Posts

Detailing Pillow Block Load Bearing Load Cells

Most commonly, a pillow block bearing is used to create a rolling system. This type of bearing is often utilized for industrial rolls for textiles, paper, and materials. It is also used on conveyor belts in manufacturing facilities. There are other common use cases in a variety of industries, including in transportation, medical device design, and aerospace.

Interface offers specialized loads cells designed to measure and monitor weight and other forces on pillow block bearings, aptly known as Interface Pillow Block Load Bearing Load Cells. The force measurement is performed for this load cell between two supports.

Pillow Block Bearing Load Cell Spans Multiple Industries

Pillow block bearing load cells are important in all types of industries where accurate load measurement is required during production and use of rollers, small and large. Some examples include:

  • Steel industry: Pillow block load cells can be used in roller mills to measure the force required to crush or shape steel.
  • Textile industry: Pillow block load cells can be used in textile machines such as looms and knitting machines to measure the tension on the yarn.
  • Packaging industry: Pillow block load cells can be used in packaging machines to measure the force required to cut or seal packaging materials.

Pillow block load cells are valuable in building and enhancing infrastructure. Using our PBLC1 is a great solution for monitoring trains on a track, in-motion. When our PBLC1 is installed on a track, and the train runs across it, the sensor can provide a signal to a station elsewhere in the world. If any force indicators suggest that there could be a problem with the weight the train is holding or the train itself, the sensor can also trigger an automatic shutdown of the train. These sensors could prevent major damage from train derailments and other train related incidents by detecting errors before the inflict damage.

These weights are important to measure or monitor as they can tell you if you are running out of material on a roll, or if a production line conveyor belt is holding too much weight. An example of the feed roller system using our wireless options is below.

Manufacturing Feed Roller System

Feed roller systems are common in production and manufacturing. In this example, a feed roller system needs to monitor the forces of both ends of the rollers, to maintain a constant straight feed. This reduces waste and ensure quality in the product use. They would also prefer a wireless system. Interface suggests installing two PBLC Pillow Block Load Cells at both ends of the bottom roller to measure the applied forces. The output of measurement is sent to the instrumentation device, our WTS-AM-1E Wireless Strain Bridge Transmitter Module. The data is then transmitted wirelessly to the WTS-BS-6 Wireless Telemetry Dongle Base Station and the WTS-BS-1-HA Wireless Handheld Display for multiple transmitters, where data can be displayed, graphed, and logged a computer. Learn more about this type of use case in our Feed Roller System Application Note.

In addition to this use case, here are a few other ways Pillow Block Load Cells are used to measure weight and force:

  • Material handling: Pillow block load cells are commonly used in conveyor systems to measure the weight of materials being transported.
  • Automotive industry: Pillow block load cells are used in assembly line applications to measure the weight of parts and components being assembled.
  • Heavy machinery: Pillow block load cells are used in cranes, bulldozers, and other heavy machinery to measure loads and monitor the equipment’s performance.
  • Manufacturing: Pillow block load cells are used in material testing machines to measure the force required to break or deform materials.
  • Aerospace: Pillow block load cells are used in aerospace applications to measure the weight and balance of aircraft and spacecraft.
  • Medical industry: Pillow block load cells are used in medical equipment such as patient lifts and hospital beds to measure the weight of patients.
  • Food industry: Pillow block load cells are used in food processing and packaging equipment to measure the weight of ingredients and finished products.

Pillow Block Bearing Load Cells Product Overview

This type of force sensor is suitable for the measurement of forces under pillow block bearings for diameter Ø 20mm (Ø 0.79 in) and for the measurement of axle weight in test stands for trains and vehicles. Our system is compatible with INA Pillow Block Bearings and is installed underneath the bearing to measure force. There are three model versions, with the options for additional multi-axis measurements for engineer to order products.

PBLC1 Pillow Block Load Bearing Load Cell

PBLC2 Pillow Block Load Bearing Load Cell

PBLC3 Pillow Block Load Bearing Load Cell

Features and benefits of our Pillow Block Load Cell include:

  • Capacities from 5 to 30 kN (1.1K to 6.7K lbf)
  • Compatible with INA pillow block bearings
  • IP65 moisture protection
  • Rugged electro-galvanized surface

In addition, our Pillow Block Load Cell are also available in multi-axis versions, which allows for more force data from your test application. This helps with measuring forces such as center of gravity, tension across a load bearing beam and more. These multi-axis versions come in two and three axis models. If you are looking to get accurate measurement for your pillow block bearing use cases, contact our specialized application engineers.

ADDITIONAL RESOURCES

Interface Manufacturing and Production Solutions

Quality Engineers Require Accurate Force Measurement Solutions

Interface New Product Releases Winter 2023

Infrastructure Industry Relies on Interface Force Measurement

Interface Solutions for Production Line Engineers

Industrial Automation

 

Introducing the Interface Consumer Product Testing Case Study

The global consumer products market is a multi-billion dollar industry that thrives on innovation and new product development. There are numerous opportunities to utilize sensor-based technologies to test for safe use and monitor product performance.

