Posts

Building a Clean Energy Future in Hydrogen with Force

Clean energy is a driving force of innovation, technology, and investment in the global economy. Established energy giants and nimble startups are pouring resources into sustainable solutions. Among them, hydrogen shines as a particularly exciting frontier. The global hydrogen generation market is estimated to be $170B and growing, with an estimated 2,000 hydrogen production-related projects globally.

As with any evolving technology, monitoring and testing are necessary to qualify and improve the various systems that validate inventions and advance adoption. Interface has worked with clean energy suppliers and equipment manufacturers for many years. We have gained much experience in understanding the complexities and requirements of testing and monitoring alternative energy sources.

Among the various clean energy harvesting and storage solutions available today, hydrogen is among the most researched and impactful clean energy options. Hydrogen is considered a clean fuel that produces only water when consumed in a fuel cell. Hydrogen can be produced from biomass, natural gas, nuclear power, and renewables, including solar and wind. Read: Load Cells for Renewable Energy Production and Testing

Due to experience as a supplier of force measurement solutions for energy providers and equipment makers, Brian Peters contributed a new article about the dynamics of applying force testing in hydrogen energy to the Winter Edition of Global Hydrogen Review. His article highlights the current state of hydrogen energy and the barriers that force measurement is helping to solve. He details force-testing solutions for novel technologies that transport, monitor, and store hydrogen energy.

The full article can be read on page 19 of the December 2023 edition of Global Hydrogen Review here. We’ve also included a brief preview of the article below.

Feel The Force

By Brian Peters, VP of Global Sales, Interface

Hydrogen, as a clean and reliable renewable energy source, has been a carrot on a stick for green energy innovators for many years. Scientists and technologists have understood the positive impact of hydrogen for a long time and even harnessed it at times, but the ability to reliably transport, store, and harness this energy at a reasonable cost has previously eluded them. However, hydrogen is back in full force as storage and battery technology has advanced, giving new life to the promise of hydrogen.

Hydrogen is critical to the future of green energy because it is an optimal solution to storing renewable energy from other sources such as wind and water. In certain areas, like California, we produce too much energy from renewable sources but have nowhere to store it. This is leading to a tremendous amount of resource loss. Therefore, hydrogen innovation investment is on the rise again to solve production, storage, and monitoring application challenges aimed at curtailing waste and holding enough energy to power more infrastructure with green energy.

To start, hydrogen production in its current state is quite expensive as the element is difficult to handle, and the equipment and processes available today are scarce or subpar. Many of the traditional production and storage methods also lead to excessive waste.

One of the key reasons that storage has become such a challenge is due to the unique nature of hydrogen energy. Hydrogen is an incredibly light element in liquid form, which is a popular way of storing it in higher volumes. However, in this form, it can be very volatile and hard to maintain due to temperature constraints, and therefore, storage, metering, and more require extreme precision. While in a compressed form, hydrogen takes up more space and needs to be carefully monitored for pressure-related concerns.

Due to the volatility of hydrogen energy, transportation has also become a barrier to the reliable transfer and use of hydrogen energy. The cost alone of transporting liquid or compressed hydrogen can become immense with the current lack of stable transportation/storage methods and the danger it can pose to the individuals shipping the substance.

The road to reaching a place where hydrogen could become a real solution to meeting the demand for renewable energy has been filled with hundreds of technological advancements. One of the lesser-known but extremely critical solutions to making hydrogen a reality on a large scale is force measurement. Force sensors can be used at every level of hydrogen advancement, from harnessing the power of hydrogen to storing, monitoring, and transporting it – and more use cases for hydrogen applications are being implemented frequently. Read More

ADDITIONAL RESOURCES

Load Cells for Renewable Energy Production and Testing

Interface Details Hydrogen Electrolyzers Solution in Design News

Interface and Green Energy Innovation

Interface Load Cells Propel New Torsional Force Measurements for Wind Energy Project

Interface Supports Renewable Energy Innovation

Interface Solutions for Growing Green Energy

Demands for Quality Energy Measurement Solutions

Windmill Energy App Note

Wave Energy Converter

Biomass Handling

Interface Solutions Designed for Infrastructure Challenges

All infrastructure, big and small, needs to be designed with safety and durability in mind. Take for instance the massive amount of design, engineering and quality control that goes into a suspension bridge requires testing before and after it’s built. Not only does it need to be constructed with supreme accuracy, but it also needs to be tested and monitored constantly to ensure it’s safe for use, especially as often infrastructure projects are exposed to extreme elements.

