Posts

Load Cell Simulator 101

A load cell simulator is a device that mimics the electrical signal of a load cell. This allows technicians to test and calibrate measurement systems without applying physical force or weight to the load.

By generating a range of input signals using a load cell simulator, technicians can assess the instrument’s linearity, sensitivity, and accuracy, ensuring it meets the required specifications.

The two most common uses for load cell simulators are troubleshooting and calibration. Load cell simulators can effectively troubleshoot force measurement systems, detecting and isolating faults or malfunctions. By simulating various load conditions and injecting fault conditions, technicians can pinpoint the source of the problem, such as a broken wire or a faulty load cell.

Load cell simulators are essential for calibrating force measurement devices, ensuring they accurately translate applied force into a measurable electrical signal. By generating a controlled force signal, technicians can compare the displayed value to the known input signal, identifying discrepancies and adjusting the device accordingly.

Interface load cell simulators are part of our accessories product line. They are an essential accessory and valuable investment for any testing lab or research facility frequently using load cells. These simulators can help to improve safety, reduce downtime, improve accuracy, lower costs, and increase convenience.

Why Use a Load Cell Simulator?

  • Testing and monitoring force measurement systems: Load cell simulators can test instrumentation performance used in force measurement systems, such as hydraulic presses, assembly machines, and material testing machines. By simulating forces that the system would typically encounter, the simulator can help identify potential problems with the instrumentation, ensuring that the system operates safely and efficiently.
  • Verifying proper indicator setup: Load cell simulators can be used to verify that an indicator is configured correctly for the type of load cells being used. This includes checking the scaling and the instrument’s linearity.
  • Cable checks: One of the first troubleshooting tips for any load cell application is to check the cables and connectors. A load cell simulator is valuable for checking cables.
  • Scaling: Load cell simulators are crucial for scaling force measurement devices, enabling precise calibration, troubleshooting, and testing. They play a vital role in ensuring the accuracy and reliability of force measurements across various industries.
  • Calibrating scale indicators: Load cell simulators can generate a precise mV/V signal corresponding to a specific weight. This allows technicians to calibrate scale indicators to ensure that they are displaying accurate weight readings.
  • Application evaluation: Load cell simulators can be used to develop and troubleshoot force-related applications, such as medical devices, prosthetics, and exercise equipment. By simulating forces that users would typically apply, the simulator can help to ensure that the application is safe, effective, and operational.
  • Research and product development: Load cell simulators can be used to research new force measurement applications.
  • Technician training: Load cell simulators can educate and train technicians on the proper use and calibration of load cells.

Interface Load Cell Simulators

CX SERIES PRECISION MV/V TRANSFER STANDARD LOAD CELL SIMULATOR 

CX SERIES PRECISION mV/V TRANSFER STANDARDModel CX Series Precision mV/V Transfer Standard is the market’s most accurate load cell simulator. This NIST Traceable product is commonly used to calibrate and check instruments in accredited labs.

  • Most accurate load cell simulator
  • Special low thermal EMF construction
  • Each unit is individually calibrated, aged, and recalibrated
  • Strong, rugged design
  • Instrument substitution testing

In the series, models CX-0202, CX-0610, CX-0440, CS-0330, and CX-0220 are used to set up and check the Gold Standard® System Hardware. CX-0440, CX-0330, and CX-0220 are single-step mV/V transfer standards providing precision outputs of ±4, ±3, and ±2 mV/V respectively. CX-0610 is a multi-step unit that allows the user to go from -6 mV/V to +6 mV/V in 1 mV/V steps. Model CX-0404 is specifically designed for instrument substitution testing as per ASTM E74.

EVALUATOR 3 LOAD CELL SIMULATOR 

Evaluator 3 Load Cell SimulatorThe Evaluator 3 variable range simulator is well suited for basic troubleshooting needs, offering nine fixed intervals from -5 mV/V to +4.5 mV/V.

  • ABS plastic case
  • Weighs less than 1 lb (0.45 kg)
  • Fixed rotary switch, -0.5 mV/V to 4.5 mV/V in 9 steps of 0.5mV/V per step
  • Used in testing and troubleshooting mV/V instrumentation

IF500 LOAD CELL SIMULATOR 

The new model IF500 is a 5V or 10V excitation-only load cell simulator with a state-of-the-art microprocessor-based design. It is a cost-effective simulator with advanced instrumentation capabilities. The instrument excitation supply powers the IF500 and requires no batteries.

  • Set “ANY” mV/V value within ±5mV/V
  • State-of-the-art, microprocessor-based design
  • Sleep mode eliminates digital clock noise
  • Powered by instrument excitation supply… No batteries
  • Buffered Ratiometric output
  • 350-ohm bridge configuration
  • Stores up to 10 settings with sequential recall
  • Digital zero trim and storage
  • Low noise, low quiescent current, low-temperature coefficient, high stability amplifiers
  • Compatible with instruments using 5V or 10V excitation, including Interface’s instrument models 9820, 9840, 9860, 9870, 9890, CSC/CSD, DMA/DMA2, DCA, INF1/INF4, ISG, SGA, and VSC
  • Options include: NIST Traceable Calibration Certificate, Screw Terminal Adapters for the BNC Connectors and Cable Adapters

Application Examples for Load Cell Simulators

Manufacturing: Load cell simulators are essential for calibrating and testing force measurement devices used in manufacturing processes, ensuring accurate force control and product consistency. ADDITIONAL RESOURCE: Manufacturing Solutions.

