they can withstand the stresses of everyday driving.
  • Civil engineering: Interface fatigue-rated load cells test the fatigue resistance of bridges, buildings, and critical infrastructure. This helps to ensure that these structures can withstand the loads they are designed to carry and are safe for the public.
  • Manufacturing: Interface fatigue-rated load cells test the fatigue life of industrial machinery, tools, and consumer products. This helps to ensure that these products are reliable and can withstand the demands of everyday use.

Watch how Interface load cells are used in this bike frame testing application.

Interface has specialized in fatigue-rated load cells and their applications since our founding in 1968. Our LowProfile® fatigue-rated load cells provide up to 100 million duty cycles, and the gaged sensors in every load cell are individually inspected, tested, and certified to meet our rigid performance standards.

It is imperative to choose the right load cell for your fatigue testing application. Load cells come in various sizes and capacities, so it is vital to choose one that is right for your fatigue testing application. Ensure you know the maximum load that will be applied to the load cell, the type of loading, the accuracy requirement, and the environmental conditions for testing. Consult with Interface application engineers to find the suitable load cell for your testing requirements.

ADDITIONAL APPLICATIONS AND RESOURCES

CPG Bike Handlebar Fatigue Testing

Interface Specializes in Fatigue-Rated Load Cells

Prosthetics Load and Fatigue Testing App Note

Furniture Fatigue Cycle Testing App Note

Aircraft Wing Fatigue App Note

 

Interface Validates Trends in Automotive Test and Measurement

As a trusted supplier to automotive testing labs and automakers of precision sensor technologies for force, torque, and weighing applications, the depth of our product line is vital to support research, testing, and innovation in the industry. In particular, there is a high increase in the use of Interface torque transducers for automotive test and measurement use cases.

We strive to provide the latest sensor technology to help our customers move at the pace of automotive innovation. Over the years, we have developed new products for testing and monitoring advancements in all vehicles and supporting R&D into new automotive types like electric vehicles (EVs) and autonomous vehicles. Learn more in the case study: Accelerating Automotive Excellence with Interface Testing Lab Solutions.

Growing Demands for Torque Transducers in Auto Testing

Based on current demands for Interface measurement solutions, the auto industry is experiencing a high upsurge in using torque transducers. Specifically, EV manufacturers and parts makers are using torque measurement in testing the performance of electric motors and powertrains.

EVs have become a significant force and torque measurement sensor technology user, including our popular AxialTQ™ Rotary Torque Transducer product line. Many of our transducer models are also being used to test EV battery technology, including storage, capacity, and more.

Another growing use case requiring cutting-edge torque transducers is testing advanced driver assistance systems (ADAS) performance. ADAS systems rely on various sensors, including our torque transducers, to measure and control the vehicle’s dynamics. In these use cases, automotive engineers rely on supreme accuracy due to the critical nature of this safety feature. These types of use cases are pushing the requirement for accuracy further.

Finally, our torque transducers are being used in experiential automotive technologies such as fully autonomous and driver-assisted vehicle innovations. The accuracy of measurement is instrumental in bringing these inventions to market. Size, weight, and power (SWaP) is also a premium factor in these types of sensors. As more and more sensor technology is added to autonomous vehicles, the sensors must become more compact and efficient.

Specific products that Interface is supplying for these types of testing programs include high-accuracy reaction and rotary torque transducer technologies. This includes more miniature lightweight torque transducers to make integrating into test machines, production lines, and vehicles easier. Our expansion of Interface Mini Torque Transducers is helping with this requirement. We also provide more wireless torque transducer capabilities, eliminating the need for cables and wires and making testing more convenient and efficient.

Use Interface’s Torque Transducer Selection Guide to find the right product for your application requirements. Join Interface at the next Automotive Testing Expo to see live demonstrations of Interface measurement solutions.

Automotive Industry Applications Using Torque Transducers

Tire Force And Moment Using Contactless Force and Torque Transducer

A tire production company wants to put their tires under a stress test. They want to research the dynamic control capabilities of their tires. They want to measure both the torque and lateral force of the tire. Interface suggests using the AT105 Contactless Force and Torque Transducer to measure the tire lateral force and torque. Torque and force results can be displayed and graphed when connected to the SI-USB4 4-Channel USB Interface Module. After conducting a stress test on their tires, the tire production company could record and log the measurements of the torque and lateral forces implemented on their tires. Read Tire Force and Moment App Note

