Posts

Interface Force Measurement 101 Series Introduction

In our ongoing commitment to provide valuable resources through self-help guides and online reference materials, we are introducing our 101 Series.

This new online resource is an easy-to-use guide for load cell basics and force measurement topics. The series is a collection of content in various formats that detail subjects related to test and measurement.

Interface prioritizes helping our customers understand the inner workings of our expanding line of sensors, accessories, and instrumentation by creating guides, technical manuals, and solution applications for force measurement.

The Interface 101 Series will introduce you to relevant subjects about our products and how we can help you get the most accurate and reliable force data in the industry by using our solutions.

Our new 101 Series guide is an effortless way to navigate through high-level test and measurement topics. Each section of the new 101 Series includes a featured 101 IQ blog on a single subject, as well as quick links to videos, case studies, white papers, application notes, product information, technical specifications and more related to that subject.

The goal in creating the 101 Series is to provide a basic understanding on how our products are used for various test and measurement applications across all industries. The references are an effective way to learn about the broad depth of Interface products like our precision load cells, torque transducers, multi-axis sensors, calibration systems and instrumentation. We also provide relevant test and measurement content related to types of force measurement testing, components, systems, and materials used in engineering highly accurate measurement technologies.

There are thousands of references found throughout our site, like our design files for product engineers and digital instrumentation set-up videos for lab techs. It is our pledge to develop material that support our 35,000 products, as well as provide educational content like the 101 Series and our ForceLeaders Webinars you can watch on-demand.

Included below are the current 101 IQ Blogs you will find featured on the 101 Series online guide. We will add additional references to this 101 Series, as we post new subjects. Go to Force Measurement 101 Series to bookmark this reference.

101 Series IQ Blogs

You can find additional reference materials related to our products and services including manuals, product catalogs, technical references, and events.  Go to our online support to find helpful educational and advanced resources like our technical glossary, engineering tips and installation guides.

If you are mostly interested in why you should choose Interface, here is a good reference to start.

If you are not able to find the information you need or you have a specific question about our products or services, be sure to contact us to help.

Interface Solutions for Lifting Applications

Lifting is the action of raising an object to a higher level or moving an object to a different position. Tension load cells accurately measure forms of lifting, as they measure pulling by design. Choosing the right sensor for this type of measurement requires consideration of the size of object that is lifted, and mechanism used in the act to create the lift. Read more in our latest case study Cranes and Lifting.

Often large capacity load cells are used in industrial equipment, cranes, forklifts, rigging, and even aircraft testing equipment to measure forces applied in heavy lifting and for load monitoring, as well as to maintain accuracy in movement. Larger capacity load cells can range from 10,000 to million lbf, or even larger. Rugged load cells are frequently selected for this type of equipment to sustain harsh environmental conditions for both testing and during real-time use.

Smaller capacity load cells, such as s-types and miniature beams, measure the lift action in machines, medical equipment, packaging, robotics, drones and moving equipment. In all circumstances, force measurement sensors help product engineers and manufacturers improve safety and the quality of products they build. They are versatile and easily integrated into machines and components.

Beyond the measurement specifications, other top feature considerations when selecting the right sensor include weight of the sensor, requirements for overload protection, enclosures and ruggedized material used to construct the device, signal outputs for data, cabling, or wireless functionality, mounting or clamping, and instrumentation for data acquisition.

For measurement in lifting applications, Interface products provide the industry’s most accurate and reliable data available through force measurement sensors. Products we provide for lifting include multi-axis sensors, load washer load cells, low profiles, miniature load cells, load shackles, load pins, tensions links, instrumentation, and torque transducers.

The following are examples of products we supply for lifting equipment and use cases.

AERIAL BOOM LIFT OPERATION


A manufacturer aerial lifts wants to test its self-propelled boom platform to ensure it can operate at heavy capacities when in use, and at different angles. This testing is vital for safety and protecting operators as well as those at the site of where equipment is in use. The sensors help to prevent any accidents in case of a lifting overload. The Interface application engineers recommends the multi-axis 3AXX 3-Axis Force Load Cell model 3A160 to capture the required data for monitoring in real-time. Paired with the 920i Programmable Weight Indicator and Controller, the operator had accurate information when using the equipment.

