Posts

Torque Measurement Primer Review

Choosing the ideal torque transducer for your project can be a daunting task. Fear not. Interface has several torque measurement tools and resources to help you navigate your options and gain confidence in the selection process.

Interface’s advanced technical Torque Measurement Primer is an excellent resource to review and save for reference.  The expert guide takes you step-by-step, from torque transducer basics through complex capacity calculations to fixture and mounting considerations.

This technical reference offers considerable detail and diagrams regarding critical topics that impact the performance and accuracy of torque transducers. Interface engineer and measurement application specialist Keith Skidmore provides extensive information about defining capacity requirements, performance factors and considerations, mechanical configurations, outputs, resolution, mounting, and coupling selection tips.

Understanding Torque Transducers

A torque transducer consists of a metal spring element or flexure like a load cell. Strain gages are applied to the flexure in a Wheatstone bridge configuration. Torque applied to the sensor causes bending or shear strain in the gaged area, generating an output voltage signal proportional to torque.

Two Main Types of Torque Transducers

  • Reaction (static) measures torque without rotating, which is ideal for stationary applications.
  • Rotary (dynamic) rotates as part of the system, suitable for dynamic measurements.

Normally, a reaction-style sensor has a cable attached to it to supply excitation voltage to the strain gage bridge and to output the mV/V signal. The attached cable prevents the spinning of these sensors. Various methods have been used for rotary sensors to get around the issue of the attached cable. Some of those methods include slip rings, rotary transformers, rotating electronics, rotating digital electronics, and wireless telemetry. More basics are available in our Torque Transducers 101 post.

Selecting the Right Transducer Capacity

When choosing a torque transducer, one of the primary considerations is selecting the right capacity. The key is not to overload the sensor. If you choose too large a range, the accuracy and resolution may not be enough for the application. If you choose too small a size, the sensor may be damaged due to overload, which is an expensive mistake. First, determine the amount of torque you want to measure to select the proper size. Use Interface’s Torque Transducer Selection Guide to review capacities and dimensions.

Mechanical Configurations

  • Shaft: Smooth or keyed, offering uniform torque introduction and ease of assembly and disassembly.
  • Flange: Shorter, with centering pilots, commonly used in limited space applications.

Reference the Torque Measurement Primer to Review Factors in the Selection

  • Determine average running torque
  • Understand load service factors (1-4) and drive service factors (1-4)
  • What is the required accuracy
  • What signal resolution do you require: analog and digital

Beyond the basics, take a deeper dive into advanced torque considerations by reviewing the following:

  • Mounting methods (fixed vs. floating)
  • Couplings (single and double flex)
  • Environmental factors (temperature, moisture, dust)
  • Variable-frequency drive applications
  • Maximum RPM rating
  • Bandwidth and sampling rate

Use the Interface Torque Measurement Primer to explore these factors comprehensively with technical references. It is an essential test and measurement resource for making informed torque transducer selections. Whether you are an experienced lab technician or engineer, the details of this primer are advanced and full of resourceful tips.

Torque-Measurement-Primer-2024-Edition-1

ADDITIONAL RESOURCES

Torque Transducers and Couplings are the Perfect Pairing

Understanding Torque Transducers for Motion Control Systems

New Interface Torque Transducer Selection Guide

Interface Introduces New Torque Coupling Guide

Miniature Torque Transducers 101

Interface Load Cells 201 General Procedures Guide

The Interface Load Cells 201 Guide is an extract from our comprehensive go-to for the force measurement industry, the Interface Load Cell Field Guide.

This shortened reference zeros in on general procedures for using load cells. With in-depth explanations, illustrations, practical procedures, and insightful tips, this Interface technical support resource is a helpful guide to have on hand. It is designed to support general procedures using load cells, optimize your processes, and achieve exceptional results in any force measurement application.

Interface Load Cells 201: General Procedures Guide topics include:

  • Excitation Voltage: Understand the crucial role of voltage in powering your load cell and learn techniques for remote sensing, ensuring accurate readings every time.
  • Physical Mounting: Master proper mounting with detailed instructions for both “dead” and “live” ends, ensuring maximum precision and optimal cell life.
  • Mounting Procedures for Different Load Cell Models: Whether you’re working with beam cells, mini cells, low profile cells with or without bases, or any other type, the guide provides clear, step-by-step instructions for a perfect setup.
  • Mounting Torques and Fixtures: Get the torque values right for your specific transducer, ensuring secure mounting without compromising performance.

