Posts

What is Proof Testing and Why Does it Matter?

Proof testing determines that the failure of critical components and parts could result in costly damage to equipment and even injury in severe cases. Our measurement products are designed to be used in proof testing applications.

In proof testing applications, testing and measuring an object’s performance under extremely intense conditions, often above the specified operational use, is critical. This allows testing engineers to ensure the object can handle its rated load and go above and beyond to understand maximum performance and failure.

Interface load cells and data acquisition systems are frequently used for proof testing, which determines the strength and integrity of a test subject by applying a controlled, measured load to it. It is commonly used for general test and measurement applications for stress, fatigue, and materials testing. It is frequently used by industries such as construction, natural resources, infrastructure, heavy machinery, and manufacturing to verify the strong point and durability of objects and structures.

Top Three Reasons Why Proof Testing Matters

#1 Safety: Proof testing qualifies and quantifies the safety of equipment and structures that sustain substantial loads. Identifying weaknesses or defects is preventative, as failure can result in catastrophe. Proof testing for safety is standard for applications that include lifting equipment, rigging gear, structural supports, and components in aircraft or spacecraft.

#2 Quality: Proof testing is common during quality control to verify that equipment or materials meet the required specifications. Whether it is the equipment used in manufacturing equipment or the materials used to construct a building, proof testing is essential in defining and measuring adherence to quality standards.

#3 Reliability: Proof testing provides accurate data on the performance and trustworthiness of the tested objects. By understanding how it reacts under stress, product engineers and testing labs can validate the lifespan of a specific component or product. It is also used to define preventative maintenance requirements. It impacts production lines, product versioning, inspections, and, ultimately, the customer’s user experience.

Proof tests provide vital safety and performance measurements for equipment or structures with significant loads. It helps to prevent accidents, improve reliability, and ensure the quality and integrity of the tested item. Consult Interface Application Engineers to determine the best measurement devices for proof testing.

Proof Testing Using Load Cells

Step One: Load Cell and Set-Up

The starting point is selecting the proper measurement tool, in this case, a load cell. Consider the object’s size, expected load range, and accuracy requirements. Choose a load cell with a capacity slightly exceeding the maximum anticipated load during use.

TIP! Use Interface’s Load Cell Selection Guide

Mount the load cell and object in a stable, controlled environment. Ensure proper alignment and distribution of force on the load cell. Connect the load cell to the data acquisition system with a dedicated readout unit, computer software, or data logger, depending on your needs.

Step Two: Pre-Test and Zeroing

Most test engineers will run a pre-test at low load. This is done by applying a small force and monitoring the readings to ensure everything functions correctly and there are no extraneous signals. Zeroing the load cell to set the baseline measurement without any applied force is important. READ: Why Is Load Cell Zero Balance Important to Accuracy?

Step Three: The Test

When you start the proof test application and data recording, most technicians will increase the load gradually. As defined in a test plan, follow a preset loading schedule, typically in increments, until reaching the desired test load. This could be a static load held for a specific time or a cyclic load simulating real-world conditions. Next, using your load cell measurement instrumentation, monitor the load cell readings, object behavior, and any potential visual deformations throughout the test.

Step Four: Analysis

The proof testing provides data that can be used to analyze the load-displacement curve, identifying any deviations from expected behavior, excessive deflections, or potential failure points. Based on the data, determine if the object met the strength and performance requirements or exhibited any unacceptable flaws. This is why a high-performance, accurate load cell matters in proof testing. It determines the quality of your analysis. As with any testing, it is valuable to maintain records of the test procedure, data, and conclusions for future reference or further analysis. This step is crucial for regulatory and product liability requirements.

The specific requirements and procedures for proof testing will vary depending on the product, equipment, structure, industry standards, and regulations.

Proof Testing Example

The most straightforward solution, where it is necessary to measure the load in a tension cable subject to safety considerations, is to enclose the load cell in a compression cage, which converts tension into compression. The compression cell is trapped between the two plates. Thus, the load cell’s only overload failure mode is in compression, allowing a motion of 0.001″ to 0.010″ before the load cell becomes solid. Even if the load cell is destroyed, the compression cage cannot drop the load unless it fails. Therefore, the cage can be proof-tested with a dummy load cell or an overload-protected cell, and the risk of injury to personnel is avoided.

