Posts

Faces of Interface Featuring James Richardson

Born in Arizona but growing up in the rural area of Cotton City, New Mexico, James Richardson was only exposed to the opportunity of a career in engineering after moving back to Arizona. After graduating as his high school class Salutatorian in 1995, he started college in Eastern Arizona.

He later moved to Mesa in 1999 where he took a job working for his uncle at Dewitt Equipment fixing restaurant and cooking equipment like ovens, fryers and microwaves, and along with refrigeration equipment including air conditioning units, freezers, and ice machines. It was also during this time he learned to braze, solder and TIG weld.

At Dewitt, his on the job training for fixing equipment built up his foundation for engineering. The spark that really kicked it off came on a sweltering Arizona summer day when James was repairing an A/C unit on a restaurant’s loose gravel rooftop. The temperature was so high that the gravel began to sink, melting the soles of his shoes. At this point, James realized he enjoyed working with his hands and on advanced equipment; however, it was time to finish his formal education in engineering and pursue a job that included more time inside where there was ample air conditioning.

By this time James had already completed an Associate Degree at Maricopa Community College and he was about 18 months from completing a Bachelor of Science in Mechanical Engineering degree at Arizona State University. Completing this degree, he later earned a Master’s in Engineering Management from Ohio University. Towards the end of his bachelor’s degree, he got an internship at Honeywell Aerospace. His first job after earning his degree was with Enertron Inc., a leading provider of thermal management solutions for the aerospace, military, medical, telecommunications, and IC fab equipment industries. In this role, he designed heat sinks for circuit boards used for lasers, lighting and computers.

After three years with Enertron, he moved to Cleveland Electric Laboratories where he served as an applications engineer working on turbine engine instrumentation. This is where James got his first hands on experience with force measurement equipment. His job was to design instrumentation for strain, temperature, and pressure measurements. At one point he even designed a load pin for a customer.

In his role, he was also introduced to Interface. The company he was working for owned several Interface products and he became familiar with their high-quality and premium accuracy. Then in 2015, a headhunter called him out of the blue to offer him a chance to work for Interface. James was excited about the prospect of working for a company that put quality first. In fact, the thing that hooked him about Interface was the declared focus of “Quality is Our Driving Force,” and the fact that each of the four interviewers reiterated the importance of this statement in their interview.

James joined Interface as a production engineer. He remained in this role for about four years before being promoted to Senior Engineer, and then to his current role as Mechanical Engineering Manager where he leads a team of five other engineers. In this leadership position, James is responsible for overseeing development efforts for some of Interface’s most important product lines including the specialized 1923 and 1925 wireless custom solutions and our downhole products for the energy markets. James was instrumental in the latest new product release, the new ConvexBT Load Button Load Cell.

In addition to this critical role, James also loves to learn about the many ways that Interface products directly affect him and people close to him. This includes how measuring systems ensure the proper weight of food in nutritional planning and packaging, measurement of things like blood donations, and safety test systems for airplanes. The work done at Interface is incredibly important to everyday life and many people don’t even realize it.

In his free time, James can be found spending time with his wife of 21 years and their four children, two sons and two daughters. The family enjoys the outdoors together, partaking in activities like bike rides and hikes. He also brings some of his passion for engineering home. He’s intrigued by the possibilities of 3D printing and owns a printer himself. He’s designed and printed things like bowties, wallets, wall-mounts for various gadgets, and even toys for the kids. In case you missed it, the photo of James is his own 3-D printed bowtie. It was a big hit at the Interface holiday party.

Another interesting fact about James is that throughout his career he’s tried to connect with co-workers from different countries by learning their language. Throughout his life he’s learned a little bit of Polish and German, and is fluent in Spanish, which he learned while spending two years as a missionary in South America.

We asked James to describe his thoughts on his career in engineering in another language. He responded, “Un dicho o una frase que a mí me gusta pensar, cuando algo no sale buenisimo, es: “Siempre hay una manera mejor.” This translates to a saying or phrase that I like to think of when something doesn’t turn out great, “There is always a better way.”