Among the various tools and technologies used to build and test infrastructure designs, sensors play a substantial role. Interface has served infrastructure industry suppliers and customers since our founding more than 50 years ago. Force and torque measurement products including Interface load cells, torque transducers, load pins, load shackles, tension links and instrumentation are involved in a wide variety of infrastructure applications including construction and maintenance of bridges, roads, transportation systems, communication structures, water and electrical facilities, and numerous inventions that are used to build, test, support, maintain and monitor performance of these critical projects around the world.

Accuracy and reliability of Interface solutions are a key factor in measuring structures and components that are exposed to hazardous or weather-related conditions, heavy loads and constant use. Our precision load cells, rugged load pins, wireless and digital instrumentation, along with multi-axis sensors and robust torque transducers are a top choice for those engaged in infrastructure engineering projects and testing.

A few examples of how Interface products have been used on infrastructure applications over the years are noted below. The following examples are also found with many others here /solutions/infrastructure/. 

Concrete Dam Flood Monitoring

A customer was looking for a solution to monitor a concrete dam and be notified when it reached high flooding levels. Interface provided WMC Miniature Sealed Stainless Steel Load Cells with multiple WTS-AM-1E Wireless Acquisition Modules connected to the load cells. This solution proved to be small enough and perfect for measuring compression and tension on the dam. The WMC Modules are installed on the arch of the dame and transmit data and notify the customer through Interface’s Wireless Telemetry System when flooding occurs. Check out the application here.

Hydropower Turbine Generator Monitoring

When a customer wants to monitor and detect turbine generator faults in their hydroelectric power plant located on a river, Interface can provide a T2 Ultra Precision Shaft Style Rotary Torque Transducer and attach it to the turbine generator with Interface’s Shaft Style Torque Transducer Couplings. When water from the river pushes through the penstock to the outflow, it moves the turbine blades, creating electricity through the generator shaft. Torsion measurements can be graphed and logged with the 9850 Torque Transducer and Load Cell Indicator catching any unusual fluctuations and vibrations. Using this solution, the customer can monitor, graph, and log the torque measurement results of the turbine generator. Learn more here.

Bridge Seismic Force Monitoring Solution

A customer wanted to monitor seismic activity that occurs to a bridge using force sensors to continuously monitor activity before, during and after earthquakes. They also wanted a wireless solution to avoid running long cables on the bridge. Interface provided an LP Load Pin custom made to fit the need. The load pin was used in conjunction with our WTS Wireless Telemetry System to monitor the force on the load without cables. Using this solution, the customer was able to monitor continuously, log results to the cloud and review the data. Read more here.

This is just a brief example of the applications throughout the infrastructure industry that Interface supports. A long list of additional applications that use Interface products includes:

Highways and Bridge Construction and Monitoring

Concrete Dam Measurement and Flood Monitoring

Transportation Heavy Equipment Testing

People Movers for Airports

Train Brakes Testing

Power Generation Equipment

Geotechnical Monitoring

Road Load Tests

Weight Bridges and Transportation Scales

Truck and Aircraft Weighing

Housing Mainframe and Skyscraper Construction Monitoring

Building Foundation Capacity Measurement

Bridge Seismic Force Monitoring

In-Motion Rail Weighing

Cranes and Heavy Object Lifting

Structural Testing and Telecommunication Structures

Conveyor Belts

To learn more about Interface and our solutions for Infrastructure and other key industries, please visit our solutions page at www.interfaceforce.com/solutions/.

Instrumentation Options in Test and Measurement

Force and torque measurement technologies such as load cells and torque transducers are a single part of an overall system often used for test and measurement projects and programs. Instrumentation is also a key component of force and torque measurement systems. Instrumentation tools are functional for visualizing and logging the sensor data.

When considering all the options for your project, product designers and engineers need to evaluate the type of instrumentation required to read and gather the sensor output and display the results.

Common questions to ask in preparing your test and measurement project, building a system or setting up a lab:

  • Where are you going to connect your sensor technology and how?
  • Do you need to store your data?
  • Do you prefer an analog or digital output device?
  • Are you going to plug-in your instrumentation or use hand-held, wireless or Bluetooth connectivity?
  • How will your data output be displayed?
  • How many channels do you need for your project or program?