AIRCRAFT LIFTING TEST RIG

 

An aerospace manufacturer is looking to accurately measure the valves in their aircraft lifting test equipment. Interface’s solution is to install a 1200 High Capacity Standard Precision LowProfile™ Load Cell in between the aircraft testing rig and the lifting jack. The load cell will measure the load’s force safety valve when the lifting equipment opens. Results will be sent to the 9890 Strain Gage, Load Cell, & mV/V Indicator, where the customer can see it displayed in real-time. 

LIFTING HEAVY OBJECTS


In this common use case, a customer needs to measure the load when using a crane to move heavy construction materials around the work site. This includes monitoring the weight of these objects as they are lifted in the air. It was critical that the device offer high accuracy readings and also work within the equipment already in place. Key is the instrumentation capabilities to provide wireless outputs. Interface recommends using our WTSSHK-B Wireless Load Shackle connected in crane load string to measure forces. Model WTS-BS-1-HA Battery Powered Handheld Display is used to wirelessly receive load information and display results.

Read more about these types of lifting applications in our new case study.  If you need help in deciding which product works best for your lifting application, contact us.

Cranes and Lifting Case Study

Interface Solutions for Material Testing Engineers

Force measurement inherently is part of all types of engineering throughout the entire development process of products, structures, consumer goods, and the materials used to construct them.

In the beginning of the design and development processes, material testing engineers utilize sensor technologies and instrumentation to measure the durability, fatigue, safety, and quality of the materials used for their projects.

The role of a materials engineer is to develop, process, combine, and test materials to be used in production. Based on data gathered, combined with their expertise, the materials engineer will identify and recommend the appropriate materials for specific applications. Ultimately, they are the foundation of product development because it is their responsibility to select materials based on the use of the product, its ability to perform its task and function, and durability of materials to hold up over time. They also test for environmental impact and exposure considerations.

Five Categories of Material Testing

  • Mechanical testing
  • Testing for thermal properties
  • Testing for electrical properties
  • Testing for resistance to corrosion, radiation, and biological deterioration
  • Nondestructive testing (NDT)

Force measurement is most often used is in the material testing category of mechanical testing. This applies to testing materials used in all types of industries, including infrastructure, aerospace, automotive, industrial automation, manufacturing of consumer goods and in the machines used to assemble products. In mechanical testing, Interface sensors are commonly used to conduct:

  • Hardness Testing
  • Tensile Testing
  • Impact Testing
  • Fracture Toughness Testing
  • Creep Testing
  • Fatigue Testing
  • Nondestructive Testing

Interface Material Test Engineer Solutions

Material testing has been around since the first invention, to determine quality, durability and resilience of products and parts. What has changed over the centuries and decades is the sophistication of force testing and measurement. Interface’s robust line of load cells, torque transducers, multi-axis sensors, and instrumentation are used in about every industry for material testing. If it must be measured, Interface has a solution.

Interface’s force measurement products are being used to gather data from testing materials in applications used for industrial automation, structures, medical devices, vehicles on the ground and in the air, packaging, sports equipment and more. Material testing engineers ensure reliability and safety of the chosen materials. Here are examples of how material testing engineers use our products.

Tensile Testing of 3D Printing Materials

Interface was contacted by a test engineering team in search of a solution for conducting a tensile force test on different 3D printing materials until failure. They wanted to test several types of material types. The 3D printing materials to be tested to see how it performed included PLA, PETG and ASA.  The test of the materials was to assess strength, quality, ductility, and stiffness. Interface supplied our most popular load cell, the 1200 Standard Precision LowProfile™ Load Cell, to install into the engineer’s test frame. The tensile test gathered the force results from the load cell that was synced through Interface’s instrumentation solution, the INF-USB3 Universal Serial Bus Single Channel PC Interface Module. The results were displayed on their computer with supplied software from Interface. Read more about this material testing application solution here.

Bike Frame Fatigue Testing

Fatigue testing is a critical material test used to ensure the materials used in a product hold up over time. A bike manufacturing company wanted to perform a fatigue test on their bike frames to analyze the strength of their frames, ensure durability and high-quality standards. Interface suggests installing Model 1000 Fatigue-Rated LowProfile™ Load Cell to the customer’s bike frame fatigue tester. This load cell will provide the customer highly accurate results through the fatigue cycling. Results are collected using the INF-USB3 Universal Serial Bus Single Channel PC Interface Module and displayed on the customer’s computer with Interface’s provided software. The bike manufacturing company successfully had their bikes undergo fatigue frame testing, receiving highly accurate results with Interface’s load cell and instrumentation. Watch the fatigue testing of the bike frame in this animated app note.

