Posts

Outlining Force Solutions for Structural Outrigging

Across a wide variety of industries, heavy machinery, maritime, construction, and other infrastructure often need additional structural support. This includes support that prevents equipment, vessels, and buildings from falling over, capsizing or collapsing.

Typically, the solution to provide this critical structural support comes in the form of an outrigger. For vehicles, both land and maritime, an outrigger is a projecting structure, with specific meaning depending on types of vessels, or the legs on a wheeled vehicle that are folded out when it needs stabilization.

For buildings, outriggers are interior lateral structural systems provided to improve the overturning stiffness and strength of high-rise buildings. It is a lateral load resisting system that is located within the building. The whole system consists of a core structure connected to the perimeter columns of the building.

These types of structural supports became popularized in the 1980s as an addition to high-rise buildings as they are effective up to 150 floors due to its unique combination of architectural flexibility and structural efficiency. Outrigging has been adapted for large vehicles and boats, such as large cranes that are extremely top heavy and can create balance problems, or yachts that need to be stabilized when stored out of water.

With the addition of these supports, various forms of testing need to be done to ensure the outrigger can support the vehicle or structure it is installed upon. This is where Interface’s force measurement testing and monitoring products are utilized in different outrigging applications.

Interface load cells are used by outrigging engineers, civil engineers and heavy equipment manufacturers, oil and gas, construction industry and marine equipment companies. Read more why Rigging Engineers Choose Interface Measurement Solutions.

The role of force measurement sensor technologies in outrigging is to provide high accuracy measurement of the outrigging equipment in test and actual use. The applications range from integration of sensors into outrigger equipment, to load cells for real-time monitoring of the physical structure using outrigger supports.

The most common Interface products used for outrigging include:

For example, Interface load shackle cells are used to measure the forces during outrigger testing as well as on the outrigger equipment that support the structure. The data from the sensor is critical information used to assess the structural integrity of the outrigger or structure and to identify any potential weaknesses.

Interface load cells, such as our load shackles or load pins, are typically placed in strategic locations on the outrigger or structure where the force is expected to be greatest. The load cell is then connected to a data acquisition system (DAQ) or indicator that records the force readings. The data can then be analyzed to determine the maximum force applied to the outrigger or structure, as well as the distribution of force over the structure.

Load cells can also be used to monitor the performance of outriggers or structures over time. This can be helpful in identifying any changes in the structural integrity that may be caused by wear and tear, environmental factors, or other factors. Utilizing instrumentation with alarm capabilities is helpful, as well as a tool for maintenance.

Load cells are an important safety feature in outrigging equipment. They can help to prevent accidents and ensure that the equipment is used safely. A load cell is used to prevent a crane collapse during the construction of a high-rise building in a large congested metropolitan city. The crane is used for lifting a heavy beam. The load cell alerts the operator when the load is too heavy.

Ultimately, force measurement provides several benefits to testing and monitoring different outrigger applications, including:

  • Increased safety: By measuring the force applied to the outrigger, a load cell can help to prevent overloading and damage to the outrigger. It is also valuable for continuous monitoring during lifting use cases, such as with a crane or heavy machinery.
  • Improved efficiency: By monitoring the performance of the outrigger, a load cell can help to identify any potential problems early on, which can help to prevent costly downtime.
  • Reduced risk: By providing accurate data on the force applied to the outrigger, a load cell can help to reduce the risk of accidents and injuries.

Examples of how force measurement is used to test outrigger solutions in a variety of industries:

  • In the oil and gas industry, load cells are used to test the outriggers of offshore drilling rigs. This helps to ensure that the rigs are safe to operate in high-wind and wave conditions.
  • In the construction industry, load cells are used to test the outriggers of cranes and other lifting equipment. This helps to ensure that the equipment is safe to use and that it will not overload the outriggers.
  • In civil engineering, load cells are used to test the structural integrity of bridges and other structures. This helps to ensure that the structures are safe to use and that they will not collapse underload.

Outriggers play a critical role in the safety and support of vehicles, infrastructure projects and massive structures. Interface force measurement products also play a necessary role in safeguarding outriggers and the operators. If you have an outrigging use case and are wondering which products are best suiting for your specific requirements, contact Interface Application Engineers for help.

