Posts

Interface Solutions Aid Pharmaceutical Industry

Among the many highly regulated and incredibly complex industries, the medical industry is highly dependent on tools and resources that are precise and measure with high accuracy.

The medical industry is a broad, encompassing hospitals, medical professionals, payers, medical devices and pharmaceuticals. In each sector, Interface has a long history of providing precision measurement solutions for R&D, prototyping, testing, manufacturing, packaging and monitoring use.

In every use case, safety of patients and quality of products is predicated on extreme accurateness. Throughout a pharmaceutical product’s life cycle, specialized measurement equipment and sensor technologies are used by scientists, engineers, researchers, lab technicians, regulators, quality groups and manufacturers. These instruments are utilized in design and maintenance to provide unmistakable evidence of process quality and safety.

Medical and healthcare companies, including those specifically in pharmaceuticals, turn to Interface because our high accuracy force measurement solutions are designed for reliable performance test and measurement projects. The science used in the pharmaceutical industry depends on quality measurement of force and weight. Interface load cells are designed for these types of precise requirements. There is also tremendous demand for Interface’s ability to customize solutions that meet the exact measurement requirements of these sensitive applications. Visit our new Interface Pharmaceutical Industry Solutions.

Interface supports a range of pharmaceutical applications including:

  • Weighing and distributing
  • Specimen testing equipment
  • Tablet hardness testing
  • Tablet forming machine optimization
  • Capsule filling machines
  • Quality control and safety
  • Mixing
  • Packaging and filling
  • Bioreactors and fermenters

Interface force measurement solutions are used for a variety of pharma-related products and machines that help biotechnology and pharmaceutical product engineers to design, test, and manufacture their products.  When it comes to equipment used in the manufacturing of medicine, Interface products are used to optimize production and reduce waste. Our miniature load cells are often integrated into machines and equipment to provide precision measurements during operations.

Types of Interface Load Cells Used by Pharmaceutical Companies

Pharmaceutical Tablet Forming Machine Optimization

A pharmaceutical tablet producer wanted to monitor the forces applied by the tablet forming machine to understand the relationship between raw material, die set, forming force, and the motor’s cycle speed. The goal was to improve productivity and efficiency of the tablet forming process, while reducing losses such as cracked tablets or voids, by adding a dimension of feedback that could be used to assign specific press adjustment criterion for given inputs. An Interface WMC Sealed Stainless Steel Mini Load Cell (10K lbf Capacity) was mounted in the section of the downward press bar. The machine was modified to accomplish this. The load cell was then connected to a 9320 Portable Load Cell Indicator to collect the needed data. After analyzing the data, the tablet producer was able to quantify adjustment levels by monitoring which forces produced the most optimal results for a given cycle speed, die set, and raw material. Productivity and efficiency were greatly improved by the enhancement of the data feedback.

Tablet Hardness Testing for Pharmaceuticals

A pharmaceutical producer wanted to test and monitor the hardness of the pills being created in their tablet forming machine. Interface’s SML Low Height S-Type Load Cell was mounted to the hardness device inside the tablet forming machine. The SML Low Height S-Type Load Cell was then connected to the 9870 High-Speed High Performance TEDS Ready Indicator to record the force measurements. The tablet producer was able to verify and test the specific hardness needed for their tablets being produced by their tablet forming machine.

Pharmaceutical Tablet Machine Hardness Calibration

A customer wanted to regularly recalibrate tablet hardness testers. The customer needed a miniature load cell the size of a sugar cube that replaces the tablets and fits horizontally in the tablet test-box. Therefore, a special cable exit was important for the compression only calibration application. In the past, the machines had to be rebuilt for calibrations, or a complex mechanism had to be integrated to enable vertical calibration. However, Interface’s MCC Miniature Compression Load Cell measures forces on its side with a special cable exit on the flat side that attaches to the calibration indicator, such as the Interface handheld indicator and datalogger Model 9330. The MCC load-cell calibration set compared the applied forces with the hardness tester to make sure that the tablet hardness tester uses the correct force for future tablet hardness tests. The BlueDAQ software helped to log and compare the data of the MCC reference load cell. The customer successfully verified and calibrated the tablet hardness tester machine horizontally to conduct accurate hardness testing on tablets in the future. Interface’s MCC Miniature Compression Load Cell was perfect due to its small size, and convenient to measure the forces on its side.

Like medical devices, pharmaceutical machines and products must undergo a variety of mission-critical tests before they are safe for distribution to uses. Interface products are selected by the pharmaceutical industry is due to our product’s accuracy and reliability, in addition to our deep experience in supplying solutions to those in the medical business.

Pharmaceuticals_InfographicPoster

ADDITIONAL RESOURCES

Spotlighting Medical Device and Healthcare Solutions

Force Solutions for Medical Tablet Forming Machines

Interface Ensures Premium Accuracy and Reliability for Medical Applications

Interface Solutions for Medical Devices and Healthcare

Interface Solutions for Safety and Regulation Testing and Monitoring

Accuracy Matters for Weighing and Scales

 

Interface Load Cells Propel New Torsional Force Measurements for Wind Energy Project

Amongst the wide variety of industries that Interface serves, clean and renewable energy sectors are some of the hottest in pursuit of sensor-based solutions. Between private and public funding, and the overwhelming desire for humans to become more sustainable, new energy technology and investment is multiplying at a rapid pace. 