These are all questions related to instrumentation devices and how they interact with and connect to your test and measurement products. Because of the wide variety of instrumentation options, from transmitters and indicators to data logging, it is critical to carefully review the features, specifications, capacities for each. Engineers and testers should review capabilities for data collection of a device, connectors and adapter requirements, and how the device works with specific types of load cells, torque transducers, multi-axis sensors, and other testing equipment.

A valuable tip is to spend time reviewing the specifications of any instrumentation device you are considering, as well as speak with an experienced application engineer. The critical model and design details are provided in the product datasheet to help in your selection.

Key areas to consider in your review and design of a force and torque measurement systems include:

  • Excitation
  • Outputs
  • Performance standards
  • Environmental performance
  • Power
  • Mechanical definitions
  • Connections
  • Protocols

There are dozens of instrumentation options available through Interface including signal conditionersoutput moduleshigh-speed data loggersportable load cell indicatorsweight indicators, and junction boxes. Here are some of our latest additions and most popular instrumentation products:

Download our Instrumentation Brochure
Download our NEW Digital Instrumentation Brochure

Terms and Definitions

To help get you started on the process of selecting the right instrumentation for your project, we have compiled a list of common terms used for instrumentation and in force measurement and sensor technology product descriptions.

  • Accuracy: The closeness of an indication or reading of a measurement device to the actual value of the quantity being measured. Usually expressed as ± percent of full-scale output or reading.
  • Adapter: A mechanism or device for attaching non-mating parts.
  • Amplifier: A device that draws power from a source other than the input signal and which produces as an output an enlarged reproduction of the essential features of its input.
  • Analog Output: A voltage or current signal that is a continuous function of the measured parameter.
  • Analog-to-Digital Converter (A/D or ADC): A device or circuit that outputs a binary number corresponding to an analog signal level at the input.
  • Bluetooth: A standard for the short-range wireless interconnection of mobile phones, computers, and other electronic devices.
  • Bus Formats: A bus is a common pathway through which information flows from one computer component to another. The common expansion bus types include, Industry Standard Architecture (ISA), Extended Industry Standard Architecture (EISA), Micro Channel Architecture (MCA), Video Electronics Standards Association (VESA), Peripheral Component Interconnect (PCI), PCI Express (PCI-X), Personal Computer Memory Card Industry Association, (PCMIA), Accelerated Graphics Port (AGP), Small Computer Systems Interface (SCSI).
  • Calibration: Process of adjusting an instrument or compiling a deviation chart so that its reading can be correlated to the actual value being measured.
  • Communication: Transmission and reception of data among data processing equipment and related peripherals.
  • Controller: Controllers deliver measurement and control functions that may be used in a wide variety of applications. They feature compact form and versatility in systems that require precise measurement of weight or force combined with processing and storage.
  • Digital Output: An output signal which represents the size of an input in the form of a series of discrete quantities.
  • Environmental Conditions: All conditions in which a transducer may be exposed during shipping, storage, handling, and operation.
  • Frequency: The number of cycles over a specified time period over which an event occurs. The reciprocal is called the period.
  • Indicator: Load cell indicators are often needed where the force, load or weight measurement needs to be displayed to a user visually and displaying the results on a PC is not feasible.
  • Intelligent Indicator: Intelligent Indicators ensure sensor equipment is used for the correct amount of time, thereby helping to safeguard against mistakes or purposeful misuse.
  • Output: The electrical signal which is produced by an applied input to the transducer.
  • Protocol: A formal definition that describes how data is to be exchanged.
  • Range: Those values over which a transducer is intended to measure, specified by its upper and lower limits.
  • Signal Conditioner: A circuit module which offsets, attenuates, amplifies, linearizes and/or filters the signal for input to the A/D converter. The typical output signal conditioner is +2 V dc.
  • Strain Gage: A measuring element for converting force, pressure, or tension into an electrical signal.
  • Transducer Electronic Data Sheet (TEDS): Provides a force or torque transducer with electronic identification, allows sensor instrument to be “Plug & Play Ready” meets IEEE 1451.4
  • Wireless: Broadcasting, computer networking, or other communication using radio signals, microwaves, and other signals.

If you still have questions about load cells, torque transducers, and the instrumentation options please give us a call at 480-948-5555 or visit www.interfaceforce.com.

For some of the key terms, we used an online reference you can find here: Source