This quick guide eliminates errors and ensures reliable data with expert mounting techniques. It helps to extend the life of a load cell, protecting your investment with proper installation practices that maximize cell longevity. A complete copy can be found below.  To save a copy, go here.

Looking for even more in-depth support? Interface offers additional resources, including installation manuals, video tutorials, technical support, and a complete library of Interface 101 articles.

VIDEOS TUTORIALS AND RESOURCES

 SUPPORT REFERENCES

 TECHNICAL INFO AND GUIDES

If you have questions about any of these topics, need help selecting the right sensor, or want to explore a specific application, contact Interface Application Engineers.

Interface Load Cell 201 Guide- 2024 Edition

Load Cell Mounting 101

Properly mounting a load cell ensures the sensor provides the most stable readings and accurate measurements. Although a load cell will function no matter how it is oriented and operated in tension or compression mode, mounting instructions are specific to each sensor model.

Interface provides complete product datasheets and drawings to locate the features for mounting. Our instructions include model, material, capacity, mounting holes, threads and dowel pins, and pilot specifications for live and dead-end use.

All load cells have a “dead” end and a “live” end. Commonly, the dead end is the mounting end directly connected to the output cable or connector by solid metal. Conversely, the live end is separated from the output cable or connector by the strain gage area of the flexure.

This concept is significant because mounting a cell on its live end makes it subject to forces introduced by moving or pulling the cable. However, mounting it on the dead end ensures that the forces coming in through the cable are shunted to the mounting instead of being measured by the load cell.

SPECIAL INTERFACE LOAD CELL MOUNTING TIP: The Interface load cell nameplate reads correctly when the cell sits on the dead end on a horizontal surface. Therefore, the user can employ the nameplate lettering to specify the required orientation to the installation team explicitly. For example, for a single-cell installation holding a vessel in tension from a ceiling joist, the user would specify mounting the cell so that the nameplate reads upside down. For a cell mounted on a hydraulic cylinder, the nameplate would read correctly when viewed from the end of the hydraulic cylinder.

WATCH: MOUNTING TIPS FROM OUR LOAD CELL BASICS WEBINAR

DEFINING YOUR MOUNTING REQUIREMENTS

Mechanical mounting is one of the most critical aspects determining your application’s success. This is a sensor-based decision, as load cell models have different features that can be used for various mounting requirements.

First, define how you will attach your load cells.  Are they going to be using threaded connections? Are you going to have the load cells press up against a surface? Are you using an actuator, rod-end bearings, or clevises?

Other considerations regarding mounting are the objects used to secure the sensor. Will you use adhesive? Will it be secured inline, or do you need a through-hole for mounting? Will you be using mounting plates, and what is the geometry of the plates? The material used and the stiffness of the mounting components can affect the measurement’s performance and accuracy. READ: Interface Sensor Mounting and Force Plates

The direction of the load will impact your decision on the best approach.  All load cells have a live end and a dead end. It is not a single direction; some live ends may be at the top or the bottom.  The live-end and dead-end design will influence your cable and wireless management.

If you apply torque when installing fasteners, it is important not to twist the sensor. Tip: Hold the load cell at the same end where you are installing a fixture to prevent damage to the device.

Load Cell Mating Surface Tips

  • The surface must be clean and flat
  • The mounting surface must be flat to 0.0002 total indicator reading
  • Suitable thickness and material
  • Recommended hardness of Rc 30 or higher
  • Mounting bolt torque according to specifications

Installation Care

Make sure the threaded connections are tight and preloaded, if possible. Pre-loading removes the system’s slop and prevents wear, which is critical when using the sensor for fatigue testing. It is also essential to pre-load to get the performance as designated in the calibration certification.

For compression loading, you want one flat surface and one radius surface. Make sure you only have one curved surface. Typically, the load cell will have a radius surface, so you will want to load it against a flat surface. Identifying the load point is harder if you have two flat surfaces. If you have two radius surfaces, they will tend to slide apart. This can create bending and be dangerous to the technician.

