Posts

Force Measurement Solutions Support Innovation in Manufacturing

The manufacturing world is enormous, covering multiple industries and applications for force measurement. The manufacturing sector comprises factories and plants that use machines and equipment to build parts and final goods.

With an estimated 21 million manufacturing companies worldwide, the industry is also becoming more advanced and regulated, with technologies such as AI and automation influencing manufacturing processes to drive efficiency and safety.

There are various types of manufacturing, from repetitive, continuous, batch, job shop, and discrete.  All employ tools, machines, and equipment used through multiple processes. Manufacturers use Interface load cells, torque transducers, multi-axis sensors, and instrumentation to improve products and processes, meet performance requirements, automate machines, protect workers, and test designs. Force measurement supports innovation in manufacturing.

With advancements and process improvements, testing and measuring are primary to every manufacturing stage. It begins with product planning through machine building. Moving to assembly and monitoring production lines, sensors are at work through final distribution. Manufacturing engineers use Interface devices to test assembly line equipment, design and operate robotics, improve machinery, and operate tools like presses.

Manufacturing equipment and processes that utilize Interface load cells and torque transducers:

  • Conveyor Belts
  • Robotics and Cobots
  • Torque Wrenches
  • Tension Testing Machines
  • Weighing Systems and Scales
  • Heavy Machinery
  • Transportation and Moving Equipment
  • Mixers
  • Packaging Equipment
  • Sorting and Picking Devices
  • Material and Stress Testing Labs
  • Fatigue and Compression Testing Equip

How Manufacturers Use Interface Products

  • Research and Development: The measurement data from transducers provides a valuable roadmap to improving the design of products and processes.
  • Testing: Every product undergoes rigorous testing before hitting the line. Interface force measurement devices are essential for this manufacturing phase to validate the use, lifecycle, and materials.
  • Machine and Tool Building:  Machine builders use Interface sensor technologies to weigh raw materials, components, and finished products to ensure they meet the required specifications. Force measurement devices are important in measuring applied force by equipment and processes that help control product quality and prevent accidents. Machine builders frequently use load cells to monitor loads over time to detect and prevent potential machine problems. Read more about why Machine Builders Choose Interface.
  • Quality Assurance: Interface products are used to measure the weight of manufactured products to ensure that they meet specifications. This is important for consumer goods, pharmaceuticals, medical devices, and other products where precise weight measurement is critical for safety and effectiveness.
  • Automation: Force measurement products are valuable in automation. As robotics, cobots, tools, and machinery are designed to automate tasks and processes in manufacturing, load cells like our multi-axis sensors provide valuable analysis data through all phases of automation.
  • Retrofitting Existing Equipment with Sensors: Manufacturers require modern tools and equipment to meet growing demands. Interface products are used to retrofit machines and update tools with sensor-based technologies, such as replacing machine pins with load pins that measure loading and lifting in real-time.
  • Safety and Regulation: Sensors prevent accidents by detecting dangerous conditions in the manufacturing industry. Using measurement systems for alarms, alerts, and monitoring of equipment and tools is critical in manufacturing plants.
  • Process Control: Manufacturing operations monitor the force or weight of materials in a facility to control the process and ensure that products are made to the correct specifications.
  • Productivity and Equipment Maintenance: Using Interface products to monitor the condition of equipment and detect potential problems before they cause downtime helps to prevent costly breakdowns and production delays.

Our depth of force measurement expertise and experience enable us to innovate, engineer, and produce the world’s most accurate, reliable, and quality sensor technology for manufacturers worldwide.  This can be seen through some specific application examples in which Interface solutions have been involved. We have included a few of these examples below.

robotic grinder containing 6A40 6-Axis Load Cell and BX8-HD44 BlueDAQ Series Data Acquisition SystemRobotic Grinding and Polishing During Production

Robotic grinding and polishing are commonly used in manufacturing. Robots or cobots are programmed to grind and polish on varied materials and surfaces. A force measurement system must be implemented to monitor and control the force exerted on the grinding workpiece. Interface’s Model 6A40A 6-Axis Load Cell can be installed between the flange and the grinding tool. When connected to the BX8-HD44 Data Acquisition, the customer can receive force and torque measurements when connected to their control system using BlueDAQ software. The 6A40-6 Axis Load Cell measures all forces and torques (Fx, Fʏ, Fz, Mx, Mʏ, Mz), and our BXB-HD44 Data Acquisition logs, displays and graphs these measurements while sending scaled analog output signals for these axes to the robot’s control system. Manufacturing: Robotic Grinding and Polishing application.