Interface force measurement solutions are used in all types of energy-related applications for wind, solar, hydro, nuclear, geothermal, and emerging energy sources worldwide. We are recognized as a provider of choice for our reliability and accuracy in designing, engineering, testing, innovating, and manufacturing precision sensor solutions for the energy industry.  In fact, we have designed unique load cells that are embedded into some of the largest test and production equipment for energy production in the world. Read Interface Most Promising Energy Tech Solution Provider

Advance technologies in renewable and sustainable energy sources continues to drive the critical need to monitor, test, and validate concepts, equipment, and tools used in procurement. In the global energy industry, many of the alternative source technologies are inventive, newer, and require unique measurement solutions to take on the challenges found in R&D, testing, and production.  

In addition, alternative energy sources in their infancy can be very cost prohibitive going from exploration to consumption. Therefore, it is important that quality, cost effective testing solutions are provided to help researchers, engineers and manufacturers minimize total costs. Interface force testing solutions help to solve and lessen the burden of these challenges by offering a wide range of test and measurement solutions.

New Interface case study reveals how our load cells were used by the PTB in Germany to calibrate and test the world’s largest machine that measures torsional forces related to wind turbines.

Interface force measurement sensors were requested to help Physikalisch-Technische Bundesanstalt (PTB), the national metrology institute of the Federal Republic of Germany, in the design of an innovative wind energy project. As the second largest metrology institute in the world, the PTB has an acclaimed international reputation in research relating to units and precise measurement. 

PTB is a service provider for science, business, and society, and advises the German federal government on all metrology issues. Organizationally, the PTB is a departmental research facility and senior authority within the portfolio of the Federal Ministry of Economics and Climate Protection. For more than 135 years, PTB’s role has been making important contributions to advancing the energy transition, heat transition and climate protection with quality and speed. 

Interface, working in tandem with our esteemed partner Interfaceforce e. K. in Germany, was asked to provide load cell solutions to use in the design and testing of the world’s first traceable torque measurements of up to 5 MN ∙ m for a wind energy facility. As a first of its kind project, the PTB needed to include high accuracy, quality test equipment to guarantee precise and reliable data. Interface solutions fit the exact requirements.  Read the complete case study here.

Summarizing the engagement, PTB endeavored to construct a system with highly accurate and repeatable results, and one that enable bending moments, axial forces, and dynamic excitations of up to 3 Hz. Thereby, making it possible to realize a metrological characterization of dynamic influences in the (MN ∙ m) torque range, as well as in the MN force range. Working closely with PTB, Interface’s experts in Germany worked with the metrology lab engineers to identify the correct products for this unique calibration system.  

These products are being used to calibrate and test PTB’s torque measurement system, allowing the system to provide accurate and repeatable results over time. The custom load cell products Interface provided PTB for this innovative wind energy system, as detailed in Interface Supports Incredible Wind Energy Innovation, included:

The load cells that were chosen helped PTB to create the system needed for its wind energy facility, which allows multi-component transducers to be calibrated in a traceable and practice-oriented way for force and torque. The system is also now the world’s largest machine starting up at PTB, with which the large torsional forces that occur in wind turbines can be precisely measured for the first time.  Read the article: World’s largest device for measuring torque in wind turbines opens.

As we detailed in Load Cells for Renewable Energy Production and Testing, Interface and our incredible distributor network continues to work with engineers and industry leaders to find viable measurement solutions. Pushing the boundary forward on new and renewable energy is rewarding for our company, especially as we help those achieve energy innovation using sustainable, quality measurement solutions.

ADDITIONAL RESOURCES

Geothermal Well Drilling

Interface and Green Energy Innovation

Interface Solutions for Growing Green Energy

Demands for Quality Energy Measurement Solutions

Interface Supports Renewable Energy Innovation

Interface Supports Incredible Wind Energy Innovation

Force Measurement Testing Improves Products and Consumer Safety

Across every industry, force measurement solutions are utilized to improve product performance, safety and quality. Sensor technologies are used every day to test various consumer products’ weight, torsion, tension, compression, fatigue, impact, and materials.

Force measurement testing is used throughout the product development lifecycle, from concept and R&D, through engineering and testing, to manufacturing and distribution, leading to eventual utilization. Interface load cells are commonly integrated into actual consumer products for activation and to measure performance during use.

Interface force measurement solutions are also used in the testing of equipment, machines, and tools used in the production of all types of products and goods. Our products are used in industrial automation robotic arms as well as within lifting equipment deployed to move materials around a facility.

The key to all force measurement testing is accuracy and reliability of data, as well as selecting the right type of force sensor for the specific product being testing.

Types of Product Testing Applications Using Interface Measurement Solutions

  • Weighing Applications: Interface miniature load cells are often for product testing to measure the exact weight of consumer products, such as food, beverages, and electronics. This information is critical R&D, as well on the production line and to meet the exact product specifications. Our load cells help to ensure that the products are not underweight or overweight, and comply with regulations. Read more about Load Cells for Smarter and More Efficient Weighing
  • Material Applications: Interface LowProfile load cells are often found in product testing labs to assess the strength of materials used in consumer products such as plastics, metals, and mixtures of composites. The measurements gathered during the product testing safeguards consumers and confirms the product’s durability. Read Interface Solutions for Material Testing Engineers
  • Force Applications: Interface load cells, torque transducers, and instrumentation are used in complete test systems that examine the usability of products such as exercise equipment, appliances and electronics. The data acquired in shear, tensile and force testing is important to understand if the product meets design specifications, is easy to use and does not require excessive force to work.
  • Safety Applications: One of the most important product use cases for Interface measurement solutions is to test the safety of products such as furniture, toys and automobile features. It is a requirement for every maker of products that are not hazardous and will not cause injury to consumers. Read Interface Solutions for Safety and Regulation Testing and Monitoring

To give you a better idea of how our load cells and instrumentation are utilized in distinct types of product tests, we have included a few application notes below outlining real-world examples of force testing projects.