Vacuum Testing Using Rotary Torque Testing to Optimize Automotive Performance

The vacuum pump in a car plays an integral part in several systems, such as power brakes, HVAC, and sometimes even in the turbocharger or emissions control systems. Its primary function is to create a vacuum or negative pressure within a specific system. A torque test needs to be performed to ensure it is performing correctly. Interface’s T2 Ultra Precision Shaft Style Rotary Torque Transducer with torque couplings can be attached to the vacuum pump during performance testing. It will measure the amount of torque that is being used on the pump’s motor or drive system. When connected to the customer’s computer, results can be displayed, recorded, and logged using the SI-USB4 4-Channel USB Interface Module. Read Vacuum Testing for Automotive Performance

Torque Measurement For Electric Vehicles

Electric vehicle manufacturers need a torque measurement system for motor testing. These motors run at significantly higher rotational speeds than their internal combustion engine (ICE) counterparts and have much higher power densities due to their small size and lightweight. The system would be used to test the torque and speed of their electric motors to achieve and ensure optimum instant peak torque performance. Interface’s AxialTQ™ Wireless Rotary Torque Transducer is highly accurate with the highest quality torque measurement. This product comes with the AxialTQ™ Output Module and the provided AxialTQ™ Assistant software that can be installed on a test bench. Data results are calculated and collected in real time. Read Torque Measurement for Electric Vehicles App Note

Motor Test Stand Using Torque Transducer

In the quality control lab at a major automotive manufacturing company, a test engineer needed to test, record, and audit the torque produced by a new motor design under start load. Interface supplied our AAxialTQ™ Wireless Rotary Torque Transducer connected between the motor and the differential on the drive shaft that could measure and record these torque values. Based on the data collected using the AxialTQ, AxialTQ Output Module, and customer laptop, the Test Engineer recommended optimizing the torque of the new motor design.

ADDITIONAL RESOURCES

Anniversary of Interface Miniature Torque Transducers

Fuel Pump Optimization and Rotary Torque

Choosing the Right Torque Transducer

A Comparison of Torque Measurement Systems White Paper

Advancing Auto Testing with Interface Measurement Solutions

Automotive Window Pinch Force Testing

Automotive Head Rest Testing

Trends in Torque Transducer Applications in the Auto Industry

Torque transducers are crucial in force measurement testing, especially in the automotive industry. A torque sensor is a transducer that converts a torsional mechanical input into an electrical output signal.

Interface’s experience suggests the automotive industry’s most frequently used torque transducers are rotary torque transducers, like our AxialTQ, which measure dynamic force. These transducers are necessary for applications where the torque transducer must rotate when attached to a spinning shaft. A rotary torque transducer provides a method of getting the signal off the rotating element without an attached cable.

Automotive testing labs also commonly use a fixed-style mount instead of a floating style. This is because fixed types are ideal for high-speed applications. Fixed and supportive mounting is often mandatory. Fixed mounts apply only to sensors with bearings, which involves attaching the sensor housing to fixed support for added stability.

Torque plays a critical role in automotive testing, and Interface has more than 50 transducer models with multiple capacities and sizes. Use our Torque Transducer Selection Guide to help define the suitable model for your specific application.

Interface will demonstrate the range of torque transducer solutions at the upcoming Auto Test Expo. You can get your free pass online.

Top Trends in Torque Transducer Applications

Torque transducers create faster, more efficient, and safer vehicles. Interface transducers are designed to meet the growing demands of the auto industry.

  • Interface recognizes the growing use of torque transducers to measure the performance of electric vehicles (EVs). Torque transducers are essential for testing the performance of their electric motors and powertrains. Torque transducers are used to measure the torque output of electric motors, which is critical for ensuring that they meet their performance specifications. Read Torque Measurement for Electric Vehicles.
  • Interface torque transducers are helping to assess advanced driver assistance systems (ADAS) performance. ADAS systems rely on numerous sensors, including torque transducers, to measure and control the vehicle’s dynamics. Torque transducers measure the torque applied to the steering wheel and brakes, which ensures that ADAS systems function correctly.
  • Torque transducers measure the torque applied to the wheels, which ensures that autonomous vehicles can safely navigate their environment.

Torque transducers are essential research, design, testing, and manufacturing tools. As emerging automotive technologies evaluate new components, materials, and vehicle capabilities, torque transducers provide vital measurement data to assess performance. We see this in the use cases for torque transducers in all phases of developing autonomous and self-driving vehicles, including the transition to flying cars.

Automotive Applications Using Interface Torque Transducers

AxialTQ™ Engine Dynamometer

One of our customers needed to measure the torque and the speed (RPM) produced by an engine and calculate it simultaneously. Using the Interface AxialTQ Wireless Rotary Torque Measurement System, which was developed in direct collaboration with over 30 end-users who shared their wish lists for operational priorities, user interface, design, features, real-world field issues, and more, the customer was able to measure and calculate the torque and rotational speed (RPM) of the engine in real-time while collecting the data accurately and simultaneously.