TIP! This example is detailed in our Interface Load Cell Field Guide. Get your copy here.

The nature of proof testing applications requires a diverse line of performance measurement tools. Interface products extend from overload capabilities for our precision LowProfile load cells to complete DAQ systems. These options provide perfect testing solutions when necessary to push the limits on a product, component, or part.

ADDITIONAL RESOURCES

Enhancing Structural Testing with Multi-Axis Load Cells

Fatigue Testing with Interface Load Cells

Load Cells Built for Stress Testing

Benefits of Proof Loading Verification

Manufacturing: Furniture Fatigue Cycle Testing

Data AQ Pack Guide

Interface Solutions for Consumer Products

Why Is Load Cell Zero Balance Important to Accuracy?

Several factors go into the accuracy and consistent performance of a load cell. These factors include non-linearity, hysteresis, repeatability, creep, temperature, environmental effects, and zero balance.

Every Interface load cell’s design and specifications account for all these factors. Understanding each of these factors is important, especially considering the use case.

Specifications are detailed descriptions that outline the characteristics, features, and qualities of our products, systems, or services. Product specifications detailing performance, capabilities, capacities, and dimensions are included on all datasheets. Products have internal specifications tested during manufacture, typically with full traceability.

Zero balance is considered an electrical load cell specification value. It is essential to consider when selecting the type of load cell for any application.

Load cell zero balance is the signal of the load cell in the no-load condition. It is defined as the output signal of the load cell with rated excitation and no load applied. It refers to the amount of deviation in output between true zero and an actual load cell with zero load. It is usually expressed in the percentage of rated output (%RO). Zero balance is a test that can be done to understand calibration on a load cell.

Load cells constantly reset to zero after every measurement to maintain accuracy. If it does not, then the results will prove to be inaccurate. The zero balance must be within the error margin indicated on the calibration certificate. Interface sensors are typically +/-1.0%.

This is important to test because zero balance will tell you if a load cell is in working order or has been damaged or overloaded. A computed zero balance of 10-20% indicates probable overload. If the load cell has been overloaded, mechanical damage has been done that is not repairable because overloading results in permanent deformation within the flexural element and gages, destroying the carefully balanced processing that results in performance to Interface specifications.

While it is possible to electrically re-zero a load cell following overload, it is not recommended because this does nothing to restore the affected performance parameters or the degradation of structural integrity. If the degree of overload is not severe, the cell may sometimes be used at the user’s discretion. However, some performance parameters may violate specifications, and the cyclic life of the load cell may be reduced.

To perform a zero balance test, The load cell should be connected to a stable power supply, preferably a load cell indicator with an excitation voltage of at least 10 volts. Disconnect any other load cell for multiple load cell systems. Measure the voltage across the load cell’s output leads with a millivoltmeter and divide this value by the input or excitation voltage to obtain the zero balance in mV/V. Compare the zero balance to the original load cell calibration certificate or the datasheet. Every Interface product has a detailed datasheet available on the product page of the sensor.

ADDITIONAL TECHNICAL DEFINITIONS

Zero float is the shift in zero balance resulting from a complete cycle of equal tension and compression loads. It is normally expressed in the units of %FS and characterized at FS = Capacity.

Zero stability is the degree to which zero balance is maintained over a specified period with all environmental conditions, loading history, and other variables remaining constant.

Learn more about the specification values that define load cell accuracy in this short clip from our  Demystifying Specifications Webinar.

Get your free copy of the Interface Load Cell Field Guide to learn more about factors affecting load cell accuracy. If you are concerned about the zero balance of your Interface load cell due to inaccurate results or recent damage, please get in touch with us at 480-948-5555.