Interface offers load cells with and without bases. When supplied together, the base is engineered to be an appropriate and “matching” mating surface for the sensor.  If you are using a load cell without a base, it is important to mount it to something like the base in flatness, stiffness, and thickness so they do not deform under load. This is critical to get the most accurate measurement.

QUICK REVIEW: MOUNTING CHECKLIST

  • Load Cells not mounted by the manufacturer’s recommendations may not perform to the manufacturer’s specifications.
  • Make sure that mounting surfaces are clean, flat, and aligned.
  • Torque of all mounting hardware to specifications.
  • Always confirm the load cell orientation: the “dead” end on mechanical reference or load forcing source and the “live” end connected to the load to be measured. Typically, the dead end is the end closest mechanically to the cable exit or connector.
  • Use proper hardware (thread sizes, jam nuts, and swivels) to connect the load to the load cell.
  • It is fundamental to have one and only one load path.
  • This load path must be through the load axis of the load cell. This may sound elementary; however, it is a commonly overlooked problem.

Utilizing best practices in mounting is also extremely important. Deflections in the system can introduce errors and apparent crosstalk into the sensor measurement.

ADDITIONAL RESOURCES

Universal Load Cells 101

Mounting Tips for Multi-Axis Sensors

Mounting Plates

6A Mounting Tightening Torques

3A Mounting Instructions

Flange Style Load Cells and Torque Transducers 101

Basics on Load Cell Base Kits

LowProfile™ Load Cell Base Kits

 

 

Trends in Torque Transducer Applications in the Auto Industry

Torque transducers are crucial in force measurement testing, especially in the automotive industry. A torque sensor is a transducer that converts a torsional mechanical input into an electrical output signal.

Interface’s experience suggests the automotive industry’s most frequently used torque transducers are rotary torque transducers, like our AxialTQ, which measure dynamic force. These transducers are necessary for applications where the torque transducer must rotate when attached to a spinning shaft. A rotary torque transducer provides a method of getting the signal off the rotating element without an attached cable.

Automotive testing labs also commonly use a fixed-style mount instead of a floating style. This is because fixed types are ideal for high-speed applications. Fixed and supportive mounting is often mandatory. Fixed mounts apply only to sensors with bearings, which involves attaching the sensor housing to fixed support for added stability.

Torque plays a critical role in automotive testing, and Interface has more than 50 transducer models with multiple capacities and sizes. Use our Torque Transducer Selection Guide to help define the suitable model for your specific application.

Interface will demonstrate the range of torque transducer solutions at the upcoming Auto Test Expo. You can get your free pass online.

Top Trends in Torque Transducer Applications

Torque transducers create faster, more efficient, and safer vehicles. Interface transducers are designed to meet the growing demands of the auto industry.

  • Interface recognizes the growing use of torque transducers to measure the performance of electric vehicles (EVs). Torque transducers are essential for testing the performance of their electric motors and powertrains. Torque transducers are used to measure the torque output of electric motors, which is critical for ensuring that they meet their performance specifications. Read Torque Measurement for Electric Vehicles.
  • Interface torque transducers are helping to assess advanced driver assistance systems (ADAS) performance. ADAS systems rely on numerous sensors, including torque transducers, to measure and control the vehicle’s dynamics. Torque transducers measure the torque applied to the steering wheel and brakes, which ensures that ADAS systems function correctly.
  • Torque transducers measure the torque applied to the wheels, which ensures that autonomous vehicles can safely navigate their environment.

Torque transducers are essential research, design, testing, and manufacturing tools. As emerging automotive technologies evaluate new components, materials, and vehicle capabilities, torque transducers provide vital measurement data to assess performance. We see this in the use cases for torque transducers in all phases of developing autonomous and self-driving vehicles, including the transition to flying cars.

Automotive Applications Using Interface Torque Transducers

AxialTQ™ Engine Dynamometer

One of our customers needed to measure the torque and the speed (RPM) produced by an engine and calculate it simultaneously. Using the Interface AxialTQ Wireless Rotary Torque Measurement System, which was developed in direct collaboration with over 30 end-users who shared their wish lists for operational priorities, user interface, design, features, real-world field issues, and more, the customer was able to measure and calculate the torque and rotational speed (RPM) of the engine in real-time while collecting the data accurately and simultaneously.