Construction Brochure

Why Mechanical Engineers Choose Interface Solutions

Mechanical engineers play a crucial role in the design, development, and maintenance of mechanical systems that are integral to modern society and industries. They apply tenets of physics, materials science, and engineering to design, test and analyze, fabricate, and maintain mechanical systems in various industries, including automotive, aerospace, energy, robotics, and manufacturing.

Frequently, mechanical engineers use Interface force measurement devices to gather data, analyze performance, and ensure the safety and reliability of mechanical systems. Force measurement technologies help them to quantify the magnitude and direction of forces acting on objects or structures.

Mechanical engineers are active in the research and development of modern technologies and innovations, from small components to large industrial machines. This vital role is typically involved in the selection of materials, manufacturing processes, and quality control to ensure that mechanical systems are safe, dependable, efficient, and cost-effective.

Interface’s quality and accuracy of load cells make them a preferred engineering solution for various use cases. The range of products are used for multiple testing and design applications. The most common products selected by mechanical engineers include:

Engineers use sensors to determine the forces acting on different components or subsystems within a larger system, such as an engine, gearbox, or suspension system, during operation. This information can be used to verify that components are operating within their design limits, identify potential failure points, and optimize performance.

Force measurement devices are used by mechanical engineers in quality control processes to ensure that mechanical systems meet design specifications and performance requirements by performing tests during the manufacturing process, such as checking the tension in bolts, verifying the strength of welds, or measuring the force required for assembly or disassembly of components.

Mechanical engineers use impact force sensors to measure the forces experienced by a vehicle during crash testing, or fatigue testing machines to apply cyclic loads to components or structures to simulate real-world conditions. They participate in the design, development, and optimization of renewable energy systems such as solar power, wind power, hydropower, and geothermal power. Read Interface Solutions for Growing Green Energy.

Mechanical engineers are at the forefront of advancements in robotics and automation, including designing and developing autonomous vehicles, drones, robotic manufacturing systems, and automated processes for industries such as automotive, aerospace, and manufacturing. Advancements in materials science is a key role for many mechanical engineers. As well, these types of engineers play a crucial role in advancing the field of biomechanics and developing medical devices.

IoT and smart systems that integrate mechanical components with sensors, actuators, and control systems to create intelligent and connected systems are a result of the work of mechanical engineers. This includes developing smart buildings, smart appliances, smart transportation systems, and other IoT-enabled devices. Read Interface Sensor Technologies Enables IoT Capabilities

Mechanical engineers use force measurement devices to perform tests and experiments to determine the forces experienced by mechanical systems. Load cells help them to quantify the loads on structural components, such as beams, columns, or joints, to understand their performance under different conditions.

ADDITIONAL RESOURCES

Electrical Engineers Choose Interface Sensor Technologies

Interface Celebrates Engineers

Interface Solutions for Production Line Engineers

Interface Solutions for Material Testing Engineers

Quality Engineers Require Accurate Force Measurement Solutions

Why Product Design Engineers Choose Interface

Why Civil Engineers Prefer Interface Products

Use Cases for Load Pins

Performance Structural Loading App Note

Interface OEM Solutions Process

 

 

Interface Solutions for Industrial Markets

The industrial market is vast. The industry classification covers everything from manufacturing and assembly to mining and agriculture. The highly regulated environments involved in industrial applications often require advanced equipment and technologies for product design and development, as well as after market performance management. Force and torque products are critical sensor components used in industrial applications.

Interface has been a partner to industrial customers for more than 50 years. We engineer, build, and supply force and torque sensors and acquisition devices designed to provide industrial engineers and manufacturers with high quality data that monitors and confirms the design and in-action processes of their equipment. Applications for industrial markets involve everything from heavy machinery to weighing solutions. The accuracy of these devices is critical to high-quality outcomes, low-costs and most importantly, worker safety.

INDUSTRIAL APPLICATIONS 

An example of an industrial process that requires an accurate force sensor is a crane application used in lifting heaving objects. Interface engaged with a customer who needed to measure the lifting capabilities of a crane using an Interface load shackle. The purpose of the shackle was to ensure the crane wasn’t lifting more than it could handle, putting worker safety at risk and potentially damaging the machine.