ADDITIONAL TECHNICAL RESOURCES

Interface Technical Support Information and Troubleshooting

Interface Product Selection Guides

Interface Installation Guides and Operation Manuals

Interface Software and Drivers

Interface Product Catalogs

Interface 101 Blog Series and InterfaceIQ Posts

Interface Industry Solutions and Applications

Interface Recorded Webinars

What is Static Error Band Output?

Static error band (SEB) measures the accuracy of a measuring device. Under static loading conditions, it is defined as the maximum deviation of the device’s output from a best-fit line through zero output. SEB includes the effects of non-linearity, hysteresis, and non-return to minimum load.

Static Error Band (SEB) Definition: A band encompassing all points on the ascending and descending curves centered on the best-fit straight line. It is expressed in units of %FS.

SEB is typically expressed as a percentage of full scale (FS), the maximum load the instrument can measure. For example, a load cell with a SEB of 0.1% FS would have a maximum error of 0.1% of its full-scale capacity.

SEB is an essential specification for measuring instruments used to make precise measurements, such as load cells, pressure transducers, and temperature sensors. A high SEB indicates that the device is inaccurate, and its measurements may be unreliable.

How to Calculate SEB

  • Collect a series of calibration data points for the instrument under static loading conditions.
  • Plot the calibration data on a graph, with the instrument’s output on the y-axis and the applied load on the x-axis.
  • Fit a best-fit line through the calibration data points.
  • Calculate the maximum deviation of the calibration data points from the best-fit line.
  • Express the maximum deviation as a percentage of the full scale.

SEB is a helpful metric for comparing the accuracy of different measuring instruments. It is also important to note that SEB is only one measure of an instrument’s accuracy. Other factors, such as repeatability and reproducibility, should also be considered when selecting a device for a particular application.

What is SEB Output?

SEB output is the computed value for output at capacity derived from a line best fit to the actual ascending and descending calibration points and through zero output. It measures the accuracy of a measuring instrument under static loading conditions.

SEB Output Definition: The output at capacity is based on the best fit straight line.

The SEB output is the maximum deviation of the calibration points from this best-fit line. SEB output is typically expressed as a percentage of full scale (FS). SEB output is an essential specification for load cells and other measuring instruments used to make precise measurements.

Why Interface Uses SEB Output Instead of Terminal Output

In the absence of alternate specific instructions, Interface uses the SEB output instead of the terminal output in straight-line scaling of a transducer to a digital indicator or analog signal conditioner. On average, the SEB output line yields the least error over the transducer range relative to the calibrated points.

SEB stands for Static Error Band and is a band on either side of a straight line through zero that is positioned to have equal maximum error above and below the line. The line extends from zero to the SEB output. The line considers both ascending and descending calibration points.

The plot below allows error visualization relative to the SEB and terminal output lines for a typical load cell calibration curve with ascending and descending points.

In this example, the SEB equals 0.03%FS, and the SEB line is no more than 0.03%FS away from any calibration point. The terminal line, in contrast, has a maximum deviation from calibration points of 0.05%FS. The plot shows that the ascending calibrated curve and the SEB line cross near 80%FS, often a more common measurement area in an application than 100%FS.

Source: Levar Clegg

Benefits of Using SEB Output

  • SEB output is a more accurate measure of the load cell’s accuracy than terminal output.
  • SEB output is less sensitive to environmental factors and noise than terminal output.
  • SEB output is easier to understand.
  • SEB output confirms that the measurements are accurate and the results are reliable.

How does a test engineer use SEB Output when selecting a load cell and instrumentation system?

Test engineers use SEB Output when selecting a load cell and instrumentation system to ensure the system is accurate enough for the intended application. The selection of a load cell is often based on an SEB Output that is less than the required accuracy of their application. For example, if an engineer needs to achieve measurements with an accuracy of 0.1%, they will select a load cell with a SEB Output of less than 0.1% FS.

It is crucial to consider the instrumentation system’s accuracy to measure the load cell’s output. The instrumentation system should have an accuracy equal to or greater than the accuracy of the load cell.

For additional information about specification values, be sure to watch this short clip from our Demystifying Specifications Webinar Recap

Test and measurement professionals can select an accurate, reliable, valuable load cell and instrumentation system following these tips.