Manufacturing Feed Roller System

A customer has a feed roller system that monitors the forces of both ends of the rollers to maintain a constant straight feed. They preferred a wireless system. Interface suggested installing two PBLC Pillow Block Load Cells at both ends of the bottom roller to measure the applied forces. The forces were measured when connected to the WTS-AM-1E Wireless Strain Bridge Transmitter Module. The data was then transmitted wirelessly to the WTS-BS-6 Wireless Telemetry Dongle Base Station and the WTS-BS-1-HA Wireless Handheld Display for multiple transmitters, where data was displayed, graphed, and logged on the customer’s PC or laptop. The PBLC Pillow Block Load Cells installed at the bottom roller were able to measure and monitor the forces to maintain the straight feed by the rollers. Manufacturing: Feed Roller System app note.

Press Load Monitoring for Material Testing

Press forming is a method to deform different materials. For instance, materials such as steel can be bent, stretched, or formed into shapes. A force measurement solution is required to monitor the forces the press-forming machine applies. This ensures quality control and traceability during the production process. Interface recommends installing the 1000 High Capacity Fatigue-Rated LowProfile™ Load Cell for large press forming machines. When the material is placed under the punch plate to form a shape, the force applied is measured by the Interface 1000 Series Load Cell. The captured force results are sent to the INF-USB3 Universal Serial Bus Single Channel PC Interface Module, where results can be graphed and logged on the customer’s PC using the provided software. Interface’s force measurement products and instrumentation accurately monitored and logged the force results of the press force machine, ensuring zero-error production performance.

Interface began designing and manufacturing load cells and other force measurement equipment in 1968. These precision load cells are commonly found in factories worldwide in testing equipment, scales, machines, and production line devices. Load cells help bring life to older machines with accurate measurements while in use, ultimately improving maintenance and worker safety in manufacturing.

Our force measurement products are versatile and valuable tools for manufacturers. Our sensor solutions improve the quality, safety, and efficiency of products and the equipment and tools used to make them.

Manufacturing Solutions Brochure

 

Force Measurement Solutions for Bolt and Screw Fastening

Among the many applications of force measurement devices, one that appears to be a simple application can have a big impact on worker safety, productivity, waste reduction, assembly and product performance. In this new animated application note highlight, we take a look at the tools used for bolt fastening measurement.

Bolts and screws are used to secure different pieces or components together for nearly every product imaginable, especially when it comes to large machinery and even automobiles. The success of these products and the manufacturing of these components requires a strict level of detail that goes into the tightness of a bolt. It’s not like your typical “do it yourself” furniture where you just tighten a screw or bolt until you can’t anymore. The precision needed for certain objects to be tightened to the exact measurement is mandatory.

Interface provides measurement solutions for all types of industrial automation and toolset testing used in thousands of applications that ultimately are utilized in the building of products. In the example below, we provided devices that are used to determine the exact bolt force and tightness necessary. The goal of measuring the tightness is to avoid under or overtightening. As you can imagine, under tightening can cause components to come apart. However, over tightness can also cause significant damage to the pieces being bolted together.

Bolt Fastening Application

To show the process of measuring bolt tightness, check out this latest use case video demonstration.

For this bolt fastening application, the customer used an Interface Model LWCF Load Washer along with an Interface Model INF-USB3 Single Channel PC Interface Module to monitor force being applied during bolt tightening. The data transferred from the bolt clamping force load cell load washer with a thru-hole, to the instrumentation is displayed, logged and graphed directly onto a computer for analysis and performance testing.

This is a basic example of the test and measurement process, however, Interface also contributed to a number of real-world projects and created applications notes to provide an illustration. One of our favorites is when an industrial automation company was building an automated assembly machine for an automotive manufactur­ing plant.