Lug Nut Assembly

Proper lug nut assembly is critical to a quality vehicle and meeting strict quality and safety requirements. Interface’s customer wants to increase productivity for automobile wheel installation while ensuring the lug nuts are installed to the proper torque values for safety. Interface supplied five T33 Spindle Torque Transducers for use in the customer’s wheel installation assembly machine, which comes standard with +/-5VDC analog output for torque measurements and a 360 pulse, 2-track encoder for speed/angle measurement. The customer could perform five simultaneous torque measurements during wheel installation in seconds using this solution.  The T33 Spindle Torque Transducer provided a +/-5VDC signal for torque and a TTL signal for angle measurement to the customer’s control system for logging, evaluating, and recording the results.

Another important consideration for testing torque with these sensors is the coupling. Couplings are a critical component of the torque transducer that ensures the isolation of torque loads. Couplings should be used in all applications, and the selection of the coupling type is based on the speed of the application. For higher-speed applications, you will want to look for high-quality couplings. The coupling helps to prevent error and damage from extraneous loads. You can learn more about selecting the proper coupling in our new blog, Torque Transducers and Couplings are the Perfect Pairing.

Every industry segment has numerous priorities as they compete to design, engineer, build, and supply new and innovative vehicles. From the focus on the extreme performance of racing vehicles to the safety focus of consumer automobiles, Interface can provide force and torque measurement solutions to help you today and in the future.

ADDITIONAL RESOURCES

Tire Force and Measurement

Fuel Pump Optimization & Rotary Torque

Engine Head Bolt Tightening

Dual Motor Dynamometer

Accelerating Automotive Excellence in the Test Lab

Force Measurement Solutions Demonstrations at Automotive Testing Expo

 

Wireless Telemetry Systems 101

A wireless telemetry system enables the remote measurement and transmission of data from one location to another without the need for physical wired connections.  As technology continues to advance, wireless telemetry systems are becoming increasingly sophisticated, reliable, and secure, enabling them to be applied in a wide range of industries and use cases for test and measurement applications.

Interface offers a wide range of wireless telemetry products. Components in wireless telemetry systems typically include sensors, transducers, instrumentation, communication modules, transmitters, displays and printers.

The sensors are used to measure tension, compression, weight, torque, or any other measurable quantity. Interface utilizes proprietary strain gage sensor technologies. Transducers convert the analog signals from sensors into digital data that can be processed and transmitted to instrumentation.

Load cells are commonly used with wireless telemetry systems to measure and transmit data related to the force or weight applied to an object. The load cell converts the force exerted on it into an electrical signal, which can then be wirelessly transmitted to a remote monitoring system.

The most popular Interface wireless load cells are our WTS 1200 Standard Precision LowProfile® Wireless Load CellWTSTL Wireless Tension Link Load Cell, WTSLP Wireless Stainless Steel Load Pin and WTSSHK-D Wireless Crosby™ Load Shackle. Interface works with our customers to develop engineered-to-order wireless solutions by request.

The analog output from the load cell may require signal conditioning to ensure accuracy and compatibility with the wireless telemetry system. Signal conditioning can also be required for amplification, filtering, and analog-to-digital conversion to convert the analog signal into a digital format.

Wireless communications modules are responsible for transmitting the data over wireless channels. It can use various communication technologies like Wi-Fi and Bluetooth depending on the application’s requirements. The transmitter is responsible for wirelessly communicating the load data to the receiving end of the telemetry system.

There are various options for data collection. Data acquisition instrumentation is preferred in force measurement applications for the purposes of collecting vast amounts of the data from sensors and transducers and preparing it for transmission.

At the receiving end of the telemetry system, another wireless communication module receives the data from the load cell’s transmitter. Once the data is processed, it can be analyzed, logged, and displayed on a user interface, such as a computer dashboard or a mobile app. This allows operators, engineers, or users to monitor the load values in real-time and make informed decisions based on the data

Interface Wireless Telemetry System (WTS) Solutions

The Interface Wireless Telemetry System (WTS) offers flexibility by eliminating physical connections, making it easier to deploy sensors in remote or challenging environments. Wireless telemetry systems offer more flexibility in sensor placement and system configuration.

The absence of physical wires allows for easier repositioning or adding new sensors without significant infrastructure changes. This setup is particularly useful in scenarios where it is challenging or impractical to use wired connections, such as in large-scale industrial applications or when monitoring moving or rotating machinery.

Wireless Telemetry System Components

Wireless Transducers

Wireless Transmitters

Wireless Receivers

Wireless Output Modules

Wireless Displays and Instrumentation

This is a list of what types of products are available. The Interface WTS offering continues to grow with added products to the line. Check out the Wireless Modular System Overview for more system details.