Spring Compression Testing

A customer wanted to evaluate the performance of their springs, but also the functionality of their spring test stand with a wireless solution. Interface suggested using one of their WTS-5200XYZ 3-Axis Force Moment Load Cell which has three integral WTSAM-1E Wireless Transmitters and installing it into the customer’s spring compression frame. The WTS-5200XYZ 3-Axis Force Moment Load Cell measured the force compression of the spring. The integral WTS-AM-1E Wireless Strain Bridge Transmitter Modules transmitted and displayed the information wirelessly to the LCCAXXX Wireless Instrument Enclosure. Using Interface’s solution, the customer was able to wirelessly get compression results on the spring being tested. They were also able to verify their spring compression test stand was working effectively.

Selecting the right material is critical to product develop and material testing engineers rely on Interface due to the accuracy and reliability of our solutions. If you have questions on what products are best suited for your material testing applications, please contact us.

ADDITIONAL RESOURCES

Tensile Testing for 3D Materials

Furniture Fatigue Cycle Testing

Bike Handlebar Fatigue Testing App Note

Aircraft Wing Fatigue App Note

Material Tensile Testing

Why Civil Engineers Prefer Interface Products

Beam Stress Test

Interface Multi-Axis Sensor Market Research

Recently, Interface commissioned an independent research report on multi-axis sensors demand and use cases. This is a product line that Interface has made significant investments in as more customers require increased load cell functionality and additional source data from their force sensors. The research results confirm that the current demand is in fact expanding worldwide, and the overall users and market size is expected to grow by double digits over the next six years.

Included below is a brief overview of the state of the multi-axis, as well as an explanation of their overall purpose and why the growth of this type of test and measurement device continues to increase in popularity. We will also continue to break out the results of this research paper, so tune into the InterfaceIQ blog for more multi-axis research content. To learn more about these advanced sensors, view our ForceLeaders webinar Dimensions of Multi-Axis Sensors.

Multi-Axis Sensors Market Overview: The rise of IoT and Industry 4.0 had enabled automation. Machines continue to get smarter and can make split-second decisions using real-time data. Force measurement plays a key role in this transformation. Load cells that are tracking performance and reliability have more insights than ever before. They will continue to grow in their accuracy and capabilities. Load cell and sensor technologies are being used to identify precisely when and where something went wrong on a production line. Load cells will be growing in playing a key role in making production lines more efficient, less reliant on human resources and less costly.

There has been increased need for multi-axis sensors that measure and collect data points on up to six axes. Multi-axis sensors were invented because of the increased requirements for data, both in testing and during actual product use. And this is not slowing down anytime soon. Over the next decade, load cells will continue to keep up with the demand to handle more measurement data points. More sensors will need to be packed into a single device to collect more data with less equipment.

Five Key Take-Aways from Interface’s Multi-Axis Market Research:

  1. There is a growing requirement for high-performance sensor fusion of multi-axis sensor systems to enable the newly emerging technologies and highly demanding applications.
  2. Advancements in technology enabling effective components at a lighter and smaller size, such as the swift rise of unmanned vehicles in both the defense and civil applications and the increasing applications based on motion sensing, are the factors driving the multi-axis sensor use cases for testing and to embed into products.
  3. Digitizing force sensors is another trend changing our product innovators and manufacturer’s designs of machines and equipment through advanced measurement data. Many have strongly invested in more advanced digital electronics to efficiently harvest and store more data. Revolutions in industries and technologies is the dominant trend in force measurement, not to mention the entire manufacturing and engineering industry. Harnessing big data enables product users to remotely monitor assets and increase use of analytics.
  4. With network-connected force measurement through sensors and instrumentation, OEMs have greater control over testing and product development. Equipment using multi-axis sensors to track performance and reliability provide valuable data on how equipment is performing and predict when machines need maintenance.
  5. Global machine makers and equipment builders want smaller force sensors they can permanently install in the products. Smaller, wireless sensors are easier and less expensive to install. As more industrial networks are created to share higher-quality data, more and more sensors will be added to these machines.

What: Multi-axis sensors allow the user to measure forces and torques, which occur in more than one spatial direction, as with measurements in x- and y-direction. This allows manufacturers to obtain more data on a wider variety of axes, allowing them to make better design decisions and ultimately improve the product quality. A crucial focus is force measurement in manufacturing, where force transducers are frequently used to determine the force for weight measurement or in the process of production.