To learn more about the ConvexBT, check out the datasheet here:

ConvexBT

ConvexBT Load Button Load Cell Featured Online at Sensor Tips

Interface’s newest product release, ConvexBT, is featured in the Sensor Tips, the respected online resource publication for electronics engineering challenges of today and tomorrow.

CLICK HERE TO READ THE COMPLETE SENSOR TIPS ARTICLE

As sensor requirements for force measurement are being utilized as miniature-sized components, the load button load cell ConvexBT is designed to give precision level performance in force measurement.  The new release is designed for accuracy and flexibility.

As shared in Industry Today, the ConvexBT capabilities far exceed what is available in these grow dimension requirements due to specifications to make devices and products more compact and convenient. Industries such as medical, industrial automation and products reliant on advanced communications technology need to validate these products with force-sensing solutions that can fit in confined spaces and provide extremely accurate data.

ConvexBT product comes in two different sizes: 3/8-inch, and 1/2-inch, which are all manufactured using 17-4 PH heat treated stainless steel. These options provide a wide measurement range from 10 to 250 lbf, a compensated temperature range of 60° to 160°F, and an operating temperature range of -40° to 175°F.

Additional specifications for ConvexBT include:

  • 2.00 ± 20% mV/V rated output
  • ± 0.25 nonlinearity as a percentage of full scale
  • ± 0.25 hysteresis as a percentage of full scale
  • ± 0.50 static error band as a percentage of full scale

Download the complete ConvexBT specifications datasheet and STP / CAD files here.

Check out introduction video for ConvexBT, the next generation in force measurement device.

The Five Critical Factors of Load Cell Quality

Accurate data and high-quality test and measurement programs have many contributing factors. None are more important than the devices and equipment used on the test line. At Interface, we understand this better than anyone else.

Quality is why our force measurement products are used and known across multiple, highly regulated, and complex industries for providing the most reliable and accurate data anywhere. It is also why Interface is recognized as the preeminent leader in load cell quality.

How do we reach this high standard that we continue to hit with every product that leaves our facility? It is our overriding commitment to quality and consistency. The most important aspect of this is the fact that Interface controls the entire manufacturing process of our load cells. Many providers outsource certain components like that strain gages. We build the strain gages, the load cells, integrate the strain gages into the load cells and we do our own test, calibration, and quality inspection on each device.

Through our development process, which has been created and perfected over 52 years, we have learned what makes a great load cell. To start, Interface Chief Engineer Ken Vining outlines the top factors in load cell quality.

Five Most Critical Factors of Load Cell Quality

#1 Repeatability

Repeatability is first on the list and it is what our customers consider the most important aspect of buying an Interface load cell. Anyone can develop a load cell that is accurate for the first 10 to 15 measurements, but as environmental factors and stress are inflicted upon the load cell it needs to last. Due to our experience in this industry, we understand how certain temperatures, loads and other factors can diminish the accuracy of a load cell. This is one of the reasons we work so closely with our customers. Every application is different, and if we understand the application, we can deliver a custom load cell that withstands the various stressors over time without providing diminishing returns. This ensures that our customers receive the same, high-quality data after 10 years of use that they received on day one.

#2 Longevity

Like repeatable data accuracy over time, the load cell also needs to feature a high-quality and ruggedized build to last physically. Constant application of weight, pressure or torque can diminish the build quality and strength of a load cell if it does not meet the material requirements of the application. This can also reduce accuracy and lead to higher costs if customers must replace their load cells regularly. Interface has worked across a wide variety of industries and we understand the materials necessary for nearly any environment. With proper use, build quality and routine maintenance, load cells should last a very long time. In fact, Interface still has load cells in use in the field from when we started building quality product more than five decades ago.