Bicycle Helmet Safety and Impact Product Testing

A high production bicycle manufacturing facility set up a product testing lab to measure the impact of the safety of their helmets when dropped from different heights onto a flat surface such as an anvil. This test is necessary to ensure consumer safety and that the products are made with the highest quality materials to protect the rider. Interface suggests installing the 1101 Compression-Only Ultra Precision LowProfile® Load Cellat the bottom of an anvil. The bike helmet is then dropped from multiple heights and at multiple angles onto the anvil. The measurements from impact are then recorded and logged throughout the product testing using Interface’s INF-USB3 Universal Serial Bus Single Channel PC Interface Module with supplied software. Every design or material change runs through the same rigorous testing protocols using these high accuracy measurement solutions.  Read CPG Bike Helmet Impact Test

Product Weighing of Consumer Water Bottles

A manufacturer of glass bottled water needs to dispense the exact amount of fluid into each bottle and then weigh the water bottle to ensure it is at the labeled weight on the product packaging. The product testing of the manufacturing equipment is used to minimize waste and to meet the weight requirements to ensure consumer satisfaction. Interface suggests using the MBP Miniature Beam Load Cell and attaching it under a plate or platform where the water bottle is placed on while it is being filled with fluids. The force weight is measured by the MBP Miniature Beam Load Cell and connected to the 9870 High Speed High Performance TEDS Ready Indicator where results are captured, displayed, and logged for quality control. Read CPG Water Bottle Dispensing and Weighing

Product Test Lab Conducts High Volume Tensile Force Testing

A product test lab is constantly requested to conduct a series of tensile force tests on different samples and materials until failure. These materials include plastic, steel, or woven fabric, and are utilized in the design and manufacturing of several consumer products. The lab professionals want to measure tensile strength, yield strength, and yield stress for every submitted product material sample. For the tensile test stand, we recommend using Interface’s 1200 Standard Precision LowProfile™ Load Cell be installed into the test frame. As the tensile test is conducted, force results captured by the load cell and extensometer are synchronized through the SI-USB4 4 Channel USB Interface Module. The results are displayed on the customer’s computer with supplied software. Learn more by reading Material Tensile Testing.

Interface’s high precision force sensor technologies used in robotics have revolutionized the manufacturing of consumer products. With automated assembly lines and robotic arms taking charge, these machines work efficiently to mass-produce consumer goods. Quality control of all the products we provide you for testing is one of the main focuses of Interface, as we want to keep your customers happy and safe.

Interface’s experienced team are renowned specialists in force, torque and weight measurement manufacturing and technology. Our depth of knowledge and wide range of capabilities create custom solutions of all types, whether special transducers made to your exact specifications or complete customized sensor, instrumentation, and software systems. We collaborate with you to ensure the product specifications you need are designed to match your precise requirements.

ADDITIONAL RESOURCES

Introducing the Interface Consumer Product Testing Case Study

Interface Solutions for Consumer Products

Force Measurement is Reducing Waste and Automating the Consumer Packaging Industry

Applications for Consumer Products and Packaging

Load Cells for Consumer Product Applications

Why Product Design Houses Choose Interface

Testing Labs Choose Interface High Accuracy Products

Interface Solutions for Material Testing Engineers

Electrical Engineers Choose Interface Sensor Technologies

Interface is a premier provider of force, torque and weighing solutions to electrical engineers around the world who are responsible for creating new products, solving problems, and improving systems.

Electrical engineers vary in specialization and industry experience with responsibilities for designing and testing electrical systems and components such as power generators, electric motors, lighting systems, and production robots. They use their expertise and knowledge of electrical systems and components to design, develop, assess, and maintain safe and reliable electrical systems. There are many electrical engineers who work on complex systems and who are responsible for troubleshooting and diagnosing problems that may arise.

The electrical engineers whose primary focus is research and development look to create new electrical technologies and advance existing systems. Projects related to renewable energy, smart grids, wireless communication systems, and electric vehicles utilize all types of measurement solutions throughout all phases of their R&D. Accuracy of testing is essential for electrical engineers, to ensure components comply with safety regulations and industry standards.

How does an electrical engineer use sensor technology for testing?

Sensors are a critical tool for electrical engineers in testing and optimizing the performance of electronic devices, systems, and processes. The type of sensor used, and the specific testing application will depend on the needs of the project or product, including the following examples.

  • Structural testing: Sensors are used to measure the structural integrity of materials and components. Load cells convert force or weight into an electrical signal that can be measured and analyzed. For example, Interface’s standard load cells are frequently used to measure the amount of strain or deformation in a material under load, which can help electrical engineers design stronger and more reliable structures. See how Interface’s products were used in an EV battery structural testing project.
  • Process control: Sensor technologies, including load cells and torque transducers are frequently utilized in manufacturing processes to monitor and control various parameters. Electrical use this data gathered through various instrumentation devices to ensure that the manufacturing process is operating within the desired parameters and to optimize the process for efficiency and quality.
  • Environmental testing: Environmental sensors are commonplace for measuring temperature, humidity, pressure, and other environmental factors. Electrical engineers can use this data to test and optimize the performance of electronic devices and systems under various environmental conditions. Read Hazardous Environment Solutions from Interface to learn more.