The product engineers and testing team needed to tighten all of the head bolts on an engine on their assembly line to a specific torque value. Having the head bolts precisely and consistently tightened to the engine block is critical to the operation of the engine.

To measure this force, several Interface Model T33 Spindle Torque Transducers were installed in their new machine to control torque and angle and ensure the head bolt was properly tight­ened. The square drive of the T33 allowed the customer to fix their tool directly to the end of the torque sensor, streamlining the installation.

Using this solution, the head bolts were correctly installed according to manufacturer specifications, producing an engine that meets performance and reliability expectations of the auto manufacturing plant.

Here are additional solutions that showcase how Interface load cells, torque transducers, instrumentation and custom solutions are used for various tools and manufacturing processes across various industries.

Aircraft Screwdriver Fastening Control

Fastening Work Bench

Bolt Fastening Force and Torque

Interface Solutions for Robotics and Industrial Automation

Contact us to learn more how we can help you ensure the right fastening and machine control for your next projects.

 

 

 

Robotics and Automation are Changing Modern Manufacturing at Interface

As the leader in manufacturing force measurement solutions for more than 51 years, the day of carrying out monotonous tasks on the manufacturing line by hand is a history not worth repeating.

Innovation is a core value at Interface. It is essential in helping us advance and grow our production experience and responsiveness to our customer’s advanced application use of our load cells, torque transducers, and thousands of other products that we manufacture.

Continuous Improvement SME Lance Gerdes shares his insight into how a focus on innovation is leading to the introduction of automation tools and robotics onto the manufacturing floor at Interface’s 50,000 square foot headquarters in Arizona.

It is difficult to look back fondly on the days that lacked automation of production line tasks. Line work was straining and tedious during those days, as most technicians would agree. Fast-forward to today, companies who are incorporating new technology are typically experiencing process improvements, increased efficiency, reduced overhead, improved quality output and better run facilities overall.

Results speak for themselves. Manufacturing facilities equipped with automation can significantly reduce time spent on repetitive work, freeing up time for technicians to focus on other areas that advance production and get products to market.

Interface recently invested in a line of collaborative robots to upgrade our facilities. With responsibility for the specialized 1923 Wireless Load Cell product line at Interface, looking back there are many of the typical tasks our technicians used to carry out that involved full days of certain repetitive tasks by hand. The days where my technicians were forced to focus on these tasks represented a significant barrier to peak productivity. Times have changed and so has Interface!

Today with the introduction of automation, we are operating more efficiently than in those dark ages without robotics. We are using collaborative robots to handle tasks, including the application of RTV, which is a silicone sealant used on load cells to protect them from environmental factors. In the past, the technician would be responsible for applying this adhesive in addition to hand-tooling. By automating the adhesive step of this task, those technicians are averaging 50% more efficiency in their workflow.

“Robotics used to facilitate automation is a “must-have” addition to every manufacturing floor.” Lance Gerdes

The return on investment is easily achievable in a year or less. Interface has seen as high as a 15% production increases across the board. As a champion of continuous improvements in our manufacturing, I am excited to see our production results. This success is now leading us to look into more tasks that can be automated using collaborative robotics.

One concern regarding the rise of robotics in the industrial sector we constantly get questions about is the use of robotics as a replacement for our human workforce. This could not be further from the truth at Interface. If anything, robotics will eventually increase the skill set of our current technicians and open up new job openings for Interface as we grow. As we get more advanced collaborative robotics integrated into our work, it improves our capabilities. We will need operators for this automation equipment. And, as we become more efficient and increase profit margins, we’ll have the capacity to grow Interface’s products and services. A win for more jobs, more solutions, and more happy customers!

Robotics and automation are changing the way manufacturing floors operate for the better. At Interface, we look forward to researching and applying new ways that each department can implement automation and robotics technology.

Contributor:  Lance Gerdes, Continuous Improvement SME, Interface

More than half of Interface’s team members work in production. The average tenure for our team is nearly a decade. Our diverse talent in skill and capabilities serve more than 4,500 global customers in various markets each year. For more detailed insights on the inner-working of the Interface manufacturing floor, Interface’s revolutionary products and profiles on our excellent team subscribe to the InterfaceIQ blog.