Interface is a source of quality precision force sensor technologies used throughout the product lifecycle from concept and R&D, through engineering and testing, to manufacturing and eventually consumption. We supply force measurement solutions for use in equipment, machines, tools, and integration into actual products like our miniature load cells to measure performance and use. We even provide products to accurately measure and monitor hardware used in consumer product distribution. Interface load cells and instrumentation help consumer product designers and fabricators drive usability, adoption, production efficiencies, and ensure safety to satisfy the needs of all types of consumers.

In our latest case study, Interface Delivers for Consumer Products, we highlight specific use cases and products that are used by the consumer products industry. Interface offers multitudes of products, from sensors used to measure weight on the production line of a consumer good to regulating how the consumer can use the product by using embedded load cells into the actual product.

Here are a few examples of how our force sensors are used in the consumer products industry:

  • Keyboards and buttons: Force sensors can be used to measure the force applied to keys on a keyboard or buttons on electronic devices, such as smartphones or game controllers, to ensure that they have a consistent and satisfying feel for the user.
  • Package testing: Force sensors can be used to measure the force applied to packaged consumer goods, such as food and beverage containers, during transportation and handling to ensure that they are not damaged and that their contents are protected.
  • Automotive testing: Force sensors can be used to measure the forces applied to various components of a vehicle during crash testing, such as doors and seat belts, to ensure that they meet safety standards and provide adequate protection for the occupants.
  • Sports equipment: Force sensors can be used to measure the force applied to sports equipment, such as golf clubs, tennis rackets, and baseball bats, to ensure that they meet performance and safety standards.
  • Wearable devices: Force sensors can be used to measure the force applied to wearable devices, such as fitness trackers, to ensure that they are durable and can withstand the wear and tear of daily use.

Our specialty is building force measurement solutions for the testing and monitoring of parts and total systems, which is vital to manufacturers and designers of consumer packaged goods. Accurate measurement is necessary in design, prototyping and producing final consumer products across all industries for performance and safety. These solutions are ideal for consumer product stand-alone testing rigs, production equipment, as well as embedding into products to increase operability and reliability for end users.

Additional consumer products applications utilizing Interface quality measurement solutions include:

These are just a few examples of how force sensors are used in the consumer products industry to measure the force applied to a variety of products. The use of force sensors is essential for ensuring that consumer products meet safety and performance standards, and for providing consumers with a high-quality user experience.

To better illustrate and address our solutions designed for consumer products across sectors, we have developed a case study outlining the consumer product testing challenges and technology we offer for these customers.
Interface Delivers for Consumer Products Case Study

How Santa Uses Interface Force Measurement Solutions to Expedite Delivery

It is well known that Jolly Ole Saint Nick leverages a great deal of magic to deliver countless gifts worldwide on Christmas. However, many don’t know that Santa does not do it all with the holiday magic. In fact, the science and engineering that goes into a wide variety of Santa’s many tools for delivering gifts are quite impressive!

With all that engineering, there is a heavy reliance of accuracy proven through rigorous test and measurement. Santa and his team confidently turn to Interface’s precision force measurement products to expedite delivery, maximize operations and packaging, quality test toys, and most importantly ensure he has absolute confidence in flight safety. How is it all possible? Lots of magical ingenuity, belief and of course, using advanced sensor technologies and instrumentation to assist in making it all happen.

Like most of our customers, we often don’t promote our custom solutions out of respect for their proprietary projects capabilities. Due to the magical capabilities that have unknown sourcing for competition, we agreed that we could reveal some of our shared secrets. Fortunately, the big guy gave us the green light to give some insight into our role in the magnificently unique present delivery machine. It should be known, our internal resources have revealed we’ve been working with special technicians in the Santa operations behind the scenes for many years.

As the world population nears 8 billion, Santa is leveraging outside experts and sources to supplement his own team’s abilities beyond reindeers and sleds, such as delivery drones. It’s a fact, Santa only works with the newest innovations. In addition, the reindeer may be magic, but the harnesses holding them to one another, and the sleigh, take careful calculations to ensure a smooth ride all night. Let’s look at a few examples of how Interface helps with all these challenges.

One disclaimer, Santa asked us not to use any real pictures from his workshop to retain the magic of Christmas and not give away trade secrets. We’ll use our app notes illustrations to paint the picture.

WTS Reindeer Bridle Tension System for Faster Performance

Santa came to Interface because he needed to quantify the so-called “poll pressure.” Bits designed to give strong poll pressure using simple pulley lever principles show a much-attenuated transfer of the rein tension through the bit to the poll. The attenuation is readily understood when the reindeer’s mouth is recognized as a “floating” fulcrum degrading the otherwise required fixed pivot point of an ideal lever. We suggested a WTS Reindeer Bridle Tension System, with two SMA Miniature S-Type Load Cells in both the line of the reins and that of the cheekpiece on one side of the reindeer. This is used to study the dynamic response of the cheekpiece tension to rein tension. Utilizing the Wireless Telemetry System (WTS), the valuable data can be displayed and/or recorded in real time using a PC and/or a handheld receiver. The fundamental operation of the bits could in principle be discovered on the laboratory bench. But in practice of course, the reindeer’s mouth is expected to provide the fulcrum. Within the real experimental system comprising Santa’s hands on the reins, the reindeers’ mouth, and the bit, the elasticity of the mouth provides a “floating” fulcrum and a potential source of time-lag and decoherence between the dynamic rein and cheekpiece tensions. Ultimately, this solution was applied across each of the reindeer to ensure Santa understood the pole pressure of each flying reindeer guiding his sleigh as he manned the reins.

