Posts

Tension Links 101

A tension link load cell is commonly used in lifting, both for short and long distances, and weighing applications. This type of load cell sensor generally has capacities ranging from 2.2K lbf to 1.1M lbf (5 to 500 metric tons). All tension links are available in custom versions and large capacities based on the customer’s project requirements.

Interface’s Tension Link series is manufactured from high tensile aluminum and stainless steel. Matched to shackle sizes, the load links have a rugged design for uses in harsh environments on the surface and in water. The tension links are environmentally sealed to IP65, IP66 or IP67. There are higher ratings available upon request.

A major benefit of Interface tension links is the option for custom designs in dimensions, ratings and capacities. The tension links are easy to install and are highly accurate.  They are compact in size and light weight. Another benefit is the options available, which include standard, wireless and self-indicating, giving the operator a variety of application use cases for quick measurement readings.  Self-indicating tension links have a built-inaudible alarm, which can be set by the operator to warn when an applied weight or force is met.

Often, customers will integrate the tension links with an Interface Crosby styled load shackle for robust applications that require accurate and reliable force measurement used for lifting, weighing, hoisting or towing apparatus that need sensors for safety and monitoring.

Wireless options are growing in acceptance for all types of uses. Interface provides wireless tension links that are compact and reduce the overall product weight based on the casing used to house the small alkaline batteries, which can be easily accessed by removing the telemetry housing cover while the internal electronics remain completely sealed. The antenna is also internally mounted, protecting it from accidental damage during use and handling, which is ideal for harsh environments.

Watch this discussion to learn more about the wireless features of the Interface Tension Links and Load Shackles.

Interface’s most popular tension links include:

WTSTL Wireless Tension Link Load CellDesigned for lifting applications requiring short or long distances. This product can transmit wirelessly up to 600 meters in distance (clear line of sight) to a handheld display or USB base station. Model WTSTL is available in capacities ranging from 11K lbf to 220K lbf (5 to 100 metric tons). Custom versions and larger capacities are available upon request.

ISITL Self-Indicating Tension Link Load CellManufactured from high tensile aluminum to minimize weight, the ISITL is great for lifting and weighing in rugged or harsh environments.  The self-indication tension link load cell is ideal for mobile use cases.  It is simple to install and is matched to standard shackle sizes. They have a built-in display for applied weight or force in tons, kgs, lbs or kN. Interface can also offer a custom software to meet any specific application requirements for digital display or readouts.

ITL Tension Link Load Cell – This basic tension link can be amplified with 5VDC, 10VDC or 4-20mA Outputs. It can also be made to meet ATEX requirements. Model ITL is available in capacities ranging from 11K lbf to 220K lbf (5 to 100 metric tons). Custom versions and larger capacities can be requested at no additional charge, based on the exact specifications needed by the customer.

To learn more about our wide variety of load pins, load shackles and tension links, please visit www.interfaceforce.com/product-category/load-pins-tension-links-and-load-shackles/.

 

 

Load Pins 101

A load pin is a type of load cell that can replace bolts, clevis, sheave, and equalizer pins, as well as other load-bearing components to measure tensile and compression forces. Load pins are internally gauged with a bored center containing strain gauges, allowing them to convert force into an electrical signal for engineers to accurately collect data.

Most applications for load pins in the past have been for overhead equipment like cranes and lifts. Load pins have expanded in popularity and are now often used to test and measure force, load, and limitations in a much larger variety of applications. This includes uses not only for cranes and lifting devices, but also construction equipment, industrial machines, nautical craft and equipment, aerospace, and civil engineering applications. A primary system approach with structural applications is for safety and to prevent excesses in loading and lifting.

New model types with wireless and Bluetooth technology are also resulting in more use cases for these specialized force measurement solutions. This applies to both test and measurement as well as for installed OEM components within a larger structure or apparatus.