Wireless Telemetry System Benefits

The Interface WTS is a wireless telemetry system that transmits high-quality data to single and multiple devices. It offers a wide variety of benefits, including:

  • High accuracy: The WTS offers measurement accuracy of ±0.02% of full scale, ensuring that you get accurate readings from your sensors.
  • High speed: It is a high-speed system that can transmit data at up to 1000Hz.
  • High resolution: The WTS has a resolution of 10,000 counts, which means that you can measure even slight changes in force.
  • Multiple configuration options: The WTS can be configured to meet a wide variety of needs. You can choose from a variety of transmitters, output modules, receivers, antennas, and displays.
  • Easy to use: It is a modular system that can be easily expanded to meet the needs of your application. It is supported by our powerful WTS Toolkit configuration software that makes it easy to set up and use.
  • IP-rated enclosures: The WTS transmitters and receivers are available in two different sized enclosures that are rated to IP67, making them dustproof and waterproof.

A major benefit of wireless telemetry systems is the ability to adapt and expand by adding additional sensors or devices to system, without the constraints of wireless and cables. They are easy to integrate, and installation is fast for immediate benefits.

Wireless telemetry seamlessly integrates with the Internet of Things (IoT) and cloud-based platforms, enabling centralized data storage, analysis, and easy access from multiple devices.

Read: Interface Wireless Telemetry System Review

Applications Using Interface Wireless Telemetry System Solutions

Aerospace: Wireless options are preferred for large projects like require careful movement and testing of aircraft, components and systems. Providing flexibility in real-time data without the cable is a huge benefit. See these WTS solutions for Aircraft Engine Hoist and Airplane Jacking System

Industrial Automation: Load cells with wireless telemetry are commonly used in industrial environments for weighing large objects, such as in material handling, manufacturing, and logistics. Check out IoT Lifting Heavy Objects.

Medical and Healthcare: Wireless medical telemetry systems are used for patient monitoring, such as in wearable health devices. In medical settings, wireless load cells are used in patient lifts and hospital beds to monitor patient weight and movement. Learn more in our Patient Hoyer Lift application.

Agriculture: The agriculture industry uses WTS for monitoring crop management programs and measuring the weight of produce, animal feed, or livestock. Check out this use case: WTS Equine Bridle Tension System App Note.

Energy: The energy industry utilizes wireless load cells and telemetry products for remote monitoring of oil wells, pipelines, and storage facilities. Check out Tank Weighing and Center of Gravity

Infrastructure: Civil engineers use WTS for assessing the health and integrity of structures like bridges and dams. Monitoring loads on structures like bridges and cranes to ensure safety and structural integrity. Check out Road Bridge Lift Monitoring.

Manufacturing: There are many examples of manufacturing WTS use cases. Wireless load cells are being used to monitor the weight of products as they move through the production line. This information can be used to ensure that products are meeting quality standards, and to identify any potential problems early on by fully utilizing the wireless telemetry capabilities.

Construction: In the construction industry, wireless load cells and telemetry systems monitor the load on beams and columns during construction to ensure that structures are safe and stable, and to detect any potential problems before they cause an accident. Check out Jib Crane Tension Monitoring.

Transportation: In the transportation industry, wireless load cells are being used to monitor the weight of cargo on trucks and trains to ensure that loads are not overloaded, and to comply with regulations. Read IoT Waste Management Container Weighing.

Automotive: The industry utilizes a number of machines and systems to test components used in the making of automobiles. Read how WTS is used in this brake testing application: WTS Brake Pedal Force Testing.

Entertainment: Protecting the artists, equipment and attendees is top of mind for all venues. Wireless systems are used to monitor environmental conditions, rigging, display mounts and more. Read Multi Stage Load Monitoring.

Integrating load cells with wireless telemetry systems provides a convenient and efficient way to monitor force or weight data remotely, allowing for real-time data analysis and enhancing the automation and safety of various processes.

If you are looking for a reliable and accurate wireless telemetry system, the Interface WTS is a great option. It is a powerful and versatile system that can be used in a wide variety of applications. and industry use cases.

Accelerating Automotive Excellence in the Test Lab

The automotive industry has many regulations and requirements in place to ensure vehicle safety and reliability of all vehicles. The responsibility for validating these standards of quality primary falls on the automotive original equipment manufacturer, who often rely on test labs to assess product specifications, safety, quality, and durability. Working together, the OEM and test labs are responsible for confirming regulations and requirements are met on every vehicle, part, component and sub-component that hits the market.

Interface understands that test labs need the very best in terms of testing devices and equipment. Interface, a supplier to automotive testing labs for decades, has a broad range of products used in all types of torque, force, and weighing applications. Accelerating Automotive Excellence With Interface Testing Lab Solutions is a new case study that details common challenges and solutions offered by Interface to fit the requirements of today’s modern automotive industry testing lab.