Expediting Holiday Gift with Santa Approved Drone Delivery

As mentioned above, Santa needed some help to ensure the growing population received presents on Christmas night, so he started to employ “delivery drones” into his process. To ensure everything went smoothly, Santa needs to weigh the payload of the package being delivered while the propeller motors compensate for weight shifting or uneven weight distribution of the package to lift and fly the package to its destination. Four Interface WMC Sealed Stainless Steel Miniature Load Cells were used to measure the weight of the payload and detect weight shifting or uneven weight distribution of the package which would signal the necessary propeller motors to compensate for an uneven weight load. The four WMC load cells accurately measured the payload weight and maintained stability of the propeller motors to safely deliver the parcel. This information was communicated to the drone’s on-board processor for monitoring and recording this information during flight. This solution has given Santa the extra hands he needs to ensure every boy and girl receives their presents in time!

Production Workshop Toys and Bicycle Load Testing

Santa’s workshop is also full of force sensing solutions for all the individual toys that need to be tested for safety and quality. One of the systems he uses measures bike frame load capacities and vibrations on the frame to ensure the bike’s high quality and frame load durability during the final step of the product testing process for children and adults receiving the bikes. Interface suggested installing Model SSMF Fatigue Rated S-Type Load Cell, connected to the WTS-AM-1E Wireless Strain Bridge, between the bike’s seat and the bike frame. This will measure the vibrations and load forces applied onto the bike frame. The results will be captured by the WTS-AM-1E and transmitted to a PC using the WTS-BS-6 Wireless Telemetry Dongle Base Station. Using this solution, Santa was able to gather highly accurate data to determine that their bikes met performance standards through this final testing.

With new technology and a rising need for fast, safe and reliable delivery of all the gifts around the world, it takes a lot of belief, mixed with magic, advanced engineering and precision test and measurement to meet the demand for Christmas presents every year. And Interface proud to be the load cell of choice for Santa’s workshop.

Merry Christmas, Happy Holidays, and Happy New Year to all from everyone at Interface!

Quality Engineers Require Accurate Force Measurement Solutions

In engineering and manufacturing, when introducing a product onto the market the requirements and regulations can be immense. Each industry has strict guidelines to ensure safety, durability, quality, and overall customer satisfaction. To meet these requirements, most product and component maker will have experienced quality engineers to help meet the necessary requirements in production.

Quality Engineers work in a variety of industries including automotive, transportation, infrastructure, aerospace and defense, industrial automation, medical and healthcare devices, and consumer product manufacturing. Their role is to monitor, test, and report on the quality. They are also instrumental in strategy, process development, and increasing output. Depending on the position, they are responsible for inspecting and testing raw materials, components, mechanical systems, hardware and software, as well as final products.

The Quality Engineer works with manufacturers, developers, project managers. Commonly, they are aligned with quality assurance and quality control teams to develop processes, test procedures and implement systems that ensure manufactured products and fabrication processes meet quality standards, safety regulations, and satisfy all stakeholders. They are the safeguard for companies that are creating, building and distributing products and materials.

Accuracy of testing and measurement data is fundamental to quality engineers. Critical to quality assurance and control processes, quality engineers rely heavily on all types of Interface high-accuracy load cells, weighing systems, and instrumentation for force measurement quality systems. Manufacturing quality engineers rely on products from Interface to test both products and equipment on a manufacturing line to ensure they perform reliably and meet certain safety standards.

Force measurement systems also make role of a quality engineer easier through the use of accurate data. This is because force measurement often enables automated, real-time monitoring of many processes used in the making of things. Interface precision load cells are used to monitor assembly line machine processes, test and monitor automation equipment like robotics, and weighcheck systems, and ruggedized equipment for quality control onsite and in remote locations.

Included below are a few examples of how force measurement systems are used in quality engineering.

Medical Device Interventional Guidewire Quality Inspection

A medical device manufacturer needs to do quality checks on threaded ends of their interventional guidewire devices. The threaded end of the guidewire contains an extremely small 000-120 thread that needs to be tested with go and no-go gauges in order to see if it will mate with other critical subassemblies. They requested a custom made turnkey test stand that is both inexpensive and flexible for varying lengths and models of guidewires.  Interface suggests a system where the customer can axially load and insert the guidewire through the MRT Miniature Flange Style Reaction Torque Transducer, secure it, and use an automated stepper motor on a slide base to test the thread quality. When in use, the MRT measures the torque magnitudes of both no-go and go gauges which indicate quality of the threaded guidewire.