Electrical engineers use load cells in a variety of applications, such as measuring the weight of objects, monitoring the force applied to a structure, or controlling the tension in a cable or wire. The choice of load cell will depend on the specific application and the requirements for accuracy, sensitivity, and capacity. Electrical engineers must also consider factors such as environmental conditions, installation requirements, and cost when selecting a load cell.

Electrical engineers work in a wide range of industries and sectors, as their expertise is required in many different areas of technology and engineering. Interface has supplied quality testing devices and components to EEs in every sector, from electronics to construction.

Electrical engineers in the electronics industry use Interface products in designing and developing components such as microchips, sensors, and circuits. Demands for intrinsically safe load cells and instrumentation come from electrical engineers that are responsible for designing, maintaining, and improving power generation and distribution systems, including renewable energy systems such as solar, wind, and hydropower.

More than any time in Interface’s 55-year history, electrical engineers who work on a variety of aerospace and defense projects, are using Interface sensor products for designing and testing avionics systems, communication systems, and navigation systems.

We also continue provide electrical engineers who engage in designing and developing the electrical and electronic systems in vehicles, including everything from powertrains and engine management systems to infotainment systems and driver assistance technologies with new and innovative force measurement solutions.

Manufacturing electrical engineers who engage in designing and optimizing manufacturing processes, as well as designing and evaluating the electronic components and systems used in manufacturing equipment are frequently using Interface sensors. This includes the rising demands for sensors in robotics.

Electrical engineers across many different industries depend on Interface, just as all the companies and organizations around the world depend on their expertise. Interface is a proud partner of engineers across all disciplines.

ADDITIONAL RESOURCES

Interface Celebrates Engineers

Interface Solutions for Production Line Engineers

Quality Engineers Require Accurate Force Measurement Solutions

Interface Solutions for Material Testing Engineers

Why Civil Engineers Prefer Interface Products

Why Product Design Engineers Choose Interface

Interface and Green Energy Innovation

Green energy has been part of the energy sector for decades. The demands to rapidly commercialize types of green energy at scale requires significant R&D, testing and production to increase global supply. As the world looks to address climate change, green energy takes center stage. Investment into infrastructure and tools for alternative energy production is on the rise. This impacts all types of innovations across various industries, as seen in electric vehicles and solar-powered consumer products.

As corporations and consumers are taking a closer look at how they can reduce their carbon footprint, green energy innovation is an essential element. Energy is complex, with market players that span from scientific researchers to production engineers. With advanced sensor-based technologies in demand to manage different segments of the energy cycle, testing equipment used to design and validate new products within the energy industry grows. Among those testing technologies, force measurement devices and instrumentation offered by Interface play a key role.  Interface is a supplier of choice for the energy industry, see some of the solutions we provide in our Energy Overview.

Interface has developed both off-the-shelf products along with custom solutions and OEM designs for a wide variety of clean energy innovations. Our load cells, torque transducers and more can be found within a wide variety of testing and monitoring systems used in production of wind, water, solar, and hydrogen energy. The accuracy of measurement is critical for capture and storage systems. We also understand the unique requirements for these industries and can collaborate directly with customers to create custom solutions for the newest technologies.

To outline the challenges found in this industry, as well as the various force measurement solutions available from Interface. In Interface Solutions for Growing Green Energy, we showcase how our products are used in the green energy markets. In the case study, you will find a variety of application notes showing how Interface solutions have been used to enable critical green energy applications for wind, hydrogen, solar and more.

Here is a quick preview of what you learn as we discuss the solutions, challenges, and results of using Interface products for green energy innovation.

Interface Solutions for Growing Green Energy Case Study

Interface provides the industry’s most accurate and reliable force sensors, and we have been working with organizations in the energy industry, both traditional and alternative. We understand the unique requirements of green energy and have developed a widening line of products uniquely suited for these innovations.

We have recently worked with multiple types of components for electric vehicles including batteries, engines and more, as well as with alternative energy sources like wind, solar, and hydrogen power. Interface brings the accuracy and reliability, in addition to having an expert engineering team that can quickly develop customized solutions.

Interface solutions are cost effective and can often end up saving critical dollars overall. Take for example a recent case study we developed in which we outlined our role in harnessing hydrogen power using an electrolyzer. In this case, force sensors were used to significantly reduce downtown by creating an automated monitoring system that replaced regularly scheduled maintenance that was often unneeded but caused downtimes. And with that process came significant losses in energy and money. Interface helped to create an autonomous monitoring system that reduced downtime and estimated the customer would break even on their investment on the force monitoring system in one year.

Additional Green Energy Applications Using Interface Products

Windmill Energy

Wave Energy Generator

Solar Panel Strength Testing

More Resources

Interface Supports Renewable Energy Innovation

Demands for Quality Energy Measurement Solutions

Interface Most Promising Energy Tech Solution Provider

Ruggedized Test and Measurement Solutions Webinar

 

Interface Solutions for Research and Development

Among the many roles of force measurement in engineering and manufacturing, the role of force sensing in research and development may be the most exciting and important. Load cells and other types of force sensors qualify and collect data on exploratory projects across a wide variety of industries. These tests determine the viability of a potential project and eventually new innovations.

