Posts

Recap of Latest Spin on AxialTQ Webinar

Interface recently hosted a new webinar in our ForceLeaders series that highlighted the revolutionary AxialTQ product.  The event reviewed the bearingless wireless rotary torque transducer design and detailed component specifications, why test engineers prefer the AxialTQ, and use cases for this precision measurement system.

If you were not able to attend the Latest Spin on AxialTQ event, you can watch the entire recording online here.

The revolutionary AxialTQ was first introduced in 2018. The design originated from the popular HRDT product that utilized a rotor stator gap design as a single component. After hundreds of users, we started the product engineering exercise to see how we could advance the soon-to-retire HRDT and evolve it into something that would perfectly fit current market conditions.

As technologies were changing testing protocols and requirements, such as for electric motors, alternative energy hardware, space vehicles and industrial machine automation, we wanted to add new functionality. Jay Bradley and the Interface engineering team began the process by looking at DIN size optimization, shorter stators, additional coupling options, advanced software configurations and simple “drop-in” replacement parts with a modular design.

After thousands of design hours and testing, Interface released the AxialTQ. The specialized product is a unique combination of accuracy, reliability and ease of use that redefines the standard torque measurement device in terms of function and durability.

Engineers prefer the new AxialTQ because of the time-proven sensing element with longer active area providing greater measurement sensitivity while being less vulnerable to shock loads.  The high-resolution digital electronics are state-of-the art. Uniquely, the large gap design up to 6 mm axial and 12 mm radial minimizes contact damage which is important at high-speed testing. It has 120-degree partial loop antenna on the stator to make installation easier.

Specialized design features of AxialTQ make it a great fit for test and production applications.

  • Crash-proof design for maximum reliability
  • Industry-leading gap to prevent damage to rotor stator at full speed
  • Simultaneous analog and digital outputs, enables real-time control and data collection
  • Interchangeable stators and output modules minimize parts inventory
  • Versatile design and wide range of configurations to match any application
  • Hardware is self-configuring
  • New advanced software with added features and logging capabilities
  • Rotor and stator coils designed using printed circuit boards for durability

The AxialTQ rotor sensing element and electronics are the heart of the system. It has a rugged design for all types of torque measurement applications.  It comes in 8 torque capacities. The status assembly matches to the rotor DIN size and is interchangeable with equipment DIN size rotor assemblies, increasing usability.  The USB digital output module has galvanic isolation on all outputs and has standard IP65 ingress protection.  It enables real-time control and accurate data collection.

Keith Skidmore shared several use cases during the presentation, including engine dynamometers, motor test stands and other automotive production line applications.

The AxialTQ is designed for testing anything that spins. It’s ideal in testing and production of hydraulic motors, EVs, helicopters, aircraft, and drones, along with windmills and industrial fans.  It’s great for testing forklifts, off-road and utility vehicles as wells as tractors and watercraft.  AxialTQ is also generally used for measuring torque on industrial motor assemblies, pumps, appliances, braking systems, and motor vehicle accessories.

Watch the entire webinar below to hear Keith and Jay share tips, specifications, frequently asked questions and how to get the most out of your torque measurement applications.

Learn more about AxialTQ here.

Couplings 101

One of the biggest challenges in the force measurement is dealing with misaligned loads. Misaligned loads can result in bad data and damaged test equipment. Therefore, it’s important to understand the affect these types of loading conditions can have on a force test and know of the ways to fix or account for it.

For every force test, there is typically a piece of equipment designed to deal with misaligned loads. Whether it’s simply applying the force device properly or if misaligned loads are unavoidable, using the right tools to reject misaligned load. Learning more about couplings is a great place start in knowing how to this power tool is designed to deal with misaligned loads in torque testing.

Couplings are a critical component to be used alongside torque transducer that ensures the isolation of torque loads. A coupling is a mechanical element that connects two shafts together to accurately transmit the power from the drive side to the driven side while absorbing the mounting error of misalignment of the two shafts. Essentially, they allow and compensate for misalignment in a torque test. It is one of the topics we discuss in our online webinar, New Twist on Torque.

For instance, if two shafts are coupled together and the center shafts aren’t aligned, measuring torque without a coupling may ruin the test, affecting the longevity of the parts and the performance of the measurement. With a coupling, the shafts don’t have to be perfectly aligned in length and can still provide an accurate torque test.

There are two main categories of couplings used in force measurement and the biggest difference in the two is the degree of freedom needed for the application. The categories are single-jointed and double-jointed. A single-jointed coupling allows for angular and axial misalignment, while double-jointed coupling allow for an additional radial misalignment. For floating mount installations, Interface recommend single-flex disk couplings. For fixed mount installations, double-flex disk couplings are required.

Couplings should be used in all applications and the selection of the coupling type is based on the speed of the application. For higher speed applications, Interface recommends a high-quality coupling with a flexible, yet sturdy construction made from premium metals.

Interface offers a wide variety of torque transducers and can provide couplings off the shelf or in a custom solution when necessary. One of our most popular torque solutions, which includes a coupling, is the Interface Model T1 Torque Coupling Rotary Torque Transducer. This solution integrates torque measurement with a robust double flex coupling.  The coupling and sensor are completely hollow, allowing the shortest possible distance between the coupled shaft ends. On-board digital electronics provide a ±5V output, low-noise signal. Powered by 12-28V DC, the strain gage based T1 Torque Coupling offers precision rotary torque measurement in a bearing-less, contact-free design. Covering ranges from 50 to 1000 Nm (443 to 8.85K lbf-in), the T1 ships with factory bored hubs to mate precisely with the customer’s shaft ends.  Both smooth and keyed shaft style hubs are available.