Snack Weighing and Packaging Machine Quality Monitoring

One aspect of quality in the consumer packaged goods space is ensuring equal distributions of individually wrapped snack bags such as chips or candy. When snack manufacturing brand wanted to weigh the amount of their snacks that is automatically dispersed into the bags during the packaging process, Interface offered a solution. We suggested multiple SPI Platform Scale Load Cells, and installed them to the potato multi-head weigher and packaging machine. The SPI Platform Scale Load cells were installed inside of the mount that attaches the head weigher to the packaging machine. Force results from the potato chips were read by the load cells and sent to the ISG Isolated DIN Rail Mount Signal Conditioner, where the customer is able to control the automated production from their command center. The customer was able to determine the weight of the potato chips being distributed into their bags with highly accurate results. They also were able to control the automated production process with the provided instrumentation. They will use this same weighing method for other snacks that need to be packaged utilizing this machine.

Vehicle Crash Test Load Cell Wall Quality Inspection

A facility wanted to do crash tests on their vehicles for quality inspection. There are multiple tests such as structural testing of the vehicle, developmental tests, and regulatory and compliance tests and they needed to measure the force of the vehicle crash tests, on all axes. Interface’ suggested using multiple 3A400 3-Axis Force Load Cells, and attach it to the back of a cement crash wall. When connected to the BX8-HD44 Interface BlueDAQ Series Data Acquisition System, force result measurements will be recorded and displayed with the customer’s PC or laptop. The customer was able to measure the force of impact for all of their different vehicle crash testing demonstrations.

The applications of force measurements for quality engineers are large, and the necessity of obtaining this data is critical to creating, safe, reliable and high-quality products.

ADDITIONAL RESOURCES

Interface Solutions for Material Testing Engineers

Why Civil Engineers Prefer Interface Products

Why Product Design Engineers Choose Interface

The Five Critical Factors of Load Cell Quality

Our Reputation is Defined by Our Industry-Leading Quality

Interface Solutions for Research and Development

Interface Solutions for Consumer Products

Interface’s force measurement solutions affect every industry and all types of products. Chances are that the everyday consumer has purchased and used something evaluated with or utilizing an embedded force sensor.

In fact, Interface has a long history in providing load cells and sensor technologies to test and measure consumer packaged goods (CPG) and products. They are commonplace in early-stage prototype testing, all through final distribution. Most often, our force measurement solutions help predict failure and identify design challenges before goods are available to consumers. It is hard to imagine any product that would not go through rigorous test and measurement protocols before it goes to market. The liabilities are too great and consumer safety is paramount.

It is also critical to use accurate, quality sensors to gather reliable user data related to any consumer product. Product makers use sensor data to assess product usability, capabilities, and durability. The more data, the greater the opportunity to adjust and ensure the product is a direct fit. Precision in this process through data will improve the product’s performance and influence adoption.

From testing home health care devices to ensuring household appliances are safe and durable, Interface’s sensor measurement technologies have a vital role in R&D, design, production and packaging. Load cells and other sensor products are used for all kinds of testing, from material to fatigue, in the creation and manufacturing of everyday goods. They are growing in popularity to make products smarter and designed for IoT use.

Consumer Product Applications for Interface Force Measurement Solutions

  • Smart home devices
  • IoT solutions
  • Production line testing
  • Usability research
  • Safety and compliance
  • Regulatory and performance monitoring
  • Manufacturing robotics
  • Warehouse equipment
  • Food packaging
  • Toys
  • Gaming and simulation equipment
  • Electronics hardware
  • Sports equipment
  • Furniture
  • Capping and bottling machines
  • Real-time user feedback

We even provide products to accurately measure and monitor hardware used in intermediate goods, assembly equipment, and distribution. Our force measurement solutions are ideal for consumer product stand-alone testing rigs, production equipment, as well as embedded in consumer products to increase operability and reliability for end users.

Interface load cells and instrumentation help product designers and fabricators drive usability, adoption, production efficiencies, and ensure safety to satisfy the needs of all types of consumers. Here are a few applications notes to demonstrate Interface solutions utilized in the consumer products industry. Additional applications for consumer packaged goods and consumer products are found here.

Commercial Food Processing

A consumer food product processing plant wants to measure in-motion the food weigh as it is processed down the line. They want to ensure production line efficiency and food quality for future consumers. The customer also wants real-time results of their food being weighed to keep standards high and ensure quality product. Multiple of Interface’s SPI High Capacity Platform Scale Load Cells can be installed in the customer’s in-motion check weigher at the specific points where the food is weighed on the belt to deliver precise weighing results. When connected to the 920i Programmable Weight Indicator and Controller, real time results of the weight of the food being processed is available at all times. The 920i Programmable Weight Indicator and Controller can read up to four scale channels. Read more here.