Research and development are core to most businesses to stay competitive. R&D is essential in creating new products and anticipating customer demands. Whether it is assessing the viability of a new IoT home technology for consumers or designing a component used in a new surgical medical device, research is core to the technical and technological development of most any product.

In an R&D environment, force testing helps to compare product materials, determine the strength materials and components, and evaluate environmental, ergonomic, and other features. Additionally, force testing is common across industries as a quality control measure to accurately check that a given group of products meet targeted design specifications, per performance, safety, and regulatory requirements.

Interface often works with engineers whose role it is perform research and development within their organization. R&D engineers use research theories, principles, and models to perform a variety of experiments and activities. Not only do R&D engineers create new products, but they often are responsible for the redesign of existing products.

Our goal at Interface is to help R&D engineers identify the best sensor-related products they can use to work through the problems they are seeking to solve. The products we provide validate findings through highly accurate sensor test and measurement data. There are some R&D applications that need just one or two load cells and basic instrumentation to conduct the project testing. Other times Interface is asked to create an application-specific engineered to order part or design a custom measurement solution to achieve the desired test and measurement outcomes. The later is often the case if a sensor is an actual part of the product design. Interface has helped R&D engineers assess all kinds of prototypes and early designs using our precision force measurement devices.

Force measurement is used throughout the product research and development lifecycle, from ideation and prototyping, to robust testing and eventual commercialization phases.

  • IDEATION: In the ideation phase, we provide force measurement solutions for testing materials for compatibility with the idealized product’s use cases.
  • PROTOTYPING: In prototyping, force sensors help engineers select a minimum viable product (MVP) design. Sensors are used in the lab environment to validate a product or component, or as an actual embedded sensors utilized for real-time feedback and performance monitoring.
  • TESTING: When a product moves into the testing phase, it ready for a more thorough batch of tests including cycle and fatigue testing. Our load cells, torque transducers and instrumentation are commonly used in these environments. Every product will require a sensor model that fits by specifications and capacity.
  • COMMERCIALIZATION: Finally, when a product is ready for commercialization, we provide products used to run a variety of tests to ensure the product is constructed in a way that is safe for the user and meets certain force related specifications for intended use.

To give you an example of how an R&D engineer utilizes force sensors, we have included a few application examples below.

R&D Testing for Bicycle Manufacturer

A bike manufacturing company R&D engineer created a new handlebar design. They need to test the handlebar concept for their bikes during the R&D phase to ensure they will perform for a rugged trail ride experience, while ensuring safety of the recreational equipment. The R&D team took the concept and conducted fatigue tests on their handlebars to observe its structure and performance durability before mass production.  Interface suggested using Interface Mini™ product SSMF Fatigue Rated S-Type Load Cells. Two of these s-type load cells are attached on either end of the bike’s handlebar stem, where it will measure the forces applied as the handlebar undergoes its fatigue test. Results can be measured, logged, and graphed with the SI-USB Universal Serial Bus Dual Channel PC Interface Module.

Research Rig Used for Testing Prosthetic Designs

Prosthetic limbs must undergo rigorous R&D testing prior to manufacturing. These critical apparatuses are tested for extreme loading that can occur during falls, accidents, and sports movements. Fatigue testing of prosthetic components determines the expected lifespan of the components under normal usage. R&D engineers use testing data to determine whether prosthetic materials and designs will withstand the rigors of daily use and occasional high load situations. For the R&D project, various configurations of compression and tension test machines can be used depending on the type of prosthetic device being tested. Often the same machine can be used for static and fatigue testing. For this application, an SSMF Fatigue Rated S-Type Load Cell is mounted between a hydraulic actuator and the device being evaluated. During static testing, loads are applied to the specimen using the load cell signal as force feedback control of the test machine. During a fatigue test, the actuator repeatedly applies and removes the force to simulate activity such as walking. Tilt tables may be used to apply forces at various angles to simulate the heel-to-toe movement of walking or running. The 9890 Strain Gage, Load Cell, mV/V Indicator with Logging Software was used to store the research data.

 

Electric Vehicle Structural Battery Testing for Prototype

Battery technology is critical to the evolution of electric vehicles, so there are a variety of tests performed on new innovations in EV battery technology. As electric vehicles push advancements in efficiency gains, structural battery packaging is at the forefront for optimization. This drives the need to validate structural battery pack design, both in terms of life expectancy against design targets as well as crash test compliance and survivability.  Interface’s solution for this challenge included 1100 Ultra-Precision LowProfile Load Cells in-line with hydraulic or electromechanical actuators in the customer’s test stand. Also utilized were 6-Axis Load Cells to capture reactive forces transmitting through pack structure. Multi-axis measurement brings greater system level insight and improved product success. The tests performed using Interface’s force measurement products were able to validate the battery packs strong structural design.

Proving Theoretical Cutting Forces Of Rotary Ultrasonic Machining

Rotary ultrasonic machining is a hybrid process that combines diamond grinding with ultrasonic machining to provide fast, high-quality drilling of many ceramic and glass applications. This new method has been theoretically proven using computer models. Rotary ultrasonic machining generates forces of an exceedingly small magnitude. To prove this theory, any load cell used for measurement must be sensitive, while at the same time retaining high structural stiffness within a compact, low-profile envelope. Interface’s 3A120 3-Axis Load Cell was installed in the rotary ultrasonic machine to measure the forces being applied to a sample part. With clear signals and minimal crosstalk, the applied forces are recorded and stored using an the BSC4D Multi-Channel PC Interface Module. The 3-Axis load cell provided excellent data helping uncover the relationship between machine cutting parameters and the forces applied on the component. Using this knowledge, the machining process was reliably optimized for new materials and operations.