#3 Accuracy

Data accuracy is affected by a litany of factors in load cells. In fact, we wrote an entire white paper on this very topic called, “Contributing Factors to Load Cell Accuracy.” Once again, the application of the load cell is what determines the conditions that affect accuracy. These conditions include creep, side and eccentric load, temperature, humidity, the mounting process and more. Interface can customize each of our load cells to ensure these conditions are accounted for to maintain premium accuracy.

#4 Sensitivity to Off-Axis Loads

A typical load cell is designed to measure load in one direction. However, nearly any project using force measurement test processes is going to introduce an off-axis load. If the load cell is not designed to adjust for this and compensate for what is called moment, the data output will be skewed. This is another reason that customers need to be extremely specific when discussing the application of the load cell. There are several ways to compensate for moment; however, most of these adjustments are physical and occur in the design and manufacturing process. With a correctly calibrated and designed load cell, off-axis loads will be eliminated and will not affect the accuracy of the data.

Special Note: Our recent release of the new ConvexBT product, the first to market miniature load button load cell that is designed to solve for off-axis (eccentric) loading. Read more here.

#5 Access to Prominent Force Measurement Experts

Every factor of quality listed above is realized and accomplished through a close and transparent relationship between customer and force measurement provider. Every application dictates a different force measurement solution. When we understand the application, we can select the right type of load cell or customize an off the shelf load cell to meet the quality and accuracy needs necessary for any project. This is why a customer’s access to a force measurement expert is an integral part of load cell quality.

Every force test and measurement project can create a different challenge and developing an accurate and reliable load cell to meet those challenges can be tough. Therefore, Interface considers these five factors, and hundreds more, for every product we engineer and build. This is our unwavering commitment to quality and customer satisfaction.

Contributor:  Ken Vining, Chief Engineer and Head of Quality

Advancing Load Button Load Cell Capabilities with ConvexBT

Demands for high precision testing utilized for compact designs and in confined spaces is growing. The requirements for quality, accuracy and most importantly reliability are what has driven the experienced engineers at Interface to create the newly released ConvexBT™ Load Button Load Cell product line.

The revolutionary design of the ConvexBT is a first of its kind load button load cell, providing better temperature resistance and more enhanced eccentric load rejection. Miniature load cells categorized as load buttons have been sensitive to off-axis, eccentric or misaligned loads. This means if the load is not exactly perpendicular to the surface it is resting on, the data could become skewed or inaccurate.

Interface designed the ConvexBT™ Load Button Load Cell to confine misaligned loads to the primary axis of the cell providing superior performance in comparison to similar products on the market in repeatability, better data and reproducible results.

As technology advances, there is a growing demand to make devices and products more compact and convenient. This trend is happening across industries and is especially prevalent in medical, industrial automation and products reliant on advanced communications technology. To design and validate these products, our customers need force-sensing solutions that can fit in confined spaces and provide extremely accurate data. This is the driving force behind the development of ConvexBT, the next generation in force measurement device.” – Ted Larson, VP product management and marketing, Interface.

CONVEXBT FEATURES AND SPECIFICATIONS

The newly released ConvexBT product comes in two different sizes: 3/8-inch, and 1/2-inch, which are all manufactured using 17-4 PH heat treated stainless steel. These options provide a wide measurement range from 10 to 250 lbf, a compensated temperature range of 60° to 160°F, and an operating temperature range of -40° to 175°F.

Additional specifications for ConvexBT include:

  • 2.00 ± 20% mV/V rated output
  • ± 0.25 non-linearity as a percentage of full scale
  • ± 0.25 hysteresis as a percentage of full scale
  • ± 0.50 static error band as a percentage of full scale

Other load cell load buttons designs have also been extremely sensitive to temperature conditions. Interface has redesigned its ConvexBT ultra-precision product line of load buttons to ensure that this is no longer something the user has to account for by taking the sensing technology disrupted by temperature out of the cable, and designing it directly into the load button.