Computer Touchpad Force Testing

A laptop manufacturer wanted to test their mouse touchpads to ensure it is functioning properly for future consumers, thus measuring the right amount of sensitivity during the consumer’s use. They also needed a system that measures the force it takes for the mouse pad to activate a response on the laptop. Interface suggested using the SMTM Micro S-Type Load Cell, from the Interface Mini™ line. The SMTM was installed in the customer’s actuator test rig. The SMTM recorded the amount of force it takes to press on the trackpad and create a response on different areas of the trackpad. An actuator aided with tactile feedback by providing movements such as dragging or creating friction. The measurements were captured using the 9330 Battery Powered High Speed Data Logging Indicator through an SD card, or another laptop directly. The SMTM Micro S-Type Load Cell was able to measure the forces applied to the mouse touchpad at various locations. Interface’s products successfully measured the forces needed to make the mouse touchpad create a response. Get more information here.

Furniture Fatigue Cycle Testing

To meet safety protocols in relation to the manufacturing of various furniture products, rigorous fatigue testing, shock testing, and proof testing before dispersion into the marketplace, and into the homes of consumers. Force testing on furniture products is critical in determining the posted max loads to protect manufacturers from liability due to damages that might result from the misuse of those products and overloading. Using Interface’s SSMF Fatigue Rated S-Type Load Cell along with Interface’s 9890 Strain Gage, Load Cell, & mV/V Indicator provides a solution that measures the force being applied in fatigue cycle testing of a furniture product, in this case testing the rocking mechanism in an office chair. Unlike other similar load cells, the SSMF is fatigue rated making it highly suitable for fatigue testing. Using this solution, the furniture manufacturer was able to obtain accurate data about the rocking mechanism the office chair as it was fatigue cycled into failure. Post testing, adjustments to the design to improve the safety and life of the furniture, ensuring product quality, and protecting the manufacturer from future liability. Learn more here.

Printer Cartridge Seal

An ink manufacturer wanted to ensure there is a proper seal between their ink cartridge caps and the cartridge body, for it to work effectively in their printers and for consumers buying it for themselves. A bad seal can cause leaks, clogging, and overall deficient performance for their printers. Interface’s solution was to measure the pressure exerted on the cartridge cap by installing the 3A120 3-Axis Load Cell under the plate during the automatic production line process. Results were logged, graphed, and stored when the customer’s PC or laptop is connected to the BSC4D Multi-Channel PC Interface Module with supplied BlueDAQ software. Using this solution, the ink manufacturer was able to determine the exact amount of force it took to seal their ink cartridge caps onto the cartridge bodies to prevent any leaks or clogging. Learn more here.

Interface solutions for consumer products are abundant. For every machine, test system and even many products themselves, these products benefit from a force sensor to improve product performance, prove reliability and more.

Additional Resources

Force Measurement is Reducing Waste and Automating the Consumer Packaging Industry

Applications for Consumer Products and Packaging

Load Cells for Consumer Product Applications

CPG Bike Handlebar Fatigue Testing

Interface Solutions in the World of Sports

CPG Water Bottle Dispensing and Weighing

CPG Treadmill Force Measurement

CPG Golf Club Swing Accuracy

CPG Gaming Simulation Brake Pedal

Interface Solutions for Machine Builders

No matter the industry, if products are being made chances are industrial machines are involved in some part of R&D, testing, production, and distribution.

Engineers involved in the design and manufacturing of these machines require the highest quality sensors, tools and equipment. In addition, humans often lean on machines for very precise or repetitive tasks, this means that precision and reliability is key for every aspect of these machines.

Machine builders are the backbone of product development and production. They are responsible for building, assembling, and integrating components for stand-alone and multi-station automated machine tools and systems. These automated machine-tool systems are used in all sectors of manufacturing, including assembly, processing, and fabricating systems.

Interface plays a critical role for machine builders, for those that design one machine or manufacture machines at scale for users around the world. We supply machine builders with precision load cells, torque transducers, instrumentation, data acquisition devices and accessories. They lean on Interface because of our experience in supplying the world solutions utilized for industrial product testing and production across all kinds of industries from agricultural machinery to medical testing machines.

The accuracy and quality of our products is why machine builders rely on Interface. In addition, our experience and diversity of product has led machine builders and engineers to choose Interface force measurement sensors throughout their careers. In fact, Interface has served machine builders for more than 50 years. It is a relationship and role we know very well.

The world of machine building has also changed over the years. In the past, machine builders used force sensors primarily to test products before going out to the market. This is still a prominent use case amongst product engineers. The fast-rising use cases over the past decade comes from the demand for smarter machines, automation and miniaturization of products.

Today, more machines builders and OEMs are designing force sensors directly into machines to allow users to activate components, monitor data on the machines in use for real-time feedback and adjustments. This type of innovation using sensors has opened opportunities for Industry 4.0 connectivity between machines.

To get a better idea of how machine builders are using force sensors, Interface has developed a wide range of applications notes to provide real world examples of force measurement in action in the machine building world. We have included a few of those examples below.

Metal Press Cutting Machine

A customer wanted to test the amount of force it takes to cut through different thicknesses of metal on their metal press cutting machine. They also wanted to ensure their metal press cutting machine is working properly and understand its maximum limitation. Interface suggested installing their 3AXX 3-Axis Force Load Cell underneath the plate where pieces of metal are placed to be cut, or punched holes in. When connected to the BX8-HD44 BlueDAQ Series Data Acquisition System, the force results of different metals being cut will be displayed, graphed, and recorded on the customer’s PC. It also has an analog output that can connect to the machines PLC in case of an overload. Using this solution, the customer was able to determine the different number of forces it took for their metal press cutting machine to cut through different types and thicknesses of metal. Read more here.