Top Load Pin Benefits

  • Easy to install new or retrofit
  • Robust construction
  • Replaces existing load bearing pins without any system modifications
  • Engineered to order designs available
  • Can be supplied with integral connector
  • Custom sizes and higher capacities available

Load pins come in many standard shapes and sizes, as well customization options to meet a specific design or use requirement. Interface provides these measuring devices, which often replace a bolt or pin, for safety and application monitoring. Some of our load pins are exclusively designed to meet the needs of applications in hazardous environments like the oil and gas industry, or marine industry where they’ll be submerged in water during testing and for continuous use.

The Interface Load Pins are machined from high tensile stainless steel and are suitable for exposed situations including seawater. We offer standard load pins with ratings between 1.1K lbf to 3.3M lbf (500kgs to 1500 MT). We also offer custom manufactured load pins suit applications from 100 kgs to 1500+ MT.

LP Stainless-Steel Load Pin – Great for lifting applications for both short and long distances. This product can be amplified with 5VDC, 10VDC or 4-20mA Outputs. It can also be made to meet ATEX requirements. Model LP Load pin is available in capacities up to 3,000,000 lbf (13.3 kN).

WTSLP Wireless Stainless-Steel Load Pin This advanced load can transmit wirelessly up to 600 (1,969 feet) meters in distance (clear line of sight) to a handheld display or USB base station.  The capacities range goes all the way up to 3,000,000 lbf (13.3 kN). The wireless option utilizes low power consumption for long battery life. It is configured and calibrated via PC using a base station and telemetry toolkit and compatible with Interface WTS Wireless products. The load pin is robust and uses a lightweight housing. It is environmentally sealed to IP67.

Load Pin Application

One of the largest scale applications of load pins we provided were used to measure force on a large bridge infrastructure project in the western U.S. The goal was to continuously monitor the standard force created by regular traffic, as well as the seismic force before, during, and after earthquakes. The monitoring sensors needed to be integrated into a dampener that would be attached to the structural tower.

The solution allows the company to monitor force from emitted data to cross-reference the standard traffic force with the seismic force to understand its effect on the bridge. Its purpose is to help with predictive maintenance and influence future bridge designs to better compensate for the forces of an earthquake or other natural disasters, which are common in this part of the world.

READ THE SEISMIC BRIDGE MONITORING APPLICATION NOTE HERE

READ THE INFRASTRUCTURE CASE STUDY HERE

The project required a custom product that could handle the inimitable and considerable force of a bridge under every scenario of distress. Engineers developed a custom load pin to handle the force of movement in the bridge in the event of an earthquake. This load pin was much larger than our standard version and is rated at 900,000 lbf. The large load pins were designed to be integrated into the dampener with wireless data acquisition modules connected to the load pins to allow for remote access to the data. With the integration of Interface’s custom load pins and data acquisition module, the customer was always able to continuously collect data for real-time evaluation. The sturdy construction of our load pins and 900,000 lbf rating allowed for readings during all degrees of seismic activity.

To learn more about our wide variety of load pins and there many applications, please contact our application specialists today.

ConvexBT Load Button Load Cell Featured Online at Sensor Tips

Interface’s newest product release, ConvexBT, is featured in the Sensor Tips, the respected online resource publication for electronics engineering challenges of today and tomorrow.

CLICK HERE TO READ THE COMPLETE SENSOR TIPS ARTICLE

As sensor requirements for force measurement are being utilized as miniature-sized components, the load button load cell ConvexBT is designed to give precision level performance in force measurement.  The new release is designed for accuracy and flexibility.

As shared in Industry Today, the ConvexBT capabilities far exceed what is available in these grow dimension requirements due to specifications to make devices and products more compact and convenient. Industries such as medical, industrial automation and products reliant on advanced communications technology need to validate these products with force-sensing solutions that can fit in confined spaces and provide extremely accurate data.