Our products are used all types automotive testing lab applications. These products include:

  • Load Cells and Various Force Measurement Devices
  • Rotary and Reaction Torque Transducers
  • Weight Measurement Equipment
  • Calibration Grade Devices
  • Test Stands and Load Frames
  • Analog and Digital Instrumentation
  • Data Acquisition Systems

Quality, accuracy and durability are key considerations for the type of measurement device selected for different tests, whether it is for brake caliper testing or in airbag connector tests.

General Automotive Lab Test Types

  • Component and Sub-Component Level Testing
  • Suspension Testing, including component level, such as shocks, springs and subframes and multi-post shaker rigs
  • Durability Testing, such as seats, window frames, material
  • Safety Testing such as crush, seat belt testing, and airbag mounts
  • Crash Walls

For general automotive testing solutions, key considerations for auto testing lab requirements are high cycle count capabilities and load cell integration in actuation systems. Our products are used for off-axis and impact loading and measuring test article failure net results. The equipment can be exposed to many environmental challenges so load cell ruggedization is very important to lab professionals.

Automotive Driveline Test Types

  • Engine and Motor Performance and Durability Tests
  • Engine and Motor Efficiency Testing
  • Power Analyzation (Electric)
  • Driveline Durability and Efficiency
  • Component Testing
  • Accessory Drive Testing

For automotive driveline testing, considerations on equipment include peak torque ratings, rotating torque capabilities. Easy transducer integration with couplings matters for these tests. Additional factors for equipment include signal requirements, environmental conditions, noise levels, both electrical and mechanical and vibration. The devices used in testing article failure are very important for evaluating net results.

Test labs also prefer precision sensors for critical tests, which include our 1200 Series LowProfile™ Load Cells with their special moment compensated design. Popular ruggedized Interface products used in automotive testing include our 2400 series and 3200 series Stainless Steel LowProfile™ Load Cells and our WMC Miniature Load Cells

With a wide range of automotive vehicle load cell sensors, force and torque measurement capabilities and features such as moment compensation, temperature compensation, and mechanical overload protection, Interface can help you design a solution perfect for your automotive application. We also offer custom one-off sensors and special application-specific designs.

To learn more about testing lab solutions, be sure to tune into our Interface Testing Lab Essentials Webinar.

Accelerating Automotive Excellence with Interface Testing Lab Solutions Case Study

Heavy Truck Test and Measurement Solutions

Interface is a trusted supplier to the vehicle industry. Manufacturers of vehicles and components rely on our sensor technologies for measuring force, torque, and weight. In the vehicle subsector of trucks, there are three main classifications of this type of vehicle based on weight: light, medium and heavy trucks, sometimes called heavy-duty.

Interface devices are commonly used in heavy-duty truck design and testing for various purposes, from structural to aerodynamic testing. Manufacturers use our load cells, torque transducers and instrumentation in testing labs to ensure vehicles meet regulatory and performance standards. Component and parts makers utilize our sensors and instrumentation for research, design, development and production, whether they are making brake pedals or tires.

Heavy Duty Truck Test and Measurement

  • Structural Testing: Interface products are used to evaluate the structural integrity and performance of truck components and systems. Load cells may be installed at critical points such as suspension mounts, chassis connections, and body attachments to measure forces and stresses experienced during static or dynamic testing. This helps engineers understand the load distribution, identify weak points, and optimize the design for enhanced durability.
  • Brake System Testing: Force measurement devices play a crucial role in assessing the performance and efficiency of a truck’s braking system. Load cells are commonly employed to measure the forces exerted on the brake pedal during braking maneuvers. This data helps evaluate braking performance, optimize braking force distribution, and ensure compliance with safety standards. Wireless load cells are growing in use for these types of tests. See: WTS Brake Pedal Force Testing
  • Tow and Haul Assessments: Determining a heavy-duty truck’s towing and hauling capabilities requires measuring the forces. Interface measurement devices are used to quantify the forces experienced by the vehicle during towing or hauling tasks. Load cells installed at key attachment points, such as trailer hitches or cargo beds, are used to measure the forces applied under different loads. This data aids in establishing safe operating limits and optimizing the truck’s design for maximum payload capacity.
  • Suspension Testing: Strain gage based sensors are frequently utilized to evaluate the performance of a truck’s suspension system and its impact on ride comfort. Load cells or accelerometers may be used to measure forces, vibrations, and accelerations experienced by the vehicle under various road conditions. This helps engineers optimize suspension settings, tune shock absorbers, and design suspension components that provide a balance between load-carrying capacity and ride quality.
  • Crash Testing: High-accuracy load cells and instrumentation are integral to crash testing heavy-duty trucks to evaluate occupant safety and structural integrity. Sensors are used to measure impact forces, accelerations, and deformations during controlled crash simulations. This data helps engineers assess the effectiveness of safety features, such as crumple zones and restraint systems, and improve the truck’s crashworthiness. Read: Vehicle Crash Test Load Cell Wall
  • Aerodynamic Testing: Measurement tools are employed to assess the aerodynamic performance of heavy-duty trucks. Load cells and systems used to measure the forces acting on the vehicle’s body, including drag and lift forces helps optimize the truck’s shape, reduce aerodynamic resistance, and improve fuel efficiency.