Snack Weighing and Packaging Machine

A snack manufacturing brand wanted to weigh the amount of their snacks that is automatically dispersed into the bags during the packaging process. In this case, they wanted to weigh their potato chips being packaged and ensure the potato chips are at the exact weight needed due to regulatory standards. Interface’s solution was to use multiple SPI Platform Scale Load Cells and install it to the potato multi-head weigher and packaging machine. The SPI Platform Scale Load cells were installed inside of the mount that attaches the head weigher to the packaging machine. Force results from the potato chips are read by the load cells and sent to the ISG Isolated DIN Rail Mount Signal Conditioner, where the customer is able to control the automated production from their command center. Using this solution, the customer was able to determine the weight of the potato chips being distributed into their bags with highly accurate results. They also were able to control the automated production process with the provided instrumentation. They will use this same weighing method for other snacks that need to be packaged. Read about this application here.

Tablet Forming Machine

A pharmaceutical company needs to precisely monitor the forces applied by the tablet (pill) forming machine to understand the relationship between raw material, die set, forming force, and motor cycle speed. Optimizing the equipment will improve productivity and efficiency of the tablet forming process, while reducing losses. For maximizing production and monitoring the process, Interface suggested a WMC Sealed Stainless Steel Mini Load Cell (10K lbf Capacity) be mounted in the section of the downward press bar. The load cell was then connected to a 9320 Portable Load Cell Indicator to collect the needed data. Read more here.

Machine builders require the best test and monitoring equipment. Interface has backed professional machine builders, machine design engineers, machine manufacturers and those that utilize the equipment for many years with top-of-the-line force sensing solutions.  Whether you are looking to build a machine, design machine tools and equipment or embed sensors into machines, we are here to help.

ADDITIONAL RESOURCES

Proving Theoretical Cutting Forces of Rotary Ultrasonic Machinery App Note

Force Solutions for Testing Machines

Interface Sensors Used for Internet of Things

OEM: Industrial Robotic Arm

Fitness Equipment and Machines

Ice Machine Weighing

GS-SYS04 Gold Standard® Portable E4 Machine Calibration System

Laser Machine Cutting Force App Note

Interface Solutions for Weighing Applications

Interface sensors are used for an extremely wide variety of test and measurement applications. We also supply different technologies and instrumentation for a range of weighing applications, from packaging to waste management. Determining accurate weight is a key data point that manufacturers in all types of industry use cases. Whether they need the information for transporting an object, lifting the object, or just creating a specification sheet, accurate data on weight, accuracy in weight measurements are fundamental for safety and function.

Here is a quick review some of the weighing applications, everything from the food and beverage industry to agriculture and industrial. And it’s important to note, weighing across these different industries doesn’t always involve a simple scale, each object large or small that needs to be weighed has a different method for doing so and different force sensors to get the most accurate data built into machines or used in conjunction with other hardware components.

SNACK WEIGHING AND PACKAGING MACHINE

A snack manufacturing brand wanted to weigh the amount of their snacks that are automatically dispersed into the bags during the packaging process. In this case, they wanted to weigh the potato chips being packaged and ensure the potato chips are at the exact weight needed due to regulatory standards. Interface provided a solution using multiple SPI Platform Scale Load Cells, and installed it to the potato multi-head weigher and packaging machine. The SPI Platform Scale Load cells were installed inside of the mount that attaches the head weigher to the packaging machine. Force results from the potato chips were read by the load cells and sent to the ISG Isolated DIN Rail Mount Signal Conditioner, where the customer is able to control the automated production from their command center. Using this solution, the customer was able to determine the weight of the potato chips being distributed into their bags with highly accurate results. They  were able to control the automated production process with the provided instrumentation. They will use this same weighing method for other snacks that need to be packaged. Read more here.

WASTE MANAGEMENT CONTAINER WEIGHING

When a waste management company wanted to measure the capacity of their waste containers in order to know when it is time to dispose the waste, Interface proposed a solution using Model WTS 1200 Standard Precision LowProfile™ Wireless Load Cells. The load cells can be installed at the bottom of each waste container leg to measure the sum weight of the container. The data is transmitted to the WTS-BS-4 USB Industrial Base Station with the supplied Log100 software. The customer would then be able to determine when their waste container was at full capacity in order to dispose of the waste, or to transfer it. Read more here.

GARBAGE TRUCK ON-BOARD WEIGHING

A garbage disposal company wanted to test the load capacity of their garbage truck bins so they know when it has reached maximum capacity. Interface’s solution is to customize and install four SSB Sealed Beam Load Cells under the garbage box body, on either side. When trash continues to be piled inside the box body, it will push more force down onto the SSB Sealed Beam Load Cells. When maximum load capacity has been reached, the results can be reviewed and displayed when connected to the 482 Battery Powered Bidirectional Weight Indicator in real time. Using this solution, the customer was able to test the maximum load capacity of the garbage bin attached to the truck, so they know when to empty the truck’s garbage at the transfer station. Read more here.