Lug Nut Assembly

Proper lug nut assembly is critical to a quality vehicle and meeting strict quality and safety requirements. Interface’s customer wants to increase productivity for automobile wheel installation while ensuring the lug nuts are installed to the proper torque values for safety. Interface supplied five T33 Spindle Torque Transducers for use in the customer’s wheel installation assembly machine, which comes standard with +/-5VDC analog output for torque measurements and a 360 pulse, 2-track encoder for speed/angle measurement. The customer could perform five simultaneous torque measurements during wheel installation in seconds using this solution.  The T33 Spindle Torque Transducer provided a +/-5VDC signal for torque and a TTL signal for angle measurement to the customer’s control system for logging, evaluating, and recording the results.

Another important consideration for testing torque with these sensors is the coupling. Couplings are a critical component of the torque transducer that ensures the isolation of torque loads. Couplings should be used in all applications, and the selection of the coupling type is based on the speed of the application. For higher-speed applications, you will want to look for high-quality couplings. The coupling helps to prevent error and damage from extraneous loads. You can learn more about selecting the proper coupling in our new blog, Torque Transducers and Couplings are the Perfect Pairing.

Every industry segment has numerous priorities as they compete to design, engineer, build, and supply new and innovative vehicles. From the focus on the extreme performance of racing vehicles to the safety focus of consumer automobiles, Interface can provide force and torque measurement solutions to help you today and in the future.

ADDITIONAL RESOURCES

Tire Force and Measurement

Fuel Pump Optimization & Rotary Torque

Engine Head Bolt Tightening

Dual Motor Dynamometer

Accelerating Automotive Excellence in the Test Lab

Force Measurement Solutions Demonstrations at Automotive Testing Expo

 

Basics on Load Cell Base Kits

As resilient and accurate as load cells are engineered, there is risk of damaging a load cell if they are not properly supported through mounting or mating to the test subject or test bench.

Load cell bases are designed to support and stabilize load cells. Load cell bases come in assorted sizes and configurations, depending on the intended application and the weight capacity.

Load cell bases are used with load cells that are frequently utilized in industrial equipment, test machines, and commercial testing labs. They may also be integrated into several types of equipment, such as weighbridges, conveyor systems, structural test stands, and packaging machines.

Interface publishes numerous guides on properly supporting a load cell during a test. However, for our LowProfile™ load cells, we provide complete Load Cell Base Kits to provide the engineered accuracy and necessary support for precision performance as intended in regular use. Bases minimize risks in damaging load cells from improper use.

Load cells with positive overload protection must be ordered with an Interface installed base. The positive overload option is useful when high overloads occur in applications such as: impact loads on weighing platforms; engine malfunctions during rocket or jet engine testing; transient overloads on engine dynamometers.

Interface’s Load Cell Base Kits are a type of mounting plate guaranteed to provide optimum support for the flexure. Using the base, or a support surface with its equivalent flatness and stability, is required to ensure the exceptional performance. They are heat treated and high strength bases, available in all standard sizes of our low profile models.

Standard thread size is the same as the mating load cell. Bases or flat mounting surfaces are required for all low profile load cell installations. A mounting surface that is flat to 0.0002″ T.I.R. (total indicator reading) is required, unless a base is installed.

Use of the base, or a support surface with its equivalent flatness and stability, is required to ensure the exceptional performance of the LowProfile® Series.

The threaded hole in the base is on center, and a plug is permanently installed to seal dirt and moisture out of the space between the bottom hub of the flexure and the flat surface of the base. Center hub deflects under the load until it contacts the base which provides positive overload protection. The center tapped hole is sealed to keep overload surfaces clean.

When the base and load cell are ordered together, the base and plug are factory installed using the proper hardware tightened to the required torque specs. A plug is supplied in between the cell and the base to prevent damage or errors caused by over engagement of mating parts.

There are 14 model options in standard Load Cell Base Kits in both U.S. and Metric Threads. They are available for our standard 1000, 1100 and 1200 Load Cell Series of various capacities. We offer 15 stainless steel model options to be paired with our 2400 and 3200 Load Cell Series.

Load Cell Base Kits are an excellent accessory to ensuring the most out of your LowProfile Load Cells provide the performance as designed. For complete instructions on installations, please reference our Support section on the website.