Why? Data-driven test and measurement is at the forefront of product development, especially in highly regulated markets like aerospace, automotive, medical, and industrial. One of the most significant applications for multi-axis sensors is seen in manufacturing facilities who want to integrate more autonomy and robotic processes. The goal is to streamline logistics procedures and reduce human errors and workplace accidents. The report also found that there is a great deal interest for last-mile delivery robots, either on the ground, on the sea or drones in the air.

Interface’s Role: Interface multi-axis load cells are ideal for industrial and scientific applications. They are used by engineers and testing labs in various industries and market segments including aerospace, robotics, automotive, advanced manufacturing, for medical devices and research. Our products designed to provide the most comprehensive force and torque data points on advanced machinery. With our industry-leading reliability and accuracy, these multi-axis sensors can provide the data our customers need to ensure performance and safety in their product design.

In fact, their unique capabilities are helping the medical industry optimize prosthetic designs and usability standards with multi-axis sensor testing. The automotive industry is using Interface’s multi-axis products in wind tunnels, and the military is using them to test the center of gravity in aerospace applications.

Here are a few applications use cases that show how multi-axis is advancing products in multiple industries:

Wind Tunnel

Seat Testing Machine

Friction Testing

Industrial Robotic Arm

Ball and Socket Prosthetic

Prosthetic Foot Performance

Syringe Plunger Force Measurement

Research was conducted independently by Search4Research.

Faces of Interface Featuring Jeff Boyd


Interface Regional Sales Director Jeffrey Boyd has a long history in the force measurement industry and is an incredible addition to the Interface sales team. You see, force measurement runs in Jeff’s blood!

Jeff originally got into the industry because he watched and listened to his dad talk about his experience at another force measurement manufacturer, Sensor Development. In fact, his dad actually helped start the company when he joined the owner shortly after the company was founded. You could say that Jeff was somewhat groomed for success in this field.

To prepare for his destined career, Jeff spent a few years at Oakland University. After that, he quickly joined up with his dad at Sensor Development. Jeff started in the calibration department, learning the ins and outs of strain gages, load cells, torque sensors and everything in between. After a few years, he was leading both the calibration services and customer service department. Jeff was in charge of ensuring customer satisfaction when products came in for repair, service or calibration.

After several years getting hands on with the products and developing critical expertise in the various sensors the company sold, Jeff decided it was time to transition into a sales role. He originally began as a sales engineer helping to develop customer quotes and working directly with the engineering department on custom applications. His success in sales lead him to become a regional sales manager in 2014.

From 2014 to 2017, Jeff served as regional sales manager for Sensor Development until it was bought out by HITEC Sensors and was renamed to HITEC Sensors Development. Jeff remained with HITEC for another four years before it was time for exploring new opportunities.

Due to his experience in the industry, Jeff was familiar with the Interface brand and our product’s reputation for quality and accuracy. Right about the time Jeff’s time with HITEC was coming to end, Interface had an opening for a Regional Sales Position due to Keith Skidmore‘s promotion to our specialized Custom Solutions team.

Jeff joined Interface in the Spring of 2021 and is a perfect fit, technically and professionally. Not only because of Jeff’s years of experience, also because he continues to live in Michigan and will be covering Interface’s Central U.S. region working with our manufacturer’s representative firm, Stress Analysis Services. He’ll be working with our sales reps, including John Guy, and our customers to ensure they get exactly what they require from Interface. He knows the area and knows the needs of the industry well.

As for why Jeff chose Interface, he says it’s because of the people. Throughout the interview process and during these first few weeks, Jeff mentioned how supportive and friendly his teammates and the leaders of the company are working to ensure his success. He also sees the trajectory that Interface is currently on and knows that he will have an opportunity to grow and thrive alongside Interface.

When he’s not helping customers find the perfect product or customer solution for their test and measurement needs, Jeff is spending time with his wife and his five grown sons and granddaughter. Living through the cold Michigan winters make vacationing to the warmth a must. Jeff and his wife frequently travel to Las Vegas and Arizona or any other warm state to escape. Though, they also like to spend some of their time cheering on their favorite football teams. Notably, the household is a bit divided when it’s game time. Jeff is also an avid golfer and spends a lot of his down time on the course.

We’re so glad to have Jeff on our team as our new ForceLeaders member and we can’t wait to see what we’ll achieve together in interest of our valued Interface customers.