ConvexBT product comes in two different sizes: 3/8-inch, and 1/2-inch, which are all manufactured using 17-4 PH heat treated stainless steel. These options provide a wide measurement range from 10 to 250 lbf, a compensated temperature range of 60° to 160°F, and an operating temperature range of -40° to 175°F.

Additional specifications for ConvexBT include:

  • 2.00 ± 20% mV/V rated output
  • ± 0.25 nonlinearity as a percentage of full scale
  • ± 0.25 hysteresis as a percentage of full scale
  • ± 0.50 static error band as a percentage of full scale

Download the complete ConvexBT specifications datasheet and STP / CAD files here.

Check out introduction video for ConvexBT, the next generation in force measurement device.

Faces of Interface Featuring Mark Bliss

For our newest edition of Faces of Interface, we had the opportunity to talk with Mark Bliss, senior application engineer, with our manufacturer’s representative, Minnesota Measurement Engineering.

Minnesota Measurement Engineering (MNME) works across a wide variety of industries throughout Minnesota, North Dakota, South Dakota, Western Wisconsin, and Iowa. They help engineers specify sensing, testing, and measuring products that best fit their needs and the needs of their application. In addition, MNME builds and integrates custom test and measurement systems for customers. We are thrilled to have them as a partner and are proud to feature Mark Bliss and the team at MNME.

Mark is proud to be a career learner, especially as it pertains to science and engineering. Mark’s mother was a librarian, and his father was involved in science. His upbringing led both himself and his brother to pursue a career in engineering.

Mark attended the University of Minnesota, where he received a Bachelor of Science in Mechanical Engineering. During his time in school, he also engaged in several high-profile internships with Thermo King Corporation, Ecolab, Inc., and Honeywell. This experience helped him get hired at Boeing shortly after college.

Mark spent a year and two months with Boeing as a mechanical design engineer before he and his wife decided they wanted to return to Minnesota. With the move, Mark joined MTS Systems Corporation where he served as a mechanical engineer and program leader within the Systems Product Development R&D Group.

Mark also started his own engineering consulting services company 2RM, LLC. Mark’s passion for engineering pushed him to moonlight as a consultant for everything from OEMs to startups. Some of the work he conducted included custom machine design, structural finite element analysis and optimization, reverse engineering, prototyping, component and material sourcing, in addition to boosting his skill set in sales, accounting, marketing and customer service.

In 2015, Mark was looking for a new challenge and saw an opportunity to take on a sales role at MNME while still applying his passion for engineering through the custom systems side of the business.

As a Senior Application Engineer at MNME, Mark is responsible for assisting customers with force, torque, pressure, acceleration, position, flow, vibration, data acquisition, and custom solutions for R&D, industrial, and OEM applications. His role includes supporting customer product information and quoting requests, visiting customers to understand and identify needs, following up on leads and principal contact reports, identifying sales opportunities and maintaining relationships with customers of all sizes.

Mark mentions that the best part about his position with MNME is the fact that he gets to see and work with new technology every day. Some days he might be working with a medical device manufacturer and the next day he is selling solutions for an autonomous vehicle. The diversity of his customers keeps him on his toes and ensures he’s always learning something new.

He also loves the fact that he gets to continue getting hands on with technology. One of the unique capabilities of MNME is the fact that they act as both a manufacturer’s rep, as well as a solutions provider. Many of Mark’s customers leverage him to develop custom systems or help integrate systems in their test and measurement process.

So where does Interface fit into all this? Going back again to MTS Systems, Mark would often interact with Interface. He developed a fondness for our force measurement products and systems because of their accuracy, durability and reliability. When he moved to MNME, he continued that relationship on the sales side and now acts as one of our top reps!

He, his wife and their two girls are also highly active. The family enjoys downhill skiing, boating, fishing and camping, as well as traveling the world. When we spoke to Mark, he discussed a many skiing trips he had taken in Austria, Germany, and Canada. Finally, if he wasn’t already involved in enough, he also enjoys investing in stocks and bonds. The man certainly keeps himself busy!