The role of Interface as it pertains to R&D is constantly growing as engineers create new innovations to solve a myriad of challenges throughout the world. We provide the most accurate and reliable force measurement systems to help advance technology across industries.

ADDITIONAL RESOURCE

Interface OEM Solutions Process

Interface Solutions for Machine Builders

Interface Solutions for Consumer Product Goods

CPG Bike Frame Fatigue Testing

CPG Treadmill Force Measurement

CPG Golf Club Swing Accuracy

Interface Sensors Used for Development and Testing of Surgical Robotics

Fitness Equipment Makers Require Extreme Accuracy

Interface Solutions for Consumer Products

Interface’s force measurement solutions affect every industry and all types of products. Chances are that the everyday consumer has purchased and used something evaluated with or utilizing an embedded force sensor.

In fact, Interface has a long history in providing load cells and sensor technologies to test and measure consumer packaged goods (CPG) and products. They are commonplace in early-stage prototype testing, all through final distribution. Most often, our force measurement solutions help predict failure and identify design challenges before goods are available to consumers. It is hard to imagine any product that would not go through rigorous test and measurement protocols before it goes to market. The liabilities are too great and consumer safety is paramount.

It is also critical to use accurate, quality sensors to gather reliable user data related to any consumer product. Product makers use sensor data to assess product usability, capabilities, and durability. The more data, the greater the opportunity to adjust and ensure the product is a direct fit. Precision in this process through data will improve the product’s performance and influence adoption.

From testing home health care devices to ensuring household appliances are safe and durable, Interface’s sensor measurement technologies have a vital role in R&D, design, production and packaging. Load cells and other sensor products are used for all kinds of testing, from material to fatigue, in the creation and manufacturing of everyday goods. They are growing in popularity to make products smarter and designed for IoT use.

Consumer Product Applications for Interface Force Measurement Solutions

  • Smart home devices
  • IoT solutions
  • Production line testing
  • Usability research
  • Safety and compliance
  • Regulatory and performance monitoring
  • Manufacturing robotics
  • Warehouse equipment
  • Food packaging
  • Toys
  • Gaming and simulation equipment
  • Electronics hardware
  • Sports equipment
  • Furniture
  • Capping and bottling machines
  • Real-time user feedback

We even provide products to accurately measure and monitor hardware used in intermediate goods, assembly equipment, and distribution. Our force measurement solutions are ideal for consumer product stand-alone testing rigs, production equipment, as well as embedded in consumer products to increase operability and reliability for end users.

Interface load cells and instrumentation help product designers and fabricators drive usability, adoption, production efficiencies, and ensure safety to satisfy the needs of all types of consumers. Here are a few applications notes to demonstrate Interface solutions utilized in the consumer products industry. Additional applications for consumer packaged goods and consumer products are found here.

Commercial Food Processing

A consumer food product processing plant wants to measure in-motion the food weigh as it is processed down the line. They want to ensure production line efficiency and food quality for future consumers. The customer also wants real-time results of their food being weighed to keep standards high and ensure quality product. Multiple of Interface’s SPI High Capacity Platform Scale Load Cells can be installed in the customer’s in-motion check weigher at the specific points where the food is weighed on the belt to deliver precise weighing results. When connected to the 920i Programmable Weight Indicator and Controller, real time results of the weight of the food being processed is available at all times. The 920i Programmable Weight Indicator and Controller can read up to four scale channels. Read more here.

Computer Touchpad Force Testing

A laptop manufacturer wanted to test their mouse touchpads to ensure it is functioning properly for future consumers, thus measuring the right amount of sensitivity during the consumer’s use. They also needed a system that measures the force it takes for the mouse pad to activate a response on the laptop. Interface suggested using the SMTM Micro S-Type Load Cell, from the Interface Mini™ line. The SMTM was installed in the customer’s actuator test rig. The SMTM recorded the amount of force it takes to press on the trackpad and create a response on different areas of the trackpad. An actuator aided with tactile feedback by providing movements such as dragging or creating friction. The measurements were captured using the 9330 Battery Powered High Speed Data Logging Indicator through an SD card, or another laptop directly. The SMTM Micro S-Type Load Cell was able to measure the forces applied to the mouse touchpad at various locations. Interface’s products successfully measured the forces needed to make the mouse touchpad create a response. Get more information here.

Furniture Fatigue Cycle Testing

To meet safety protocols in relation to the manufacturing of various furniture products, rigorous fatigue testing, shock testing, and proof testing before dispersion into the marketplace, and into the homes of consumers. Force testing on furniture products is critical in determining the posted max loads to protect manufacturers from liability due to damages that might result from the misuse of those products and overloading. Using Interface’s SSMF Fatigue Rated S-Type Load Cell along with Interface’s 9890 Strain Gage, Load Cell, & mV/V Indicator provides a solution that measures the force being applied in fatigue cycle testing of a furniture product, in this case testing the rocking mechanism in an office chair. Unlike other similar load cells, the SSMF is fatigue rated making it highly suitable for fatigue testing. Using this solution, the furniture manufacturer was able to obtain accurate data about the rocking mechanism the office chair as it was fatigue cycled into failure. Post testing, adjustments to the design to improve the safety and life of the furniture, ensuring product quality, and protecting the manufacturer from future liability. Learn more here.