Another force that Interface has a great deal of experience measuring and helping our customers to monitor is load pulled or hoisted by components attached to trucks or other heavy machinery. As an example, Interface can measure the load capacity of a truck hitch to test the maximum capacity of an object it is pulling. It can also monitor the hitch in real time to ensure the load combined with the velocity of the vehicle or the gradient of a roadway is not creating a risk of failure.

In addition to testing the vehicles, safety standards exist for large, long and short haul trucks regarding their weight limits for most highway systems. It is why you often see weigh stations across the highway on road trips. Force sensors are often used in these types of weigh stations due to our product’s high capacities, accuracy, and reliability. Adversely, we also measure these types of vehicles capacity prior to hitting the open road to ensure the vehicle is designed to manage the amount of load in transport.

 

Suspension Testing for Heavy Duty Trucks

It is important to heavy duty track manufacturers to thoroughly test suspension. Automotive suspensions require fine tuning for best performance on various roads and conditions. Simulation of bumps, banking and other road conditions result in off-axis loading. Interface’s 1200-series load cell were mounted on top of each post in a 4-, 5-, or 7-post rig, which allowed them to measure forces during simulated driving. Moment compensating design of 1200-series load cells provide accurate readings during off-axis loading. This solution provides highly accurate (0.04%) measurement of loads applied to individual suspension points.

Truck Weighbridge

A customer owns a truck company and needs to record the weight or loads being carried by their trucks. They would like a wireless weighing bridge that is able to transmit, log, and display the results in real time. Interface suggested installing multiple WTS 1200 LowProfile™ Load Cells under a weighing bridge. When the truck drove over it, the load cells transmitted the force results wirelessly to the WTS-BS-4 Industrial Base Station connected to the customer’s PC with provided Log100 software. The WTS-LD2 Wireless Large LED Display also displayed the weight inside for the driver to see in real time. Using this solution, the customer was able to measure, log, and graph the different loads their trucks carried wirelessly onto the weighbridge with success.

Tire Testing for Semi-Trailers

A typical semi-trailer truck consists of a tractor unit with two front wheels and two sets of tandem axles at the rear, each with two wheels, resulting in a total of 18 wheels. By trade, 60,000-pound trailers needed at least three axles and 12 tires. Testing tires and mounting requires precision for these vehicles that are responsible for trucking goods and materials across the interstates and highways. A tire production company wants to put their tires under a stress test to research the dynamic control capabilities of their tires. Interface suggests using the AT105 Contactless Force and Torque Transducer to measure both the lateral force and torque of the tired being tested. Torque and force results can be displayed and graphed when connected to the SI-USB4 4 Channel USB Interface Module. After conducting a stress test on their tires, the tire production company was able to record and log the measurements of the torque and lateral forces implemented on their tires.

These are just a few examples of the types of test and monitoring solutions provides for trucks and other heavy duty vehicles. To learn more about our sensor’s capabilities in the automotive test and measurement markets, visit Automotive and Vehicle Solutions.

ADDITIONAL RESOURCES

Truck Weighbridge

Weighing

Garbage Truck On-Board Weighing App Note

Electric Vehicle Structural Battery Testing

Torque Measurement for Electric Vehicles

AxialTQ Engine Dynamometer App Note

Bluetooth® Brake Pedal Animated Application Note

Interface Powers Smart Transportation Solutions

Smart transportation refers to the integration of advanced technologies and intelligent systems in the transportation sector, including infrastructure and vehicles, which improve efficiency, safety, and sustainability.

The transportation industry is getting smarter with advancements in autonomous driving and electric vehicles, unmanned aerial vehicles, and electric airborne vehicles, high-speed trains and light rails, and transporation ways. Behind these innovations are critical test and monitoring solutions helping engineers ensure absolute safety and quality during development and in use for real-time monitoring.

Interface transducers are used to measure force, torque, or weight for both testing and integration into smart transportation systems. Our load cells, torque transducers, scales, load pins, tension links, and multi-axis sensors provide vital measurement data for design, development, test, and performance monitoring in various smart transportation applications.