Interface model WTSSHK-B Wireless Load Shackle was connected to a crane load string to measure forces. A model WTS-BS-1-HA Battery Powered Handheld Display was used to wirelessly receive load information and display results. Using this solution, the customer was able to successfully measure lifting and reading weight wirelessly on a handheld display while the crane was in action.

Another great example of the industrial industry’s use of force applications can be seen in manufacturing automation. One of the growing trends in marketing automation is the use of robotics to replace repetitive human tasks. Robotic arms are often found on assembly lines and they carry out a single task over and over. If the robotic arm isn’t properly calibrated, it can ruin an entire production line and lead to significant losses. To qualify the accuracy, many OEM’s use load cells and torque transducers to continuously measure the intricate movements of a robotic arm.

One Interface customer used a robotic arm to close packaging on a production line. If the arm wasn’t accurate, it could apply to much force and crush the packaging or not close the packaging as intended, leading to losses in shipping.

Interface supplied a 6-Axis Load Cell with a model BX8 Data Acquisition and Amplifier System. The Interface Multi-Axis 6-Axis Load Cell was able to measure all forces and torques on every axis and the BX8 8-Channel Data Acquisition System was able to log, display, and graph these measurements while sending scaled analog output signals for these axes to the robot’s control system.

READ MORE HERE: FORCE MEASUREMENT IS REDUCING WASTE AND AUTOMATING THE CONSUMER PACKAGING INDUSTRY

Another consideration for specialized industrial applications is in harsh environments. There are hundreds of thousands of engineers and manufacturers that spend their days working in these environments. Whether its operating inside of facilities with large machines and intricate moving parts, working hundreds of feet in the air repairing a bridge, or deep within a mine shaft, these professionals put themselves in danger every day by the nature of their work. As engineers and manufacturers, many of us are also tasked to solve for safety challenges and keep these professionals protected in any environment.

One of the ways we contribute to industrial safety is with the development of our Interface Ex Rated Load Cells, also known as Interface Intrinsically Safe Products. These specialized load cells and force measurement solutions are designed and manufactured so that the materials and electronic components are safe for use in hazardous gas and dust environments when installed per applicable installation instructions. These components are designed for those applications found in dangerous environments in particular industries like oil and gas, mining, aerospace, automotive and more.

The applications for industrial vary widely because the industry is diverse. Interfaces designs and manufacturers force and torque products for hundreds of different industrial use cases and applications every year. Our team of engineers can even create custom solutions for new and innovative industrial requirements. Included below are examples of some of the products typically used by our industrial customers.

  • 2400 Load Cell Series – The 2400 is a stainless-steel load cell designed for applications requiring a hermetic seal for use in general industrial applications.
  • 3200 Load Cell Series – The 3200 precision stainless steel load cell series has all the features of the Interface Model 1200 LowProfile® (one of Interface’s most popular products) and in addition it is stainless steel and hermetically sealed for harsh applications.
  • SSMH Load Cell Series – Model SSMH S-type load cell provides a suitable force measurement sensor for applications in coal mining and transfer and other heavy industries where explosive dusts and environment conditions are potentially explosion-hazard rated. SSMH capacities available that provide intrinsically safe certification.
  • Stainless Steel Load Buttons – Interface’s load button load cells are designed for customers who require the measurement of forces in a very confined space. They are designed to provide the most accuracy in as little space as possible.
  • 5400 Series Reaction Torque Transducer Series – Model 5400 series features a rugged flange-style designed with thru-holes, low deflection, high torsional stiffness and the ability to withstand large overhung moments.
  • Wireless Telemetry System (WTS) – High accuracy, high quality measurement is interfaced with simple yet powerful configuration and monitoring software. The WTS gives sensor manufacturers and integrators the complete flexibility to build their own sensor modules around it. The system easily replaces wired systems, reducing installation and maintenance costs.

These are just a few examples of Interface applications notes and products designed for industrial applications. For more information on Interface solutions design for the Industrial industry, contact our experienced application engineers.