We are proud to have Mark at MNME representing Interface products and services. Working alongside Josh Sebasky, both provide Interface customer’s a great depth of experience and knowledge whether it is finding the right load cells or torque transducers for a test project or customizing a verification load frame solution for test and measurement programs.

To locate a representative or distributor in your area, please visit here.

Test Stand Applications for Force and Torque

In the world of test and measurement, test stands are essential equipment for manufacturers and testing engineers. The test stand provides a host of different testing products in a single “cabinet-like” structure. These systems have been used for a long time to gather data on various functions of products during the product test phase.

Test stands works like a mobile test lab, hosted by a frame and containing one or more force or torque sensor components, software, and data acquisition instrumentation and accessories. Force stands are typically motorized or manual.  Motorized test stands, also known as mechanical or electrical, have the advantages of controlling performance by applying modes such as speed, cycles, and time into the testing procedure. The more advanced testing stands are frequently used for repetitive high-performance testing requirements, validating accuracy and quality. Manual test stands are used for simple testing protocols and frequently used in education programs.

There are a wide variety of testing devices and sensor products that are used as part of the entire test process. As parts roll off the production line, the test stand will sit at the end of the line where the test engineer can immediately load the product into the test rig. Test stands help to streamline the test process by providing all available test functions in a single, mobile application.

Interface is a supplier of choice for precision components of various capacities and dimensions for test stand configurations requiring precision and accuracy in performance. Interface load cells, torque transducers, and instrumentation equipment are commonly used in numerous product test applications by engineers, metrologists, testing professionals and product designers around the world.

Included below are a few examples of specific test applications and the Interface components used in the different style testing stands.

Linear Test Stand

In this example, an Interface customer wanted to add a crush test to their test stand to measure the force it took to deform a piece of material. Interface provided an Model 1210 Load Cell with an internal amplification of 0-10VDC output.

The load cell was installed into the load string of the customer’s load frame, and the scaled analog output from the load cell was connected to the customer’s test stand instrumentation. When the force levels reached the crushing point, the customer’s software was able to read the output of the amplified load cell and record the value.

See the application note for the Linear Test Stand here.

Motor Test Stand

In the quality control lab at a major automotive manufacturing company, a test engineer needed to test, record, and audit the torque produced by a new motor design under start load. Interface supplied the new AxialTQ® Rotary Torque Transducer that connected between the motor and the differential, on the drive shaft, that could measure and record these torque values.

Based on the data collected using the AxialTQ transducer, along with the AxialTQ Output Module, and a laptop, the test engineer was able to make recommendations to optimize the amount of torque created by the new motor design.

See the application note for the Motor Test Stand here.

Verification Test Stand

In this application, a customer needed a test stand application to verify that its load cell was in good, working order. Interface helped to create a solution that used a load cell to verify the customer’s load cell. The solution involved the customer’s supplied verification load frame and an Interface Model 1210 Precision LowProfile® Load Cell connected with a Model SI-USB 2-Channel PC Interface Module.

The customer was able to install their load cell and Model 1210 Precision LowProfile Load cell into the verification load frame. Applied forces were displayed and recorded by Model SI-USB PC Interface Module for review and record keeping on customer’s computer. This allows the customer to have a proven load cell verification test stand at their disposal to ensure its test load cell is always in working order.

See the application note for the Verification Test Stand here.

These are just a few examples of the different types of test stands that Interface can provide off-the-shelf or custom force measurement solution components. If your project involves a mechanical test stand and you are interested in learning more about adding force sensors, please contact our application engineers.

Interface Solutions for Robotics and Industrial Automation

As the manufacturing world continues to push towards the 4.0 Industrial Revolution, critical technology is necessary to ensure facilities are running as efficiently as possible. With advancements toward fully or semi-autonomous factories and robotics, manufacturers need to have total trust in their hardware and software to perform with precision in the assigned tasks. This requires collecting accurate and real-time data to constantly monitor every aspect of the facility’s technology and production.