ADDITIONAL RESOURCES

Accessories

Load Cell Basics Sensor Specifications

Interface Presents Load Cell Basics

Technical Library

Force Measurement Installation Guides

Mechanical Installation Load Cell Troubleshooting 101

Off-Axis Loading 101

Off-axis loading refers to a situation where a load cell, which is a device designed to measure force or weight, is subject to forces that are not aligned with its primary sensing axis. Load cells are typically designed to measure forces that are applied along a specific direction or axis, which is known as the primary sensing axis. When forces are applied to the load cell in other directions, this is referred to as off-axis loading.

Off-axis loading can affect the accuracy of load cell measurements, as the load cell may not be able to accurately distinguish between forces that are applied along the primary sensing axis and forces that are applied in other directions. This can result in errors in the measured weight or force.

To minimize the effects of off-axis loading, load cells are often designed with measures to reduce sensitivity to forces applied in other directions. These may include mechanical features such as strain relief structures or specialized materials that are more resistant to off-axis loading. Additionally, load cells are often installed and used in ways that minimize the likelihood of off-axis loading, such as aligning the primary sensing axis with the direction of the applied force. Be sure to carefully follow all Force Measurement Installation Guides provided with sensor.

What can be done to protect from off-axis loading?

Off-axis loading can affect the accuracy of load cell measurements, so it is important to take steps to protect against it. Here are a few ways to do so:

  • Use proper mounting and alignment: Load cells should be mounted and aligned in a way that ensures that the primary sensing axis is aligned with the direction of the applied force. This helps to minimize off-axis loading and ensure accurate measurements.
  • Use appropriate accessories: Using accessories such as adapters or mounting bases can help to ensure that load cells are properly aligned and oriented, minimizing the potential for off-axis loading.
  • Use anti-rotation features: Many load cells are equipped with anti-rotation features, such as bolt-hole patterns or keyway slots, which help to prevent the load cell from rotating around its mounting point. This can help to maintain proper alignment and reduce the effects of off-axis loading.
  • Use overload protection: Overload protection features, such as limit switches or stoppers, can be used to prevent load cells from being subjected to excessive forces or moments. This can help to prevent damage to the load cell and ensure accurate measurements.
  • Use a protective enclosure: Load cells can be placed in protective enclosures that shield them from external forces and environmental factors. These enclosures can help to protect against off-axis loading, as well as other types of interference.

By taking these steps, load cell users can help to protect against the effects of off-axis loading and ensure accurate and reliable measurements.

Product designs that mitigate off-axis loading

Engineers are constantly working to design new load cells that are more resistant to off-axis loading.  In fact, Interface product engineers have several products that are designed to protect from off-axis loading, including:

  1. ConvexBT Load Button Load Cell
  2. SuperSC S-Type Miniature Load Cell
  3. MBP Overload Protected Miniature Beam Load Cell
  4. MRTP Miniature Overload Protected Flange Style Reaction Torque Transducer
  5. MBI Overload Protected Miniature Beam Load Cell
  6. LBMP Overload Protected Compression Load Button Load Cell
  7. SMT Overload Protected S-Type Load Cell
  8. WMCP Overload Protected Stainless Steel Miniature Load Cell with Male Threads

By optimizing the mechanical design of load cells to minimize their sensitivity to off-axis loading this can include use of materials, such as composites or alloys, which are more resistant to deformation and strain. It also includes the use of specialized geometries that can help to distribute forces more evenly and reduce the effects of off-axis loading.

As well, engineers utilize built-in electronic compensation to correct for the effects of off-axis loading. This may involve using additional sensors or feedback loops to monitor the load cell’s response to external forces and adjust the output accordingly.

Interface engineers use a multi-disciplinary approach to designing load cells that are more resistant to off-axis loading. By combining advances in mechanical design, electronics, manufacturing, and simulation, they are creating load cells that are the most accurate in by classification in the world.

ADDITIONAL RESOURCES

ConvexBT – The Most Innovative Load Button Load Cell

Eccentric Loading Analysis for SuperSC S-Type Miniature Load Cell White Paper

Addressing Off-Axis Loads and Temperature Sensitive Applications

Benefits of Proof Loading Verification

How Do Load Cells Work?

Mechanical Installation Load Cell Troubleshooting 101

The performance of a load cell force measurement system is dependent upon the reliability of the physical installation, correct interconnection of the components, proper performance of the basic components which make up the system, and calibration of the system.