MEDICAL BAG WEIGHING

In the medical industry, it is important to monitor the amount of material in a medical bag carrying fluids for an IV. Medical staff also need to know if a medical bag is empty or if the dispensing tubes are blocked. Force measurements can track this. Using Interface Model MB Miniature Beam or MBP Miniature Beam with built-in overload protection combined with Interface instrumentation, force readings can be captured, displayed and stored for this need. Health Professionals can then review and monitor medical bag weights to ensure medicine is properly dispensed and bag is replaced when empty.

Weighing applications are at the foundation of measurement. The earliest force sensors were designed for this purpose, and they continue to be a large part of application testing today. The only difference between now and then is that Interface has nearly perfected their accuracy across different applications with different types of force sensors measuring very large weight and very small, minute forces.

ADDITIONAL WEIGHING APPLICATIONS

Chicken Weighing

Silo Monitoring and Weighing

Crane Force Regulation

Water Bottle Dispensing and Weighing

To learn more about Interface weighing applications and other applications of our load cells, torque transducers, multi-axis sensors and more, contact us today.

 

 

 

Interface Solutions for Industrial Markets

The industrial market is vast. The industry classification covers everything from manufacturing and assembly to mining and agriculture. The highly regulated environments involved in industrial applications often require advanced equipment and technologies for product design and development, as well as after market performance management. Force and torque products are critical sensor components used in industrial applications.

Interface has been a partner to industrial customers for more than 50 years. We engineer, build, and supply force and torque sensors and acquisition devices designed to provide industrial engineers and manufacturers with high quality data that monitors and confirms the design and in-action processes of their equipment. Applications for industrial markets involve everything from heavy machinery to weighing solutions. The accuracy of these devices is critical to high-quality outcomes, low-costs and most importantly, worker safety.

INDUSTRIAL APPLICATIONS 

An example of an industrial process that requires an accurate force sensor is a crane application used in lifting heaving objects. Interface engaged with a customer who needed to measure the lifting capabilities of a crane using an Interface load shackle. The purpose of the shackle was to ensure the crane wasn’t lifting more than it could handle, putting worker safety at risk and potentially damaging the machine.

Interface model WTSSHK-B Wireless Load Shackle was connected to a crane load string to measure forces. A model WTS-BS-1-HA Battery Powered Handheld Display was used to wirelessly receive load information and display results. Using this solution, the customer was able to successfully measure lifting and reading weight wirelessly on a handheld display while the crane was in action.

Another great example of the industrial industry’s use of force applications can be seen in manufacturing automation. One of the growing trends in marketing automation is the use of robotics to replace repetitive human tasks. Robotic arms are often found on assembly lines and they carry out a single task over and over. If the robotic arm isn’t properly calibrated, it can ruin an entire production line and lead to significant losses. To qualify the accuracy, many OEM’s use load cells and torque transducers to continuously measure the intricate movements of a robotic arm.

One Interface customer used a robotic arm to close packaging on a production line. If the arm wasn’t accurate, it could apply to much force and crush the packaging or not close the packaging as intended, leading to losses in shipping.

Interface supplied a 6-Axis Load Cell with a model BX8 Data Acquisition and Amplifier System. The Interface Multi-Axis 6-Axis Load Cell was able to measure all forces and torques on every axis and the BX8 8-Channel Data Acquisition System was able to log, display, and graph these measurements while sending scaled analog output signals for these axes to the robot’s control system.

READ MORE HERE: FORCE MEASUREMENT IS REDUCING WASTE AND AUTOMATING THE CONSUMER PACKAGING INDUSTRY

Another consideration for specialized industrial applications is in harsh environments. There are hundreds of thousands of engineers and manufacturers that spend their days working in these environments. Whether its operating inside of facilities with large machines and intricate moving parts, working hundreds of feet in the air repairing a bridge, or deep within a mine shaft, these professionals put themselves in danger every day by the nature of their work. As engineers and manufacturers, many of us are also tasked to solve for safety challenges and keep these professionals protected in any environment.

One of the ways we contribute to industrial safety is with the development of our Interface Ex Rated Load Cells, also known as Interface Intrinsically Safe Products. These specialized load cells and force measurement solutions are designed and manufactured so that the materials and electronic components are safe for use in hazardous gas and dust environments when installed per applicable installation instructions. These components are designed for those applications found in dangerous environments in particular industries like oil and gas, mining, aerospace, automotive and more.

The applications for industrial vary widely because the industry is diverse. Interfaces designs and manufacturers force and torque products for hundreds of different industrial use cases and applications every year. Our team of engineers can even create custom solutions for new and innovative industrial requirements. Included below are examples of some of the products typically used by our industrial customers.