Printer Cartridge Seal

An ink manufacturer wanted to ensure there is a proper seal between their ink cartridge caps and the cartridge body, for it to work effectively in their printers and for consumers buying it for themselves. A bad seal can cause leaks, clogging, and overall deficient performance for their printers. Interface’s solution was to measure the pressure exerted on the cartridge cap by installing the 3A120 3-Axis Load Cell under the plate during the automatic production line process. Results were logged, graphed, and stored when the customer’s PC or laptop is connected to the BSC4D Multi-Channel PC Interface Module with supplied BlueDAQ software. Using this solution, the ink manufacturer was able to determine the exact amount of force it took to seal their ink cartridge caps onto the cartridge bodies to prevent any leaks or clogging. Learn more here.

Interface solutions for consumer products are abundant. For every machine, test system and even many products themselves, these products benefit from a force sensor to improve product performance, prove reliability and more.

Additional Resources

Force Measurement is Reducing Waste and Automating the Consumer Packaging Industry

Applications for Consumer Products and Packaging

Load Cells for Consumer Product Applications

CPG Bike Handlebar Fatigue Testing

Interface Solutions in the World of Sports

CPG Water Bottle Dispensing and Weighing

CPG Treadmill Force Measurement

CPG Golf Club Swing Accuracy

CPG Gaming Simulation Brake Pedal

Back to School Force Measurement Essentials

Interface has a long history of collaborating with colleges and universities around the world. From individual engineering students testing the force of launching miniature rockets to supplying onsite test labs with load cells and equipment for R&D, we are a resource for higher education learning and experimentation.

In our view, innovation and exploration have no boundaries. What validates new ideas and manifests problem solving requires modern and reliable tools that support student’s projects and activities. Its key to any program’s success. It is also why we are proud to be known around the globe as a leader in building and designing force measurement products that facilitate these initiatives through higher learning.

It is very inspiring to see new engineering students, future metrologists, and soon-to-be graduates designing new medical devices, creating new spacecraft and interplanetary vehicles, testing materials used for miniature consumer products and of course, building plenty of new robots and AI machines.

In our view, every university or college should have Interface force measurement products on hand to support these types of educational test and measurement research projects. Here is a simplified list of basic sensor products to get started.

Force Measurement Essentials for Higher Learning

  • Precision load cells in diverse designs and capacities
  • S-type load cells (load beams)
  • Miniature load cells and load buttons
  • Multi-axis sensors
  • Calibration grade equipment
  • Instrumentation
  • Wireless sensor technologies
  • Rotary and reaction torque transducers
  • Verification load frames

Our investment in supporting educational programs runs deep into our history as a company. You will find our founder’s name on the Richard F. Caris Mirror Lab at The University of Arizona. Following in his commitment to education, the Richard F. Caris Charitable Trust II continues to support STEM programs including sponsorship of the International Science and Engineering Fair (ISEF).

We drive to ensure that students who have a passion for science, technology and engineering have access to the best force measurement sensor technologies. It is why we offer a standard discount to all students and education institutions. You can learn more about our education support here. We know that learning requires the best tools, and we want to make sure that every student has the most accurate, quality and precision load cells available today.

As with all inquisitive minds, we thought it would be interesting to share what are other university and colleges buying for their learning programs and campus labs.

Top 10 products for testing projects and campus lab studies:

  1. 1200 LowProfile Load Cells are our most popular load cell, available in standard and high-capacity features.
  2. 1010 Load Cell model is a fatigue-rated low profile load cell in our 1000 product family, offering various capacities and functions.
  3. 2420 Load Cell is one of our stainless-steel standard and high-capacity load cells in our 2400 model series.
  4. 1500 Low-Capacity Load Cell designs are common requirements for applications where low sensitivity to eccentric load is important.
  5. WMC Sealed Stainless Steel Miniature Load Cell has an environmentally protected construction that comes in a variety of model capacities and configurations. It is great for small spaces and industrial applications.
  6. 3-Axis Load Cells are extremely popular multi-axis sensors designed to provide more testing data and often paired with BSC4 instrumentation. They are ideally suited for aerospace, robotics, automotive, and medical research testing applications.
  7. 6-Axis Load Cells are growing in popularity, for cost benefit and their unique ability to simultaneously measure Fx Fy Fz Mx My Mz.
  8. SSM Miniature Load Cells are one of many popular general-purpose s-type designed load cells. You call learn more about all our s-type models here.
  9. Torque Transducers of all types are used by university programs, engineering departments and metrology labs. There are many different options including rotary and reaction torque solutions. For all options, start here to choose the right one.
  10. Load Washer Load Cells are used because of the unique through-hole designs. They come in various models and dimensions, along with capacity options.

As with any project, the questions of what you want to measure, the applications, and where you are sending the data, are all core to choosing the sensor and instrumentation that is best suited for the learning environment or program.

Speaking of where to send the data for performance monitoring and analysis, the five most favorite types of instrumentation selected by university students and engineering labs include:

  1. DMA2 Signal Conditioner
  2. 9840 4-Channel Intelligent Indicator
  3. 9825 General Purpose Indicator
  4. BX8-AS BlueDAQ Series Data Acquisition System
  5. SGA AC/DC POWERED SIGNAL CONDITIONER

If you are heading back to school and thinking that it is time to revamp the testing lab or need new force measurement equipment, be sure to reach out to our education application engineers. They have years of experience and can help you get exactly what you need for your project and programs.