Interface provides installation instructions for our products. Review the installation guide and keep on hand for installation and troubleshooting. Load cells not mounted in accordance with the manufacturer’s recommendations may not perform to the design specifications.

Always start any troubleshooting with a physical inspection of the load or weighing sensor. Resistance results from numerous factors, creating an inaccurate reading of the measurement and potential overload. If there is any appearance of dents, bending, cracks or deformation it is likely the device will need to be repaired or replaced. If none of these conditions are visible, the next step is to troubleshoot the mechanical installation.

The following is a quick checklist to reference for mechanical installation troubleshooting:

  • Check the mounting surfaces for cleanliness, flatness, and alignment
  • Check the torque of all mounting hardware
  • Check the load cell orientation
  • Check use of proper hardware as required to connect the load to the load cell
  • Check cables or output devices

Orientation is of a load cell is defined by the “dead” end on mechanical reference or load forcing source and the “live” end connected to the load to be measured by the cell. Dead end is the end closest mechanically to the cable exit or connector. A fundamental requirement is that there be one, and only one, load path.  This load path must be through the load axis of the load cell. This may sound elementary; however, it is a commonly overlooked problem.

Check all hardware and accessories when troubleshooting during mechanical installation, including all connectors, cables, thread sizes, jam nuts, swivels, mounts, and bolts. It is always important to also thoroughly inspect the cables used in a system. Evaluate the cable to ensure there is no crimping, cuts, or exposed wires. This is a common cause of mechanical installation failure.

For a quick reference, here is a discussion about what a healthy load cell should look like, and any visual clues that may potentially be a sign for an improperly working load cell.

For more helpful guides and troubleshooting tips, please visit the Interface Technical Library. Interface provides technical support for additional questions related to installation or if there is help needed in troubleshooting any of our products. Contact us here and let us know how we can help.

Additional Resources

Force Measurement Installation Guides

I’ve Got a Load Cell, Now What Play List

Force Measurement Accessories 101

 

Force Measurement Installation Guides

Interface is a long-time provider of the world’s most accurate and reliable force measurement products. Our sensor and instrumentation solutions are used across industries to test and monitor everything from critical infrastructure and to advanced robotics. Innovators and engineers know that our quality is unmatched. However, any measurement device manufacturer nor superior quality of a product can save users from poor performance when making this one critical mistake, poor installation.

Proper installation is one of the absolute keys to reliable and accurate test data and successful measurement programs. This is true for any type of test and measurement protocol, in particular utilizing force measurement.

Preparing for any installation for any load cell force or weighing measurement system is dependent of the integrity of the physical installation, interconnection of the components, following proper performance of the system components, and calibration.

Installation success is such an important topic, we asked Interface engineers and application experts for their thoughts on the top reasons why proper installation is critical to a successful test or vice versa. They also shared helpful guidance on why improper installation can be so damaging.

  • Poor installation can lead to damaging the load cell, so to protect your investment follow the installation instructions that a accompany your product.
  • When we provide performance metrics on our product, it is based on our in-house calibration. When improperly installed, you will not be hitting the performance numbers you need during use.
  • Improper installation can cause overload which can not only damage the load cell, but also create unsafe working conditions.
  • Installation guides not only give you the proper installation techniques, but they also provide the correct order for installation.
  • And our favorite tip, and the most relatable, “Improper installation with ultimately lead to headaches!

Installation can also vary widely between load cells and other force measurement solutions. Each product has different processes depending on the mounting components, the application being tested or monitored, the environment in which the application is being tested or monitored, and more. It is important to carefully review any materials provided with the instrumentation and sensor.

Interface provides a wide variety of installation guides, instructions and technical support online. You can find these instruction guides by visiting our support installation and manuals option.

In addition, we have resources providing clear explanation on installation and its importance. Recently, our video and blog series titled, I’ve Got A Load cell – Now What? Part 6 – Usage & Best Practices, includes in-depth information on installation and mounting.