A few examples of smart transportation inventions and use cases that utilize Interface advanced sensor technologies include:

  • Smart Cargo Monitoring: Load cells are installed in trucks, trailers, or shipping containers to monitor the weight and distribution of cargo. These load cells provide real-time data on the load’s weight, ensuring compliance with weight limits and preventing overloading, which can lead to safety hazards and increased fuel consumption.
  • Structural Testing of Vehicles: Load cells and torque transducers are used to measure forces and loads applied to vehicle structures during physical testing. This includes crash tests, structural integrity evaluations, and load capacity assessments. The data obtained helps engineers analyze the structural performance and safety characteristics of vehicles, enabling improvements in design and manufacturing processes for smart transport.
  • Infrastructure Load Data Acquisition: Load cells can be employed in roads, bridges and other transport infrastructure as part of the load data acquisition systems. These systems measure the dynamic forces and loads experienced by vehicles. By attaching load cells to strategic points on the vehicle, such as suspension components or the chassis, engineers can capture data related to acceleration, braking, cornering forces, and road-induced vibrations. This information aids in vehicle development, durability testing, and optimization of suspension and chassis designs. They also help design durable civil engineering projects and infrastructure.
  • Intelligent Weighing Systems: Load cells can be incorporated into weighing systems at weigh stations or toll booths. By measuring the weight of vehicles passing through, these systems can accurately determine toll fees, enforce weight restrictions, and gather data for traffic management and planning purposes.
  • Smart Suspension Systems: Load cells are integrated into suspension systems of vehicles, such as trucks and buses, to monitor load distribution and adjust suspension settings accordingly. This helps optimize vehicle performance, enhance stability, and improve ride comfort.
  • Load Sensing Axles: Load cells can be installed in axles to measure the weight carried by individual wheels or sets of wheels. This information is crucial for load balancing, tire pressure monitoring, and detecting potential axle overload situations.

Since the beginning of “Smart Mobility,” Interface has been supplying force sensing solutions used for electric or self-driving vehicles. Specifically in automotive, Interface has developed and supplied precision force and torque test and measurement systems that meet the demands for superior testing requirements of all components. The automotive market is subjected to extremely strict regulations. Therefore, test and measurement are critical for safety, reliability, durability, and overall smart vehicle performance.

In the context of smart rail transport and railways, force measurement is crucial in the testing and evaluation of rail vehicles, including locomotives, passenger trains, and freight wagons. Load cells and force sensors are utilized in numerous ways. Load cells are used in braking systems to measure the forces exerted during braking maneuvers. This allows design engineers to assess the effectiveness of automated braking system and ensure compliance with safety standards. The same types of sensors can be used to measure the vertical, lateral, and longitudinal forces acting on the bogies (wheelsets) of rail vehicles enable smart operating conditional adjustments.

Smart Transportation Sensors for Stopping Train Derailment

Force measurement systems can be employed to measure the contact forces between the wheels and the track. This enables the assessment of wheel-rail interaction, including wheel-rail forces, lateral forces, and rolling resistance. Such data helps optimize track design, wheel profile selection, and maintenance practices to ensure safe and efficient railway operations. Using our Pillow Block Load Bearing Load Cell is a great solution for monitoring trains on a track, in-motion. When our PBLC1 is installed on a track, and the train runs across it, the sensor can provide a signal to a station elsewhere in the world. If any force indicators suggest that there could be a problem with the weight the train is holding or the train itself, the sensor can also trigger an automatic shutdown of the train. These sensors could prevent major damage from train derailments and other train related incidents by detecting errors before the inflict damage. This is a critically important application as innovators begin to release high speed trains for cross country travel.

Smart Trucking Weighing Solution

In this use case, a smart transportation trucking company truck company needs to precisely record the weight or loads being always carried. They would like a wireless weighbridge that is able to transmit, log, and display the results in real time. Interface suggests installing multiple WTS 1200 LowProfile™ Load Cells under a weighing bridge. When a truck drives over it, the load cells will transmit the force results wirelessly to the WTS-BS-4 Industrial Base Station connected to the customer’s PC with provided Log100 software. The WTS-LD2 Wireless Large LED Display can also display the weight inside for the driver monitor at all times.

Smart Vehicle Crash Walls

Improving vehicle safety is smart. For this use case, Interface suggests using multiple 3A400 3-Axis Force Load Cells, and attach it to the back of a cement crash wall. When connected to the BX8-HD44 Interface BlueDAQ Series Data Acquisition System, force result measurements will be recorded and displayed on a computer. The sensors measure the force of impact for all their different vehicle crash testing demonstrations, providing high accuracy data to make the vehicles safer.