Couplings 101

One of the biggest challenges in the force measurement is dealing with misaligned loads. Misaligned loads can result in bad data and damaged test equipment. Therefore, it’s important to understand the affect these types of loading conditions can have on a force test and know of the ways to fix or account for it.

For every force test, there is typically a piece of equipment designed to deal with misaligned loads. Whether it’s simply applying the force device properly or if misaligned loads are unavoidable, using the right tools to reject misaligned load. Learning more about couplings is a great place start in knowing how to this power tool is designed to deal with misaligned loads in torque testing.

Couplings are a critical component to be used alongside torque transducer that ensures the isolation of torque loads. A coupling is a mechanical element that connects two shafts together to accurately transmit the power from the drive side to the driven side while absorbing the mounting error of misalignment of the two shafts. Essentially, they allow and compensate for misalignment in a torque test. It is one of the topics we discuss in our online webinar, New Twist on Torque.

For instance, if two shafts are coupled together and the center shafts aren’t aligned, measuring torque without a coupling may ruin the test, affecting the longevity of the parts and the performance of the measurement. With a coupling, the shafts don’t have to be perfectly aligned in length and can still provide an accurate torque test.

There are two main categories of couplings used in force measurement and the biggest difference in the two is the degree of freedom needed for the application. The categories are single-jointed and double-jointed. A single-jointed coupling allows for angular and axial misalignment, while double-jointed coupling allow for an additional radial misalignment. For floating mount installations, Interface recommend single-flex disk couplings. For fixed mount installations, double-flex disk couplings are required.

Couplings should be used in all applications and the selection of the coupling type is based on the speed of the application. For higher speed applications, Interface recommends a high-quality coupling with a flexible, yet sturdy construction made from premium metals.

Interface offers a wide variety of torque transducers and can provide couplings off the shelf or in a custom solution when necessary. One of our most popular torque solutions, which includes a coupling, is the Interface Model T1 Torque Coupling Rotary Torque Transducer. This solution integrates torque measurement with a robust double flex coupling.  The coupling and sensor are completely hollow, allowing the shortest possible distance between the coupled shaft ends. On-board digital electronics provide a ±5V output, low-noise signal. Powered by 12-28V DC, the strain gage based T1 Torque Coupling offers precision rotary torque measurement in a bearing-less, contact-free design. Covering ranges from 50 to 1000 Nm (443 to 8.85K lbf-in), the T1 ships with factory bored hubs to mate precisely with the customer’s shaft ends.  Both smooth and keyed shaft style hubs are available.

Examples of a torque solutions using a coupling in the field can be found in our application notes section of the website. We’ve provided an example of one such application below.

Fuel Pump Optimization – Rotary Torque

A nationally renowned race team was using a flow bench to measure fuel pump performance. They wanted to determine if they could reduce the power consump­tion of the pump by further analyzing the precise torque it produced. An Interface Model T25 High Speed Rotary Torque Transducer was integrated into the pump drive to directly measure the torque required to spin the pump. Interface Shaft Style Torque Transducer Couplings we’re also used to marry the shafts to the T25. Using this data collected from the T25 in conjunction with the pressure and volume measurements of the fuel flow, the race team was able to characterize fuel pump performance versus drive line torque, and then minimize the required drive power while maintaining the needed pressure and flow for efficient fuel delivery.

Couplings are an integral part of any torque test project. To learn more about couplings and their application in a wide variety of projects, reach out to Interface at 480-948-5555 or contact us here. We can suggest a combination of off-the-shelf transducers, couplings and data acquisition devices or work with you to develop a custom solution necessary for your goals.

ADDITIONAL READING: TORQUE TRANSDUCERS 101

Source: Keith Skidmore

Interface Force Measurement Solutions Featured in Quality Magazine

Choosing a force measurement device and getting the most out of it is a tricky process, even for the most seasoned engineers. So, when Quality Magazine asked our Chief Engineer and VP of Quality, Ken Vining, to share his knowledge of force measurement, he decided to put together a guide on what to look for in force measurement equipment and how to use and maintain your equipment properly.

In his Quality Magazine article titled, “Selecting and Using a Force Measurement Device: Everything you need to know,” Vining explains the contributing factors to force measurement device quality and accuracy, as well as a few tips and tricks to make sure you’re getting the best possible accuracy and longevity out of your device.