Mechanical Installation Tips

Once you have your load cell hooked up and your instrumentation scale, it is time to put it to work. You want to review the attachment, including thread engagement and mounting. If you are threading into the live end, the center hub on the low profile load cell, make sure you have enough threads engaging into the load cell itself. We recommend that you thread it into where the studs bottom out, then back up a half a turn. Next step is to preload tension load by about 130% of capacity and jam the jam nut. We want to ensure that we do not have any repeatability issues due to thread engagement of the flexure. If you cannot provide a preload, reference the torque values in the installation guide.

Mounting to Base, Structure or Plate Tips

  • Use Grade 8 or Better Hardware
  • Mount to Total Flatness of .002″
  • R30-33 Hardness Scale
  • Follow the star patter to proper torque values
  • Preinstalled Bases

Interface bases help in making integration to any assembly much easier. Interface manufactures bases with the same high-performance materials and specifications for hardness and flatness as our load cells. The bases offer threaded holes, which make it easier for mechanics like hydraulic actuators.

We also offer several references for troubleshooting. Two important considerations to review during set-up are the mechanical and electrical installation requirements.

Mechanical Installation Troubleshooting: Load cells not mounted in accordance with the manufacturer’s recommendations may not perform to specifications. It is important to review the mounting surfaces, hardware, and orientation during the installation.

Electrical Installation Troubleshooting: Proper load cell performance is depending upon the electrical system. The areas to inspect during any install are the connections, cables, settings of excitation voltage and loading of the bridge circuit.

We urge that to get the most out of your new load cell to reference the materials provided in the installation guides. If you have any questions, Interface is also here to help. Feel free to reach out to your local representatives and distributors or call us directly at 480-948-5555 to speak with an engineer to help solve your installation challenges.

Mounting Tips for Multi-Axis Sensors

Understanding best practices for mounting is critical to collecting accurate data, especially when it comes to multi-axis load cell solutions. As more testing engineers choose multi-axis sensors for the benefits of additional data, it is important to note that  improper mounting can cause multiple axis to be unaligned and skew the data across the various axis you are measuring.

In follow-up to our webinar, Inventive Multi-Axis and Instrumentation Webinar, here are some valuable reminders on how to properly mount both 3-Axis and 6-Axis load cells to gather the most accurate and reliable data for any test and measurement application.

The first thing to understand is there are certain mounting considerations that are important across every type of multi-axis sensors. These considerations begin with understanding the relationship between the sensor and mounting hardware. The sensor is made up of the electronic internals of a load cell, while the mounting hardware is comprised of plating that needs to align with the test system.

The next thing to understand is that deflections in the system introduce errors and apparent crosstalk. To avoid deflections, plates and fixtures used in mounting must be stiff enough to avoid deflections. The best way to understand this is to try and emulate how stiff the plating was when the sensor was calibrated, this will help you understand how stiff you need the plate to be in the testing application.

Finally, every single multi-axis sensor model also comes with unique mounting instructions, so be sure to consult the written instructions if you have questions. When it comes to mounting instructions for our products, Interface publishes all mounting instructions online.

Mounting instructions provide information on the class of hardware for mounting, as well as important data such as the torque on the dowel pins, for cases that include dowel pins.

For 3-axis mounting, we provide assembly instructions for each type of load cell available. For example, the assembly instructions pictured on the far left shows a 3-Axis sensor with four threaded mounting holes on the top surface and two dowels that should be used to avoid the plate slipping. The dowel pins are crucial to aligning the axis. The instructions also show mating services which are identified with arrows or hash marks.

The 6-axis mounting hardware is a bit different in that there are more holes in the mounting plates and fixtures for dowel pins, which stop the mounting plate from deforming or bending because this can cause inaccuracies in data. Additional mounting locations are necessary to securing the plates and fixtures.

Considerations for 6-axis mounting include the potential need to use a double-plate mounting arrangement, the plates must be suitably thick, the plates must have the same material as sensor for thermal matching, and flat and smooth mounting plate surfaces are preferred. The example here shows some of the features mentioned above.

We hope this simple guide will provide you with the information you need to get the most out of your multi-axis sensors. If you are ever unsure about any details within the mounting process for multi-axis sensors, feel free to contact Interface for support or questions about any multi-axis products.

ADDITIONAL RESOURCES

Interface Multi-Axis Sensor Market Research

Dimensions of Multi-Axis Sensors; An Interface Hosted Forum

Interface Sensor Mounting and Force Plates

Mounting Plates

3Axis-Mounting-Instructions