  • 2400 Load Cell Series – The 2400 is a stainless-steel load cell designed for applications requiring a hermetic seal for use in general industrial applications.
  • 3200 Load Cell Series – The 3200 precision stainless steel load cell series has all the features of the Interface Model 1200 LowProfile® (one of Interface’s most popular products) and in addition it is stainless steel and hermetically sealed for harsh applications.
  • SSMH Load Cell Series – Model SSMH S-type load cell provides a suitable force measurement sensor for applications in coal mining and transfer and other heavy industries where explosive dusts and environment conditions are potentially explosion-hazard rated. SSMH capacities available that provide intrinsically safe certification.
  • Stainless Steel Load Buttons – Interface’s load button load cells are designed for customers who require the measurement of forces in a very confined space. They are designed to provide the most accuracy in as little space as possible.
  • 5400 Series Reaction Torque Transducer Series – Model 5400 series features a rugged flange-style designed with thru-holes, low deflection, high torsional stiffness and the ability to withstand large overhung moments.
  • Wireless Telemetry System (WTS) – High accuracy, high quality measurement is interfaced with simple yet powerful configuration and monitoring software. The WTS gives sensor manufacturers and integrators the complete flexibility to build their own sensor modules around it. The system easily replaces wired systems, reducing installation and maintenance costs.

These are just a few examples of Interface applications notes and products designed for industrial applications. For more information on Interface solutions design for the Industrial industry, contact our experienced application engineers.

 

Applications for Consumer Products and Packaging

When we think about force measurement and its relation to product development, we often consider the aerospace, automotive or industrial industry. However, many of Interface’s customers use load cells and torque transducers to test and develop machinery used for consumer products and in the packaging industry.

In order to meet this demand, customers need force measurement tools that are both accurate and provide the necessary data points to automate and regulate consumer packaging machinery. This consumer packaging case study takes a look at the wide variety of applications of force measurement tools used to create consistency and quality among the products consumer buy and use daily.

BACKGROUND

If you have ever wondered how a pill or piece of candy gets a little logo stamped on it without crushing it or how every bag of chips is nearly filled to the same capacity, chances are a load cell or torque transducer was involved. Interface works with hundreds of customers who manufacture a wide variety of machines used in the consumer packaging industry. These machines serve numerous functions including logo stamping, bag weighing, bottle capping, sealing, and precision cutting.

According to Grandview Research, the use of automation, as well as robotics throughout the packaging lines, has seen tremendous growth in recent years. The aim is to improve productivity, reduce the operating costs and prevent waste, thus improving the overall efficiency of the packaging systems. “Big Data” has also gained popularity with operation managers that collect machine data to regulate the performance of the machinery, undertake preventive maintenance and maximize the up-time.

CHALLENGE

The challenge our customers run into when building these machines is they require a high level of precision to get consistent and repeatable results. If the machines are incorrectly calibrated, it can lead to excessive waste. For instance, if a bottle of soda isn’t capped correctly, it can leak, or if the machine which embosses toilet paper and napkins is too forceful, the paper will be ripped to shreds. Currently, most packaging machines are relying on physical hard stops, clutches, monitoring motor current and laborious tasks to monitor and apply the necessary force and torque. To ensure proper performance and to reduce waste, the most accurate and reliable force measurement tools are required.

SOLUTION

Interface works with hundreds of original equipment manufacturers (OEMs) who develop machines for the consumer packaging industry. Depending on the function of the machine, we manufacture a wide variety of force measurement products to help reduce waste, ensure repeatable results and provide accurate data to help consumer packaging customers automate their processes.

All of our products come with various data communication systems, including analog or digital and Bluetooth®, wireless or Ethernet. This provides customers with flexibility in their data collection methods and the ability to connect systems through the Internet of Things (IoT) functionality. For machines using a precision twisting motion, such as capping machines, we offer nearly 50 types of reaction torque transducers and rotary torque transducers for customers. All of our torque transducers are precision-machined and use our proprietary torque sensors for the most accurate data possible.

For precision weighing or stamping, such as the candy stamping application, we manufacture more than 60 different types of load cells and Interface Mini Load Cells. These load cells have capacities as low as 1 lbf (500 gf) for extreme precision. In our customer’s application highlighting candy stamping, a test apparatus was outfitted with the Interface Model WMC Mini Load Cell and a 9330 Data Logging Indicator to measure the compression force required to imprint the candy without crushing it and collect data to finely tune the process.

For applications using robotics, Interface offers multi-axis sensors to test force and torque measurements simultaneously in three mutually perpendicular axes.

RESULTS

Accuracy in packaging is a game-changer for cost-savings, production efficiency, time-to-market, and product safety. Whether you are measuring, weighing or securing, Interface load cells, mini load cells, torque transducers, and instrumentation can assure you the quality and accuracy you need to protect your brand and customer satisfaction.

Interface is one of the leading force measurement manufacturers for the consumer packaging industries. We work directly with OEM’s and engineering consultants to implement systems and products which help to reduce waste, automate the packaging process and provide accurate, repeatable results. For more information on how Interface can help solve your test and measurement challenges, please contact us to connect with our specialized Application Engineers, click here to locate a local Representative or International Distributor.

READ COMPLETE CASE STUDY HERE

Interface Case Study For Consumer Packaging