In the development of robotics used in industrial automation, our Interface Multi-Axis Sensors are often used to test the multi-directional movement and force of robotics arms. Whether it’s a fully automated or semi-automated robotic system, manufacturers need to be able to ensure the complex movements and actions of the robotics arm are optimized to take on very precise jobs. These types of robotics are often used for projects that are too precise for the human hand.

Industrial automation and robotics are creating a more efficient manufacturing process, which will help to churn products out more quickly and lower costs. However, to optimize these processes, it’s critical that we trust the hardware to operate autonomously and that we have systems in-place to identify malfunctions quickly.

Interface plays a critical role in robotics and industrial automation by providing our customers with highly accurate load cells and torque transducers to measure and collect data on the force and torque that these machines are exerting. Interface force measurement solutions and products are involved in the testing of the machines before they hit the production line, and in some cases, our products are also installed directly on the machine to allow users to monitor the force in real-time.

One industry that has a high demand for our products is the consumer packaging industry. Many of the processes involved in the production line of a consumer packaging plant have utilized automation for a long time.

For instance, beverage companies that sell bottles of water or soda utilize machines that cap the product all day long. Hundreds of thousands of bottles go through the capping process on the production line daily. If there are any issues with the torque applied in the capping process, the beverage company could see heavy losses because the bottle could be damaged from over torquing the cap, or the beverage could leak during the shipping process if the caps are under torqued. To avoid these loses, the machines are optimized using a torque transducer.

Torque transducers provide data during the testing process to help the machine manufacturer get the force exactly right for the capping process. The torque transducer can also stay installed on the machine so that the beverage company can continuously monitor the torque of the machine and stop production before damages occur if there is an issue.

Interface offers nearly 50 types of reaction (static) torque transducers and rotary (dynamic) torque transducers. All of our torque transducers are precision-machined and use our proprietary torque sensors for the most accurate data possible.

Another common automation use for force and torque measurement products is in the automotive industry. Automation in this industry has been used for some time increase production of cars.

Two examples of how Interface load cells and torque transducers play a role in the automobile production line is with seat durability testing and bolt fastening.

For seat testing, we had a customer use an Interface Multi-Axis Model 6A68C 6-Axis Load Cell to identify previously unknown bending forcing that could negatively influence their testing process. This allowed the customer to redesign their testing fixture to eliminate the bending moment and more accurately perform the durability testing.

For bolt fastening, we installed an Interface Model LWCF Clamping Force Load Washers along with Interface Instrumentation to monitor the force being applied during bolt tightening. This helped the customer avoid over tightening bolts, which could damage the product in the process.

For a more in-depth overview of both applications, please check out our application notes:

Force measurement products are a critical technology in the testing and monitoring of automation equipment. To learn more about the various products and instrumentation Interface supplies to facilitate industrial automation and support advancements in robotics, contact our applications experts here.  We also have a number of application notes focused on industrial automation here.

Contributor: Ken Bishop, Sr Sales Director, Custom Solutions and Services

 

Strain Gages 101

A strain gage is a sensor that varies its resistance as it’s stretched or compressed. When tension or compression is applied, the strain gage converts force, pressure, and weight into a change that can then be measured in the electrical resistance.

At the heart and soul of every load cell is a strain gage. This is the pinnacle technology that allows engineers to collect and analyze force data. In the industry, it is known as force measurement.

Strain gages are made through a photo-etch process using a flexible backing and a very thin foil. The way a strain gage works is when the backing and foil stretches or compresses, resistance goes up and down respectively. We know this as force. Think of stretching like a three-lane highway switching to two lanes, and vice versa for compression with two lanes going into three. As the load cell’s internal strain gage experiences force, it sends a signal with a precise measurement of the amount of force it’s experiencing.