Electric Vehicle Structural Battery Testing

As electric vehicles push advancements in efficiency gains, structural battery packaging is at the forefront for optimization in smart transportation. This drives the need to validate structural battery pack design, both in terms of life expectancy against design targets as well as crash test compliance and survivability.  Interface’s solution to this challenge included the 1100 Ultra-Precision LowProfile Load Cells in-line with hydraulic or electromechanical actuators in customer’s test stand. Also utilized were 6A 6-Axis Load Cells to capture reactive forces transmitting through pack structure. Multi-axis measurement brought greater system level insight and improved product success. Using this solution, the structural tests performed validated the battery packs strong structural design.

Interface solutions for smart transportation are growing alongside the pace of innovation as we work with industry demands to provide solutions for what comes next.

Read more in our case study Interface’s Crucial Role in Vehicle and Urban Mobility Markets

ADDITIONAL RESOURCES

Making Products Smarter with Interface OEM Solutions

Testing Labs Choose Interface High Accuracy Products

Modernizing Infrastructure with Interface Sensor Technologies

Interface’s Steering Role in All Types of Transportation

Interface Weighing Solutions and Complete Systems

EV Battery Testing Solutions Utilize Interface Mini Load Cells

Bridge Seismic Force Monitoring Solution App Note

IoT Drone Parcel Delivery

Testing for Commercial Drones and Parcel Delivery

 

Testing Labs Choose Interface High Accuracy Products

Specialists focused on testing applications work in a variety of testing lab environments. In each lab, technicians rely on the tools to collect and report on data that is used to make products safer, guarantee performance, ensure quality, and to meet the strict industry standards and requirements. Accuracy in testing data is dependent on the precision measurement devices and instrumentation used to capture the results.

We supply lab engineers with high-accuracy sensor technologies used to complete rigid test requirements. Interface is the top provider of test and measurement products used for structural and material testing, static and fatigue testing, torsion effects, tension tests, calibration testing, and environmental testing. Read more in Types of Force Measurement Tests 101.

Our standard high precision load cells, torque transducers, multi-axis sensors, and instrumentation are used on every continent for T&M. Based on our quality and performance, we are the chosen supplier to calibration and testing labs. We see our products used today for continuous improvement programs, advancements in smart manufacturing and new product designs.

If it must be measured, Interface has a solution. Our products are designed for small and large testing facilities, including calibration-grade load cells, load frames and test stands, along with data acquisition systems. The wide variety of our force measurement solutions designed for testing labs means we play a role in every industry that is making a physical product and the test labs that validates the products performance.

Testing Labs and Types of Testing Using Interface Solutions

General Automotive Test Labs:

  • Component and Sub-Component Level Testing
  • Suspension Testing
  • EV Battery Testing

Automotive Driveline Testing:

  • Engine Performance and Durability Tests
  • Motor Efficiency Testing
  • Power Analyzation (Electric)

Aerospace Testing:

  • Full Scale Structural Static Testing
  • Component Fatigue Test
  • High Precision Thrust Testing
  • Simulators
  • Wind Tunnel Testing

Geotechnical and Civil Testing

  • Concrete or Asphalt Core Testing
  • Soils Testing

General Structural and Component Testing

  • General Push and Pull
  • Design Proofing
  • Life Cycle Fatigue Validation

Medical Device Testing:

  • Prototyping
  • PPAP Validation and FDA Certification
  • Device Lifecycle Testing

Consumer Product Testing Labs:

  • Design Validation
  • Material Testing
  • Fatigue and Failure Tests

Interface recently highlighted testing lab applications in our Test Lab Essentials Webinar. Here you can see the lab use cases and products as they are reviewed by our applications experts.

Each of these testing types requires different force testing equipment, and our experts work directly with testing lab professionals to determine the products or systems they need for single and ongoing test requirements.

As testing technologies becomes increasingly complex, off-the-shelf products may not meet the needs of every Interface customer. We lend engineers expertise in test and measurement to support unique and custom requirements to get the right sensor, instrument, and system in place.

Since our first load cells were designed five decades ago, we have built millions upon millions of load cells and torque transducers used in testing labs around the world. Our products are built to withstand the rigor and requirements needed for high quality and reliable data collection in test and measurement. Our test customers depend on us for proving accuracy, consistency, and reliability in performance.

ADDITIONAL RESOURCES

Interface and Testing Lab Applications

Testing Lab Essentials Webinar

Engine Dynamometer App Note

Consumer Product Testing Case Study

Interface Solutions for Safety and Regulation Testing and Monitoring

Metrologists and Calibration Technicians 101

Motor Test Stand

GS-SYS04 Gold Standard® Portable E4 Machine Calibration System

Electric Vehicle Structural Battery Testing

Furniture Fatigue Cycle Testing App Note

Regular Calibration Service Maintains Load Cell Accuracy