Wireless Telemetry Systems 101

A wireless telemetry system enables the remote measurement and transmission of data from one location to another without the need for physical wired connections.  As technology advances, wireless telemetry systems are becoming increasingly sophisticated, reliable, and secure, enabling them to be applied in various industries and use cases for test and measurement applications.

Interface offers a wide range of wireless telemetry products. Components in wireless telemetry systems typically include sensors, transducers, instrumentation, communication modules, transmitters, displays, and printers.

The sensors measure tension, compression, weight, torque, or any other measurable quantity. Interface utilizes proprietary strain gage sensor technologies. Transducers convert analog signals from sensors into digital data that can be processed and transmitted to instrumentation.

Load cells are commonly used with wireless telemetry systems to measure and transmit data about the force or weight applied to an object. The load cell converts the force exerted on it into an electrical signal, which can then be wirelessly transmitted to a remote monitoring system.

The most popular Interface wireless load cells are our WTS 1200 Standard Precision LowProfile® Wireless Load CellWTSTL Wireless Tension Link Load Cell, WTSLP Wireless Stainless Steel Load Pin and WTSSHK-D Wireless Crosby™ Load Shackle. Interface works with our customers to develop engineered-to-order wireless solutions by request.

The analog output from the load cell may require signal conditioning to ensure accuracy and compatibility with the wireless telemetry system. Signal conditioning can also be required for amplification, filtering, and analog-to-digital conversion to convert the analog signal into a digital format.

Wireless communications modules are responsible for transmitting the data over wireless channels. It can use various communication technologies like Wi-Fi and Bluetooth, depending on the application’s requirements. The transmitter is responsible for wirelessly communicating the load data to the receiving end of the telemetry system.

There are various options for data collection. Data acquisition instrumentation is preferred in force measurement applications to collect vast amounts of data from sensors and transducers and prepare it for transmission.

At the receiving end of the telemetry system, another wireless communication module receives the data from the load cell’s transmitter. Once the data is processed, it can be analyzed, logged, and displayed on a user interface, such as a computer dashboard or a mobile app. This allows operators, engineers, or users to monitor the load values in real-time and make informed decisions based on the data

Interface Wireless Telemetry System (WTS) Solutions

The Interface Wireless Telemetry System (WTS) offers flexibility by eliminating physical connections, making deploying sensors in remote or challenging environments easier. Wireless telemetry systems offer more flexibility in sensor placement and system configuration.

The absence of physical wires allows for easier repositioning or adding new sensors without significant infrastructure changes. This setup is particularly useful in scenarios where it is challenging or impractical to use wired connections, such as in large-scale industrial applications or when monitoring moving or rotating machinery.

Wireless Telemetry System Components

Wireless Transducers

Wireless Transmitters

Wireless Receivers

Wireless Output Modules

Wireless Displays and Instrumentation

This is a list of what types of products are available. The Interface WTS offering continues to grow with added products to the line. Check out the Wireless Modular System Overview for more system details.

Wireless Telemetry System Benefits

The Interface WTS is a wireless telemetry system that transmits high-quality data to single and multiple devices. It offers a wide variety of benefits, including:

  • High accuracy: The WTS offers measurement accuracy of ±0.02% of full scale, ensuring you get accurate readings from your sensors.
  • High speed: A high-speed system can transmit data up to 1000 Hz.
  • High resolution: The WTS has a resolution of 10,000 counts, which means that you can measure even slight changes in force.
  • Multiple configuration options: The WTS can be configured to meet a wide variety of needs. You can choose from a variety of transmitters, output modules, receivers, antennas, and displays.
  • Easy to use: It is a modular system that can be easily expanded to meet the needs of your application. It is supported by our powerful WTS Toolkit configuration software, making it easy to set up and use.
  • IP-rated enclosures: The WTS transmitters and receivers are available in two different-sized enclosures that are rated to IP67, making them dustproof and waterproof.

A major benefit of wireless telemetry systems is the ability to adapt and expand by adding additional sensors or devices without the constraints of wires and cables. They are easy to integrate, and installation is fast for immediate benefits.