Included below is a brief introduction from article:

Force measurement devices like load cells, torque transducers and data acquisition devices are used across industries to design and test hardware. They’re a key factor in the product development process because the force, torque and weight data they collect helps to ensure products are accurately constructed, work as intended, are safe for use, and can withstand the test of time. In highly regulated and complex industries like medical and defense, this data becomes even more important because any miscalculation in the design of a product can put lives at risk.

The first thing to understand is every project requiring a load cell or torque transducer has different variables affecting accuracy and quality. And for every situation in product development and testing, there is a load cell to fit your precise need. Therefore, the most important step in ensuring accurate and high-quality data is speaking to a force measurement expert about the details of a project.

There are five key factors you need to know related to data accuracy, and three factors related to force measurement device quality. I’ll explain why each factor can contribute to inaccuracies and what to look for when selecting a device based on material selection, build quality, and environmental factors… READ MORE

Additional Ken Vining feature

For additional information on selecting and using your force measurement device, please contact our solutions experts.

How to Choose the Right Load Cell

Load cells are used to test and confirm the design of hardware, components, and fixtures used across industries and by consumers. From the structural integrity of an airplane to the sensitivity of a smartphone touchscreen, there’s a load cell available to measure force. In fact, here at Interface we have over tens of thousands of products used in force measurement, for all types of different applications.

How do engineers and product designers go about choosing the right load cell for a specific application or testing project?

Have no fear, Interface has put together a short guide on choosing the load cell that is right for you. This blog will cover the basic questions to answer when selecting a product, as well the most important factors affecting load cell choice.  Be sure to watch the online video, Load Cell Basics, that highlights key factors of consideration when choosing the right load cell for additional insights.

The basic questions you need to consider when selecting a load cell include:

  • What are the expected loads? What is the minimum and maximum load you’ll be measuring?
  • Is there any potential for higher peak loads than what you intend to measure? What are these expected peak forces?
  • Is it tension, compression, or both?
  • Will there be any off-axis loads? If so, what is their geometry? Do you want to measure them too?
  • Will it be a static, dynamic or fatigue measurement?
  • What is the environment in which you’ll be conducting your test? Will the load cell need to be sealed?
  • How accurate do your measurements need to be? Do they need to be at the highest accuracy of ±0.02-0.05% or within ±0.5-1%?
  • What additional features, accessories and instrumentation does your application require to complete a test?
  • Do you need standard electrical connectors or customized options? What about additional bridges or amplifiers?
  • How are you planning to collect and analyze the data output from the load cell?

Next, these are the most important factors affecting accuracy, which will have a heavy influence over the load cell you choose. It’s important to understand how your application and the load cell will be affected by each of the factors, which include:

  • Mechanical – Dimensions and Mounting
  • Electrical – Output and Excitation
  • Environmental – Temperature and Moisture

One of the most important factors in choosing the right load cell is understanding how it will be mounted for testing or as a component within a design. There are a wide variety of mounting types including threaded connections, inline, through hole or even adhesive. Understanding the mounting type that suits your application is critical to getting the correct data because a poorly mounted load cell will distort the results and can damage the load cell.

The mounting process also requires you to understand which direction the load is coming from, in addition to any extraneous loads that may be present. The load cell mating surface is also an important factor. For example, when using our LowProfile® load cells without a pre-installed base, the best practice is to ensure that the mating surface is clean and flat to within a 0.0002-inch total indicator reading and is of suitable material, thickness, and hardness (Rc 30 or higher). Also make sure that bolts are torqued to the recommended level.

If you’re conducting a fatigue measurement, it’s also important to address the frequency and magnitude of load cycles with your load cell provider. Factors to address include single mode versus reverse cycles, deflection versus output resolution, and material types. Interface offers a wide variety of fatigue-rated load cells that are perfect for these types of applications.

Another consideration in choosing the right load cell is the electrical signal. Load cells work by converting force into an electrical signal. Therefore, it’s important to understand the electrical output type necessary for your application, which could include millivolt, voltage, current or digital output. You can find the excitation voltage data on our website for each of our load cells. Additional considerations include noise immunity, cable length and proper grounding.

The environment is also a critical factor in ensuring accurate performance of your load cell. Interface provides load cells in a variety of material types including aluminum, steel, and stainless steel. Each material has a variety of properties that make them more suitable for different environments. For a more in-depth perspective on the different strengths and weaknesses of materials, please read our blog titled, Considerations for Steel, Stainless Steel and Aluminum Load Cells. For applications where load cells need to be submerged in liquid or enter an explosive environment, we also have a variety of harsh environment and IP rated load cells, in addition to load cells suitable for high humidity or splash resistance. Learn more about our intrinsically safe load cells here.