Examples of a torque solutions using a coupling in the field can be found in our application notes section of the website. We’ve provided an example of one such application below.

Fuel Pump Optimization – Rotary Torque

A nationally renowned race team was using a flow bench to measure fuel pump performance. They wanted to determine if they could reduce the power consump­tion of the pump by further analyzing the precise torque it produced. An Interface Model T25 High Speed Rotary Torque Transducer was integrated into the pump drive to directly measure the torque required to spin the pump. Interface Shaft Style Torque Transducer Couplings we’re also used to marry the shafts to the T25. Using this data collected from the T25 in conjunction with the pressure and volume measurements of the fuel flow, the race team was able to characterize fuel pump performance versus drive line torque, and then minimize the required drive power while maintaining the needed pressure and flow for efficient fuel delivery.

Couplings are an integral part of any torque test project. To learn more about couplings and their application in a wide variety of projects, reach out to Interface at 480-948-5555 or contact us here. We can suggest a combination of off-the-shelf transducers, couplings and data acquisition devices or work with you to develop a custom solution necessary for your goals.

ADDITIONAL READING: TORQUE TRANSDUCERS 101

Source: Keith Skidmore

Driving Force in Automotive Applications

Among the most highly regulated industries in the world, automotive is up there with the likes of medical and defense. Every component and system needs to be thoroughly tested and deliberately analyzed to ensure that the final product is safe for the driver, other vehicles and pedestrians. Any mistakes or failures can cause catastrophic damage and put lives at risk.

There are hundreds of thousands of different tests that car parts and software go through before they are approved for the road. Among them is force measurement testing. Force and torque tests are integral to the structural and mechanical design and build of the car. Gathering data on the build quality and safety of materials and components found within cars, trucks and more is done through a wide variety of different force measurement testing.

Interface has been a partner to the automotive industry for more than 50 years, from the major OEMs to smaller parts manufacturers and test labs. We build force and torque sensors and acquisition devices designed to provide automotive engineers and manufacturers with high-quality data to monitor and confirm the design and in-action processes of a wide variety of vehicles.

Force testing applications for the automotive industry involve everything from structural, engine, brake, seat belt and suspension tests, all the way down to individual lug nut torque testing.

Recently, Interface has also been supplying solutions to those in the growing electrical vehicle (EV) market. EV cars and other motor vehicles present a wide variety of unique challenges for engine torque and battery technology testing.

As an example of some of the products we offer to the industry, we are highlighting Interface expertise in different automotive applications. This will include specific examples of work we’ve done for our customers recently or in the past.

BRAKE PEDAL TESTING

One of the largest areas of automotive test and measurement we are involved in is brake pedal testing. Our customers need to ensure that applying certain amounts of force to the brake will slow and stop the vehicle as intended.

In this application note, Interface supplied our customer with a BPL-300-C Brake Pedal Load Cell, which was installed on the brake pedal. As the user depressed the brake pedal, force data was transmitted by our BTS-AM-1 Bluetooth Low Energy (BLE) Strain Bridge Transmitter Module to the BTS Toolkit Mobile App and displayed on a mobile device. This allowed our customer to view and graph the data in real-time.

Read the application note for Brake Pedal Testing here.

EV BATTERY TESTING

In the EV market, one of the most integral pieces of technology is the battery used to run every piece of hardware and software in the car. One of the critical tests that’s performed on EV batteries in compression testing. As an EV battery is charged and stores more electrons, it swells. If the packaging that houses the batteries is not intelligently designed to compensate for this swelling, you could have a major problem.

For this challenge, Interface can supply the popular WMC Miniature Load Cell. The load cell will measure compression force as a battery goes through charge cycles on a test stand to determine the force given off as the battery swells. This allows our customers to design the proper packaging for the batteries.

Read more about Interface’s role in the The Future of Automotive is Electric.

SUSPENSION TESTING

A personal favorite of the Interface team is a suspension test we performed on a race car. As you can imagine, race car components need to be finely tuned for optimal performance. The suspension is one of the most significant factors in the tuning process.

Using an Interface Model 1200 Standard Load Cell, we were able to measure simulated motions of a racetrack including bumps, banks and other track conditions. This allowed the customer to gather highly accurate (0.04%) measurements of loads applied to individual suspension points. This type of suspension testing technology can also be performed on a regular commercial automobile, but the race car example is much more fun!

View the race car suspension testing application here.

MOTOR TESTING

In this motor test stand application, it was used in the quality control lab of a major automotive manufacturing customer that needed to test, record and audit the torque produced by a new motor design under start load.

Interface supplied a Model AxialTQ Rotary Torque Transducer that connected between the motor and the differential, on the drive shaft, which could measure and record these torque values. Based on the data collected using the AxialTQ, AxialTQ Output Module, and customer laptop, the test engineer was able to make recommendations to optimize the amount of torque created by the new motor design.

You can read more about the AxialTQ in this post.  

The wide variety of applications for automotive force testing that Interface has been involved in is significant. We have many published application notes beyond those highlighted, including Seat Testing, Engine Head Bolt Tightening and one for an Engine Dynamometer (dyno for short) use case. The examples listed above just scratch the surface.

Interface is a preferred partner to the automotive industry.  To review some of the automotive application notes we have published, please check out our website at /solutions/automotive-vehicle/. You can also give us a call to learn more about the various solutions we offer for customers in the automotive industry at 480-948-5555.