Wireless telemetry integrates with the Internet of Things (IoT) and cloud-based platforms, enabling centralized data storage, analysis, and easy access from multiple devices.

Read: Interface Wireless Telemetry System Review

Applications Using Interface Wireless Telemetry System Solutions

Aerospace: Wireless options are preferred for large projects that require careful movement and testing of aircraft, components, and systems. Providing flexibility in real-time data without the cable is a huge benefit. See these WTS solutions for Aircraft Engine Hoist and Airplane Jacking System

Industrial Automation: Load cells with wireless telemetry are commonly used in industrial environments for weighing large objects, such as in material handling, manufacturing, and logistics. Check out IoT Lifting Heavy Objects.

Medical and Healthcare: Wireless medical telemetry systems, such as wearable health devices, are used for patient monitoring. In medical settings, wireless load cells are used in patient lifts and hospital beds to monitor patient weight and movement. Learn more in our Patient Hoyer Lift application.

Agriculture: The agriculture industry uses WTS to monitor crop management programs and measure the weight of produce, animal feed, or livestock. Check out this use case: WTS Equine Bridle Tension System App Note.

Energy: The energy industry utilizes wireless load cells and telemetry products to remotely monitor oil wells, pipelines, and storage facilities. Check out Tank Weighing and Center of Gravity

Infrastructure: Civil engineers use WTS to assess the health and integrity of structures like bridges and dams. Monitoring loads on bridges and cranes to ensure safety and structural integrity. Check out Road Bridge Lift Monitoring.

Manufacturing: There are many examples of manufacturing WTS use cases. Wireless load cells are being used to monitor the weight of products as they move through the production line. This information can be used to ensure that products meet quality standards and identify any potential problems early on by fully utilizing the wireless telemetry capabilities.

Construction: In the construction industry, wireless load cells and telemetry systems monitor the load on beams and columns during construction to ensure that structures are safe and stable and to detect any potential problems before they cause an accident. Check out Jib Crane Tension Monitoring.

Transportation: In the transportation industry, wireless load cells are being used to monitor cargo weight on trucks and trains to ensure that loads are not overloaded and to comply with regulations. Read IoT Waste Management Container Weighing.

Automotive: The industry utilizes several machines and systems to test components used in the making of automobiles. Read how WTS is used in this brake testing application: WTS Brake Pedal Force Testing.

Entertainment: Protecting the artists, equipment, and attendees is top of mind for all venues. Wireless systems monitor environmental conditions, rigging, display mounts, and more. Read Multi-Stage Load Monitoring.

Integrating load cells with wireless telemetry systems provides a convenient and efficient way to monitor force or weight data remotely, allowing for real-time data analysis and enhancing the automation and safety of various processes.

If you are looking for a reliable and accurate wireless telemetry system, the Interface WTS is a great option. It is a powerful and versatile system that can be used in various applications. and industry use cases.

What are IO-Link Load Cells

Interface continues to see a growing demand for using different communication protocols within our force measurement sensors and instrumentation devices. One of these protocols is IO-Link, which is a standardized communication protocol that enables bidirectional communication between the control system and the connected devices. It is frequently used in the field of industrial automation and IoT.

IO-Link is designed to connect and communicate between sensors, actuators, and other industrial devices with a higher-level control system. It runs over a standard three-wire connection, typically using unshielded industrial cables, and supports point-to-point communication.

Industrial automation and IoT are fundamentally reliant on digital transformation. Industry 4.0 requires the exchange and communication of information between sensor and instrumentation. IO-Link supports this requirement, helping to keep machines and facilities using sensors under control while improving their efficiency and productivity.

IO-Link can be used with load cells in industrial applications to enable enhanced monitoring, control, and diagnostics. Interface now offers customization of our most popular load cells with IO-Link capabilities.