There are many different types of strain gages for a variety of environments and force measurement needs. The major difference in strain gages is the base material used in the manufacturing process. Different materials are used when a load cell needs to perform optimally in a variety of temperatures, humidity levels, and elevations. Matching the correct strain gage and a load cell to the customer’s needs is critical to accuracy.

“Here at Interface, we pride ourselves on developing the most accurate force measurement tools, and it starts with our proprietary manufacturing of the strain gage.”  Scott Dunne, Production Engineering Manager

More than 52 years ago, when our founder Richard F. Caris started Interface, he purchased over a mile of foil, which is the base material used in strain gages. Caris understood the only way to ensure Interface customers received quality results from their force measurement products was to control every aspect of engineering design, product development, and production.

The key ingredient to our precision accuracy and reliability is the fact that we have vertically integrated the entire manufacturing process from design to production and have a deep understanding of the materials necessary to suit every client’s need for optimal results

Many load cell makers purchase their strain gages from a third party. This means there’s more variability in their manufacturing process and you often find the variances in their materials clash and diminish the accuracy, or they are not correctly suited for the customer’s project requirements.  Interface makes all their own strain gages.

We have learned everything there is to know about strain gage manufacturing and can guarantee the quality of our load cells in any environment based on this tenured expertise and having manufactured and calibrated hundreds of thousands (ok, millions) of force measurement devices. And here’s a fun fact, although we’ve manufactured hundreds of thousands of load cells and strain gages, we haven’t even used half of the original mile of foil we purchased in 1968. Good product managed well can go a long way!

For more information on Interface’s commitment to accuracy and reliability, we have written The Load Cell Field Guide, the definitive resource on load cells. It is available on Amazon. You can also download our latest technical white paper, Contributing Factors to Load Cell Accuracy, for free by clicking here.

Contributor:  Scott Dunne, Production Engineering Manager, Interface

The Future of Force Measurement

In this post, Joel Strom, CEO at Interface, shared his vision for the company and force measurement predictions for 2020 and beyond. 

Engineering and manufacturing are continuously changing to keep up with the pace of fast-evolving technology. It feels like every time one of our customers releases a game-changing new product; they immediately go back to the drawing board to work on its next evolution. To enable our customers to meet the speed of innovation and compete in the expanding sensor marketplace, Interface must follow suit. That also means we are constantly looking at ways to improve the ingenuity and capability of our vast array of products and solutions.

Looking ahead to 2020 and the next five years, here are our predictions for the future of force measurement and how Interface is positioning ourselves as leaders in our industry.

Innovating for the Digital Age

For much of Interface’s 50-year history, we have developed analog load cells. This was always the way a load cell worked. In recent years, we have put a heavy focus on innovation and transforming our company for the digital age. The sensors we are building now allow our customers to transmit data wirelessly through WIFI and Bluetooth® technology. These products help to connect everything through the internet of things (IoT), giving our customers more accessibility in the way they collect and measure force data.

We are deliberately focusing on ways to provide our customers with more value from our entire suite of force measurement products, custom solutions, and services. Our goal is to connect everything we design, build and create ensuring the data our products gather can help make better decisions and automate processes greater efficiency and usability for our valued customers. Through the age of digital transformation, Interface is a partner to our customers in helping them do big things in the world.

Pushing the Limits in Force Measurement Technology

One of the biggest trends in force measurement is the demand for all-in-one tools and systems that provide more data points from a single product. Customers want their load cell and sensor technology to measure a combination of force, torque, vibration, position, speed and more.

We are addressing these requirements by investing in the next generation of our core products to improve the value to customers. As the most accurate and reliable load cell manufacturer, we want to push the limits on the accuracy, improve the temperature ranges of our products, and expand application uses and grow capacities. Using our ingenuity and industry experience, we also want to add more capability to our core products. Digitizing existing product lines is one way we are doing, as well as adding more sensors that can collect a wider range of data.