The new available ConvexBT models include the following capacities:

  1. ConvexBT Model LBSU-10 lbs 3/8″
  2. ConvexBT Model LBSU-25 lbs 3/8″
  3. ConvexBT Model LBSU-50 lbs 3/8″
  4. ConvexBT Model LBSU-100 lbs 1/2″
  5. ConvexBT Model LBSU-250 lbs 1/2″

Additional model capacities will be available this year.  You can view the complete product specifications as well as technical guide by visiting the product page here.

ConvexBT was developed through a combination of intense research into growing technology trends in force measurement and actively collaborating with our customers to understand their unique challenges, By introducing the industry’s most advanced and versatile ultra-precision load button load cells, we are solving the test and measurement challenges associated with miniaturization of existing and new technologies.” – Greg Adams, CEO at Interface

The revolutionary ultra-precision line of ConvexBT™ Load Button Load Cells uniquely uses multi-point calibration for testing force on miniaturized products and within confined spaces where accuracy is paramount to success and safety. The requirements are critical to common buyers of miniature load cells, especially for use in medical devices, robotics and in industrial automation applications

In addition to its ability to solve test and measurement challenges with compact devices, another key benefit of ConvexBT is its versatility in that it can be used as a traditional test and measurement solution. It can also be installed into OEM components and devices as an advanced miniature sensing solution to collect accurate real-time force data on the product as it is in use.

ConvexBT is available now under the product family of Interface Mini® Load Cells. The product is part of a growing line of Interface Load Button Load Cells. The new ConvexBT model LBSU specifications are available here: /product-category/load-button-load-cells/.

Read more about Off-Axis Loads and Temperature Sensitive Applications here.

Addressing Off-Axis Loads and Temperature Sensitive Applications

As technology progresses, one of the main differences we see over years and years of iteration on a wide range of consumer and commercial technology is miniaturization. There are hundreds of thousands of examples of advancing technology that went from the room-size of a mainframe decades ago, to a handheld device today. As technology grows more compact and convenient, the equipment used to design, test and manufacture these devices has to follow suit.

This is one of the driving factors for Interface to increase the product types and capabilities in our Load Button Load Cells and Interface Mini Load Cell products. Interface’s Load Button Load Cells are designed for customers who require the measurement of forces in a very confined space. They provide the most accuracy in as little space as possible. Diameters range from 1 inch to 3 inches, with heights from 0.39 inch to 1.5 inches.

For many years, load button load cells have been sensitive to off-axis, eccentric or misaligned loads. This means that if the load is not exactly perpendicular to the surface it’s resting on, the data could become skewed or inaccurate. All on-axis load generates some level, no matter how small, of off-axis extraneous components. This can cause a variety of challenges including slight inaccuracies and reduction of the load cells overload capacity.

With Interface’s family of load button load cells, we bring premium accuracy and repeatability, even under eccentric angular loading. The shaped load button has a spherical radius to help confine misaligned loads to the primary axis of the cell. Our design engineers and force measurement experts have purposefully tested applications under a wide variety of load conditions to ensure that the our load button series can continue to deliver premium performance. We have been extremely pleased with the results and continue to advance our offerings, including the soon to be released precision focused ConvexBT load button load cells.

The load button load cells’ size has in the past precluded the use of internal temperature compensation. We have redesigned our ultra precision product line of load buttons to ensure that this is no longer something the user has to account for when testing a product in certain environmental conditions.

Interface engineers have eliminated this issue by taking the technology out of the load button load cells cable and designing it back into the product. This ensures that temperature-sensitive applications do not suffer from errors caused by the load cell being exposed to different environmental conditions than the cable.

These new features open new possibilities to test compression force on a broader range of products and environments. To learn more about our ultra precision Load Cell Load Buttons and how it can make a difference in your design and testing process when dealing with tight and confined spaces, contact our Application Engineer experts here.

To see the complete line of Load Button Load Cells, visit here.  Watch for the release announcement of our new ultra precision ConvexBT product coming out this month.

Contributors:  James Richardson, Interface Mechanical Engineering Manager and Ted Larson, VP Product Management and Marketing

Source:  Interface Load Cell Field Guide