Food Processing: Load cell simulators are critical in calibrating and troubleshooting force measurement devices, ensuring precise portion control, and maintaining food safety standards.  ADDITIONAL RESOURCE: Force Measurement for Efficiency in Food Processing and Packaging

Construction: Load cell simulators are employed for testing and calibrating force measurement devices used in construction applications, such as crane load monitoring and material testing. ADDITIONAL RESOURCE: Construction Solutions

Medical Devices: Load cell simulators are utilized for calibrating and verifying the accuracy of force measurement devices in medical applications, such as patient weighing scales and rehabilitation equipment. ADDITIONAL RESOURCE: Medical and Healthcare

Interface load cell simulators are indispensable tools for scaling force measurement devices, providing a safe, efficient, and cost-effective means to ensure the accuracy and reliability of force measurements across diverse industries. Their ability to calibrate, troubleshoot, and test force measurement devices contributes to product quality, process control, safety, and regulatory compliance, making them essential for maintaining the integrity of force measurement systems.

Engineered Solutions for Lifting Webinar

Interface’s technical webinar Engineered Solutions for Lifting details measurement devices used in lifting equipment, machines, and vehicles to improve operations and safety. Interface load cells and instrumentation are used to operate cranes, hoist heavy objects, and measure forces in infrastructure projects. Interface experts answer how load cells are used in safety monitoring for lifting equipment. Learn about Interface sensor products suited for integration into existing equipment and test and measurement projects.

Vertical Farming for Sustainable Food Production on Earth and Beyond

Vertical farming is a method of producing crops in vertically stacked layers, typically in indoor environments such as warehouses or greenhouses. This innovative agricultural approach offers a number of advantages over traditional farming methods, including higher crop yields per unit of land, more efficient use of resources such as water and energy, and the ability to grow crops in urban areas where space is limited. While vertical farming is currently being explored to increase food production on Earth, it also has applications in space R&D and for food sustainability projects.

In space, where resources such as water, energy, and land are limited, vertical farming can offer a viable solution for producing food. By using vertical stacking of crops, indoor environments, and controlled conditions, vertical farming can potentially overcome challenges such as gravity, atmospheric conditions, and limited space. This could enable sustainable food production for future space missions, space settlements, and colonization efforts.

As the global population continues to grow, and urbanization increases, vertical farming is a promising approach for addressing food scarcity and production challenges on Earth. With most the world’s population projected to live in urban areas by 2050, the need for localized food production close to urban centers becomes more critical. Vertical farming can provide fresh produce year-round, reduce the need for transportation, minimize the use of pesticides, and optimize resource utilization, making it a sustainable and efficient method for urban food production.

Interface sensor technologies and instrumentation are being utilized to expand the capabilities and possibilities in agriculture on Earth and in space. In our new case study, Vertical Farming on Earth and in Space, we explore products and solutions for challenges related to farming on earth and beyond. These solutions utilize load cells, multi-axis sensors, wireless instrumentation and devices for irrigation and growth monitoring systems, robotics, and farming equipment. The case study highlights innovation from a collaboration of industries including agriculture, space, and automation.

 

Vertical Farming Robotic Monitoring

In vertical farming applications, automated mechanics pick up and move the products, thus using less human involvement and contamination. To keep an eye on these automated systems, a wireless force measurement system monitors the robotics that pick up and move the produce to their next destination of the packaging process. Interface suggests installing SPI Low Capacity Platform Scale Load Cells, along with WTS-AM-1E Wireless Strain Bridge Transmitter Modules in the center of the platforms of the robotic lifting system that move around the produce. The WTS-AM-1E’s wirelessly transmit the data collected from the SPI’s to the WTS-BS-1-HA Wireless Handheld Displays for multiple transmitters, and the WTS-BS-6 Wireless Telemetry Dongle Base Station when connected to a computer. Read more here.

Vertical farming has the potential to revolutionize food production in space and on Earth, addressing the challenges of feeding a growing global population, particularly in urban areas. The intersection of various industries and the use of innovative technologies, including interface force measurement solutions, can play a crucial role in advancing vertical farming as a sustainable solution for future food production in space and on our home planet.

The collaboration between education, space, agriculture, and manufacturing sectors, including the use of interface force measurement solutions, can accelerate the development and deployment of vertical farming technologies for space and Earth. These solutions can provide data on factors such as plant growth, resource usage, and environmental conditions, which can be used to optimize the design and operation of vertical farming systems for maximum sustainability and productivity. Read the case study here.

ADDITIONAL RESOURCES

Inventive Agriculture Monitoring and Weighing Solutions

Aerospace Brochure

Force Sensors Advance Industrial Automation

Solutions to Advance Agriculture Smart Farming and Equipment

Using Multi-Axis Sensors to Bring Robotics to Life

Vertical Farming on Earth and in Space