Be sure to tune into our Load Cell Basics, for answer to common questions about using these highly accurate sensors for your test and measurement projects. You can find all our Interface videos on our YouTube channel here.

If you are looking to explore more technical resources, be sure to go to our online support area and subscribe to our blogs for weekly updates.

ADDITIONAL EDUCATIONAL RESOURCES

Types of Force Measurement Tests 101

Torque Transducers 101

Multi-Axis Sensors 101

S-Type Load Cells 101

Mini Load Cells 101

Force Measurement Instrumentation 101

Load Washers 101

Couplings 101

Load Shackles 101

Load Pins 101

Tension Links 101

Load Button Load Cells 101

Strain Gages 101

Load Cell 101 and What You Need to Know

Calibration Systems 101

Force Measurement Accessories 101

TEDS 101

Shunt Calibration 101

 

Interface Solutions for Machine Builders

No matter the industry, if products are being made chances are industrial machines are involved in some part of R&D, testing, production, and distribution.

Engineers involved in the design and manufacturing of these machines require the highest quality sensors, tools and equipment. In addition, humans often lean on machines for very precise or repetitive tasks, this means that precision and reliability is key for every aspect of these machines.

Machine builders are the backbone of product development and production. They are responsible for building, assembling, and integrating components for stand-alone and multi-station automated machine tools and systems. These automated machine-tool systems are used in all sectors of manufacturing, including assembly, processing, and fabricating systems.

Interface plays a critical role for machine builders, for those that design one machine or manufacture machines at scale for users around the world. We supply machine builders with precision load cells, torque transducers, instrumentation, data acquisition devices and accessories. They lean on Interface because of our experience in supplying the world solutions utilized for industrial product testing and production across all kinds of industries from agricultural machinery to medical testing machines.

The accuracy and quality of our products is why machine builders rely on Interface. In addition, our experience and diversity of product has led machine builders and engineers to choose Interface force measurement sensors throughout their careers. In fact, Interface has served machine builders for more than 50 years. It is a relationship and role we know very well.

The world of machine building has also changed over the years. In the past, machine builders used force sensors primarily to test products before going out to the market. This is still a prominent use case amongst product engineers. The fast-rising use cases over the past decade comes from the demand for smarter machines, automation and miniaturization of products.

Today, more machines builders and OEMs are designing force sensors directly into machines to allow users to activate components, monitor data on the machines in use for real-time feedback and adjustments. This type of innovation using sensors has opened opportunities for Industry 4.0 connectivity between machines.

To get a better idea of how machine builders are using force sensors, Interface has developed a wide range of applications notes to provide real world examples of force measurement in action in the machine building world. We have included a few of those examples below.

Metal Press Cutting Machine

A customer wanted to test the amount of force it takes to cut through different thicknesses of metal on their metal press cutting machine. They also wanted to ensure their metal press cutting machine is working properly and understand its maximum limitation. Interface suggested installing their 3AXX 3-Axis Force Load Cell underneath the plate where pieces of metal are placed to be cut, or punched holes in. When connected to the BX8-HD44 BlueDAQ Series Data Acquisition System, the force results of different metals being cut will be displayed, graphed, and recorded on the customer’s PC. It also has an analog output that can connect to the machines PLC in case of an overload. Using this solution, the customer was able to determine the different number of forces it took for their metal press cutting machine to cut through different types and thicknesses of metal. Read more here.

Snack Weighing and Packaging Machine

A snack manufacturing brand wanted to weigh the amount of their snacks that is automatically dispersed into the bags during the packaging process. In this case, they wanted to weigh their potato chips being packaged and ensure the potato chips are at the exact weight needed due to regulatory standards. Interface’s solution was to use multiple SPI Platform Scale Load Cells and install it to the potato multi-head weigher and packaging machine. The SPI Platform Scale Load cells were installed inside of the mount that attaches the head weigher to the packaging machine. Force results from the potato chips are read by the load cells and sent to the ISG Isolated DIN Rail Mount Signal Conditioner, where the customer is able to control the automated production from their command center. Using this solution, the customer was able to determine the weight of the potato chips being distributed into their bags with highly accurate results. They also were able to control the automated production process with the provided instrumentation. They will use this same weighing method for other snacks that need to be packaged. Read about this application here.

Tablet Forming Machine

A pharmaceutical company needs to precisely monitor the forces applied by the tablet (pill) forming machine to understand the relationship between raw material, die set, forming force, and motor cycle speed. Optimizing the equipment will improve productivity and efficiency of the tablet forming process, while reducing losses. For maximizing production and monitoring the process, Interface suggested a WMC Sealed Stainless Steel Mini Load Cell (10K lbf Capacity) be mounted in the section of the downward press bar. The load cell was then connected to a 9320 Portable Load Cell Indicator to collect the needed data. Read more here.

Machine builders require the best test and monitoring equipment. Interface has backed professional machine builders, machine design engineers, machine manufacturers and those that utilize the equipment for many years with top-of-the-line force sensing solutions.  Whether you are looking to build a machine, design machine tools and equipment or embed sensors into machines, we are here to help.

ADDITIONAL RESOURCES

Proving Theoretical Cutting Forces of Rotary Ultrasonic Machinery App Note

Force Solutions for Testing Machines

Interface Sensors Used for Internet of Things

OEM: Industrial Robotic Arm

Fitness Equipment and Machines

Ice Machine Weighing

GS-SYS04 Gold Standard® Portable E4 Machine Calibration System

Laser Machine Cutting Force App Note