Why Use IO-Link in Test & Measurement

  1. IO-Link is compatible with a wide range of sensors, actuators, and other devices. It provides a standardized interface, allowing easy integration and interchangeability of devices within an automation system.
  2. Real-time monitoring, control, and diagnostics is especially important in test and measurement. IO-Link enables this type of data exchange between devices and the control systems supporting the transmission of measurement data.
  3. IO-Link supports both analog and digital devices, making it versatile for a range of applications.
  4. With IO-Link, devices can be connected using a single cable, reducing the complexity and cost of wiring and simplifying installation and maintenance.
  5. Health and maintenance are important in testing. IO-Link supplies advanced diagnostic capabilities, allowing devices to report their status, health, and detailed diagnostic information. This is valuable for maintenance, troubleshooting, and reducing downtime.

Interface 1200 and 1201 Load Cell IO-Link Features and Benefits

The 1200 and 1201 Series IO-Link Load Cell Universal or Compression-Only are LowProfile load cells that are IO-Link compatible.

  • Proprietary Interface temperature
  • Compensated strain gages
  • Eccentric load compensated
  • Low deflection
  • Shunt calibration
  • Tension and compression
  • Compact size
  • 3-wire internal amp choice of 4-20 mA, ±5V, ±10V, 0-5V, 0-10V
  • Options include Base (recommended), custom calibration, multiple bridge, special threads and dual diaphragm
  • Accessories include mating connector, mating cable, instrumentation and loading hardware

For a complete datasheet of this product, go to the 1200 and 1201 with IO-Link product page.

IO-Link integration with load cells enhances the functionality and flexibility of weight measurement systems by enabling seamless communication, remote evaluations and diagnostic capabilities. It contributes to more efficient and reliable industrial processes where precise monitoring is necessary.

Weight and force monitoring: By connecting load cells to an IO-Link-enabled system, such as a PLC or a weighing controller, real-time weight data can be transmitted and monitored. The load cells measure the weight or force applied to them, and this information can be instantly communicated to the control system via IO-Link. The control system can then perform tasks such as weight-based control, process optimization, or triggering specific actions based on weight thresholds.

Remote parameterization and calibration: IO-Link allows load cells to be remotely parameterized and calibrated from the control system. Instead of manually adjusting the load cell settings at the device level, the control system can send the necessary configuration commands through the IO-Link interface. This feature simplifies the setup process, saves time, and reduces the risk of errors during calibration.

Performance evaluation and detection: IO-Link provides diagnostic capabilities for load cells, enabling the detection of potential issues or abnormalities. The load cells can send diagnostic information, such as temperature, supply voltage, or fault codes, to the control system through IO-Link. This data can be utilized for predictive maintenance, troubleshooting, or alarming in case of malfunctions.

IO-Link enhances the functionality, flexibility, and efficiency of industrial automation systems by enabling intelligent communication between devices and the control system.

ADDITIONAL RESOURCES

Interface New Product Releases Summer 2023

Force Sensors Advance Industrial Automation

Interface Weighing Solutions and Complete Systems

Instrumentation Analog Versus Digital Outputs

 

How Load Cells Can Go Bad

Load cells are electronic devices that measure the force applied to them. Interface products are made to last, in fact we have many load cells that are in-market and being used for high-accuracy testing that were manufactured decades ago. Why do they last? Quality of design, material construction, build process, calibration, and regular maintenance prolong the life of a load cell.

Like any electronic device, load cells can go bad for a few reasons. It is also important to know that load cells can be repaired. Outside of complete destructive testing, the following issues are most common for how load cell can go bad.

Overloading: Load cells have a maximum capacity, and if they are subjected to a force beyond that limit, they can get damaged. Overloading can cause the load cell to deform or break, resulting in inaccurate readings or complete failure. Preventative options are to use overload protected load cells.

Mechanical and physical damage: Load cells are sensitive devices and can be damaged by impact, vibration, or shock. Mechanical damage can cause the load cell to deform or lose its calibration, resulting in inaccurate readings. Physical damage to devices is often because the load cells are dropped or mishandled during use.

Moisture: Load cells are often used in damp or wet environments, and prolonged exposure to moisture can cause corrosion or damage to the internal circuitry. Environmental exposure to moisture can also cause electrical shorts or create a conductive path between the components, resulting in inaccurate readings or complete failure. Review submersible options if testing in these environments is common.