Learn more about choosing the right load cell in these online resources:

WATCH: Load Cell Basics with Keith Skidmore

WATCH: How to Choose a Load Cell with Design Engineer Carlos Salamanca

READ: Load Cell Field Guide

VISIT: Interface Technical Library

To learn more about choosing the right load cell for any application, connect with our applications engineers about the force measurement needs for your next project at 480-948-5555.

Faces of Interface Featuring Richard Snelson

Richard Snelson, president of Measurements Incorporated, is the leader of our outstanding manufacturers’ representative firm serving the Mid-Atlantic coast of the US. The origin of the company, that supports customers in this region with application solutions for structural, material, and environmental testing, is an intriguing story.

In this new Faces of Interface feature, Richard highlights one of his favorite projects and provides his thoughts on representing the most reliable and accurate force measurement products in the industry from Interface.

Richard grew up in Philadelphia, Pennsylvania, and was brought up hearing all about his ‘old man’ and the incredible work he got to do with customers across the technology landscape. His father and two partners started Measurements Incorporated in 1976. The company had spun out of another company called Micro Measurements. At that time, they sold a limited range of product lines to a wide range of customers. Some of the most memorable customers Richard would hear about from his dad included those that worked with bridges, battle tanks and even cadavers.

After high school, Richard attended Indiana University of Pennsylvania, where he would go on to earn a split degree in business, marketing, and management. During his college years, Richard also received a ton of career experience working multiple jobs. His summers were spent as a technician in the Princeton Plasma Physics Lab, where his role include working on a reactor. He also worked on the Brooklyn Bridge, replacing cables on the massive structure, as well as working for a friend of his dad in the oil and gas industry. These jobs not only put Richard through college, but they also exposed him to hands-on experience working with organizations and on projects like what his dad would talk about at home when he was growing up.

The experiences and incredible stories he was told throughout his youth pushed Richard to accept a role working for his father’s company. He started out selling one product line, XY plotters, to major test labs and facilities across the Mid-Atlantic. After finding a great deal of success, Richard was given the entire state of Delaware to sell every product line in the company’s portfolio. This eventually expanded into Pennsylvania and Maryland.

As he grew his expertise as a sales rep at Measurements Incorporated, Richard also began buying out the other two owners as they retired and eventually retained sole ownership of the company in 2003. Today the company carries an ever-expanding product line of test and measurement equipment and serves some of the most reputable organizations across multiple industries including, aerospace, defense, medical, industrial, and more.

I put myself in the customer’s place and offer a complete solution, sometimes reminding them of things they might not initially think of and the end result is that we are all successful.” Richard Snelson, president of Measurements, Incorporated.

Like his father, Richard has also collected many of his own fun, interesting, and sometimes incredibly nerve-racking stories. Among his favorite are the two times he was asked to head over to One World Trade Center to oversee installation equipment and then later assess a challenge with a sensor on the building’s enormous spire on the very top. Richard and few other men from the company charged with some of the tower’s maintenance and caretaking went up to the top together. During the assessment, Richard and the maintenance company’s president were tasked with repelling up the spire to identify and fix the sensor. Richard enjoyed an unforgettable experience and got a sweat-inducing picture in the process that you can see in his photo above!

Richard has a long-time relationship with Interface that began in 2006. He raves about the quality of the brand and the confidence he and his customers have in the accuracy and reliability of our force measurement sensors. He has great respect for the people he works with regularly, including his Regional Sales Director, Elliot Speidell. Richard often finds himself identifying the signature blue paint job on our load sensors during customer facility tours. He’s proud that he’s able to offer the industry’s leading force measurement solutions to some of the world’s most prominent organizations.

When he’s not dangling off one of the tallest buildings in the world or helping solve key customer challenges with a bevy of critical instrumentation, Richard enjoys time spent with family, his wife of 36 years Tracey, their two children Courtney and Derek, and their grandson Everett. The family loves to spend their time outdoors and can often be found sailing on the Chesapeake Bay.  Richard also enjoys recreational shooting and cruising around on his motorcycle.

We couldn’t have asked for a better partner in Richard and his team at Measurements Incorporated. We are happy to share his story. Looking for more Faces of Interfaces? Go check out our ForceLeaders here.