Exploring New Industries and Advanced Technology

One of the most exciting things about working in the force measurement industry is the fact that we are on the ground floor in developing new and innovative hardware. As we enter a new decade, we see expanding developments in space, robotics, and electric and autonomous vehicles. These are all products and inventions that require extremely accurate force measurement tools to create and test their innovations.

In order to stay on top of new technology, we are investing more in research and development than ever before. Imagining the possibilities, we are working closely with our customers, and in many cases partnering with them, to understand their evolving needs. Many of the products we have released in the last two years have been a direct response to customer requests and the application of imaginative thinking from our skilled leadership and engineering teams.

As we continue our journey in the 2nd 50 years of Interface, we are excited about the possibilities of force measurement and the new ways we can help our customers. We can’t wait to show you what we have on the horizon.

To stay up-to-date on new product announcements and to learn more about Interface and its commitment to accuracy, reliability, and innovation, please stay connected by subscribing to our blog and follow us on our social media channels: LinkedIn, Twitter, YouTube, and Facebook.  You can also watch a recent company video highlighting why Interface was chosen as Arizona’s 2019 Manufacturer of the Year.

[user_id]

Compression Force Testing 101

Compression is a type of force that we apply every day often without thinking and compression is intensely tested in many of the products we use on a daily basis.

Compression force is defined as the energy generated from compressing an object or substance. Compressive force is simply the direction of the force applied to the load cell. The compressive strength of materials and structures is an incredibly important engineering consideration in both designs and build.

Whether you are clicking the keys on your laptop at work or slamming on your brakes to avoid an accident on your morning commute, you are using the compression force. Testing of the compression force is essential in developing a reliable and sturdy product that can withstand the pressure applied to it many times over. Often, safety is at the core of compression testing.

Load cells incorporated into the testing process work by measuring the pushing force of an application on a single axis. The strain gage compresses to measure the load applied. The deformation of the strain gage provides the measurement data. Application tests measure the total compression force the products or structures can handle, as well as the effects of compression over time through stress tests. In both cases, original equipment manufacturers (OEMs) need accurate measurements to guarantee their products can withstand compression in the short and long-term.

Interface supplies a variety of compression-focused load cells and accessories for all types of applications, both for test and measurement, as well as for inclusion in originally manufactured products and solutions. These compression load cells are often used in vehicles, industrial automation, aerospace, and defense industries. Applications are wide-ranging, from testing the impact of drones dropping packages to the material strength of bridges during an earthquake. Interface load cells are highly-rated to provide the most accurate data and reliability over time, which is why engineers rely on Interface compression-only load cells.

Here are a few of the compression load cells available from Interface:

1601 Gold Standard® Calibration Compression-Only LowProfile® Load Cells – Interface’s Gold Standard® Load Cells are designed for calibrating other load cells. The 1601 load cell is compression-only and has options available for a second and third bridge and overload protection.

1201 Compression-Only Standard Precision LowProfile® Load Cells – The Interface 1201 LowProfile® load cell provides a “compression-only” force measurement. Its spherical-shaped top surface helps provide minimal off-axis loading. 1201 is our most popular load cell designed for static applications and has a higher output than most competitive load cells.

2101 Dual Range Standard Compression-Only Load Cells – The Interface Model 2101 consists of lower and higher capacity model 1200 type load cells which are stacked with overload protection built into the lower capacity load cell permitting the high resolution to be obtained at both low and high levels of capacity. The Model 1201 is LowProfile® moment compensated.

LBM Compression Load Button Load Cells – The Interface LBM Compression Load Button is constructed from stainless steel and has a small size for all types of sensor apps and testing. This product is available in capacities that range from 25 lbf up to 50K lbf.

There is a variety of other standard compression-only load cells, including modified and custom Interface compression testing options in multiple capacities. For more information on our compression-only products or any of Interface’s industry-leading force measurement solutions, contact our Application Engineers.