Temperature: Load cells can be sensitive to temperature changes, and extreme temperatures can cause damage to the internal components. Thermal expansion or contraction can cause mechanical stress, resulting in deformation or damage to the load cell. Interface offers high-temperature and low-temperature load cells options.

Electrical noise: Load cells are susceptible to electrical noise, which can cause interference in the signals and result in inaccurate readings. Electrical noise can be caused by electromagnetic interference (EMI), radio-frequency interference (RFI), or other sources of electrical interference.

Aging: Not all load cells are made the same way. Interface load cells are designed to outlast any testing use for long-periods, we are talking millions of cycles. However, some load cells can wear out over time due to repeated use, exposure to the environment, or other factors. Aging can cause a decrease in sensitivity, accuracy, or stability, resulting in inaccurate readings or complete failure. All load cells need good health checks to stay working at optimal performance.

To avoid load cell failures, it is important to use them within their rated capacity, protect them from mechanical damage, and provide adequate protection from moisture, temperature, and electrical noise. Regular maintenance and calibration services, preferably every year, can also help ensure accurate and reliable performance over time.

What is the best way to determine if a load cell is bad or not working?

There are several ways to determine if a load cell is bad or not working. Here is a reminder of five quick checks:

#1 Visual Inspection: Start by visually inspecting the load cell for any signs of physical damage, such as cracks, deformations, or loose connections. Check for any corrosion or signs of moisture, as well as any visible wear and tear.

#2 Zero Balance Testing: A zero balance test is a quick and straightforward way to check if a load cell is functioning properly. With no weight applied, the load cell should read zero. If it does not, there may be an issue with the load cell or its connections.

#3 Load Testing: Load testing involves applying a known weight to the load cell and checking the reading. If the load cell is accurate, the reading should match the known weight. If there is a significant discrepancy, the load cell may be faulty.

#4 Bridge Resistance Tests: Load cells are typically constructed with a Wheatstone bridge circuit, which can be assessed for proper resistance values. If there is a significant deviation from the expected resistance values, there may be an issue with the load cell or its connections.

#5 Temperature Tests: Load cells can be sensitive to temperature changes, and extreme temperatures can cause damage to the internal components. Evaluating the load cell at different temperatures can help to identify any issues with temperature sensitivity.

Interface provides complete evaluations of any product we manufacture, to determine if the load cell is working properly. To request services, go here.

How does calibration help load cells from going bad?

Calibration is the process of adjusting a load cell to ensure its accuracy and reliability in measuring weight or force. Regular calibration is essential for maintaining the accuracy and reliability of load cells. Interface recommends annual calibration services as a preventative measure and for good maintenance of your force measurement devices.

Calibration helps to ensure that a load cell provides accurate and consistent readings. Over time, load cells can drift from their initial calibration due to environmental factors, wear and tear, and other factors. Regular calibration ensures that any deviations from the standard are detected and corrected, preventing inaccurate readings that can lead to errors in weighing and other measurements.

Load cells that are not calibrated regularly may experience premature wear and tear due to repeated use, leading to damage or failure. Calibration helps to identify any issues early on and prevent further damage, extending the lifespan of the load cell and saving on replacement costs.

Many industries and applications have strict standards and regulations for measuring weight and force. Regular calibration helps to ensure that load cells meet these standards and regulations.

Regular calibration can help load cells from going bad in multiple ways. It can help to prevent inaccurate readings, extend the lifespan of load cells, improve efficiency, and ensure compliance with standards and regulations. Accurate measurements are critical, and calibration helps to ensure that load cells is working properly. Request a repair or calibration service online.

ADDITIONAL SERVICES

Load Cell 101 and What You Need to Know

Load Cell Sensitivity 101

Can Load Cells Be Repaired?

Services & Repair

Mechanical Installation Load Cell Troubleshooting 101

How Do Load Cells Work?

Regular Calibration Service Maintains Load Cell Accuracy