Posts

EV Battery Testing Solutions Utilize Interface Mini Load Cells

Automotive components undergo rigorous testing to meet regulatory standards, guarantee performance, and ensure consumer safety. These components continually require investment in innovation to meet the expressed governmental, consumer and commercial use requirements.

One of the vehicle components that is undergoing intense change is the battery. The market is heavily focused on increasing mileage use and life, which includes the shift from single-use lithium batteries to lithium-ion batteries which are rechargeable.

These customer sentiments are noticeable in the growing global electric vehicle (EV) and hybrid electric vehicle (HEV) demands for sustainable and longer-lasting battery solutions. Customer satisfaction and commercial applications are closely intertwined with a vehicle’s ability to travel longer distances without refueling or charging. The demands and changes drive robust test and measurement programs to bring new battery models and designs to market.

In 2021, it is estimated the EV battery market exceeded 38% of total battery sales. As technology continues to improve the lifecycle and reducing battery costs, Precedence Research estimates 32% CAGR through 2030. This translated to $46B in the US alone of market share, while Asia Pacific is leading the production of EVs and overall demand for the EV batteries. Based on global adoption of electric vehicles, supported by government initiatives and an intense focus on reduced carbon emissions, the EV battery market is expected to continue expanding around the world.

The testing of batteries is growing in complexity with the increase in number of cells, modern designs, materials, cycles, installation, vehicle models, certifications and charging equipment to name a few. Battery simulation and real battery integration testing are two examples of commonly used T&M programs used to validate battery adaptability and use requirements. In battery testing, accuracy and quality of the measurement devices are vital. The following are the most common battery types today:

  • Lithium-ion Battery
  • Lead-Acid Battery
  • Sodium-ion Battery
  • Nickel-Metal Hydride Battery
  • Others

Due to the market shift to EVs, the lithium-ion battery is the number one battery type today. The domination of the lithium-ion battery exceeded all other battery types in 2021. Manufacturers of EVs prefer partnering with OEMs of newer model Li-ion batteries because they are lighter in weight and have higher energy density. The following details one of many Interface solutions offered to automotive component and battery manufacturers.

Electric Vehicle Battery Monitoring

The EV battery manufacturer required a system to monitor their lithium-ion batteries. Normally, lithium-ion batteries are measured through voltage and current measurements or (ICV) to analyze and monitor the battery life. In consultation with the design and testing engineers, Interface recommended a solution that required installing the LBM Compression Load Button Load Cell in between two garolite end plates, and measuring the force due to cell swelling or expansion. Instead of monitoring through voltage (ICV), this method is based on measured force (ICF). To monitor the testing, the load cell was paired with the 9330 Battery Powered High Speed Data Logging Indicator. This instrumentation solution provides the ability to display, record and log the force measurement results with supplied software.  To review the results and complete application note, go here.

Interface has long partnered with auto manufacturers and suppliers of various parts and components to provide a large range of automotive industry test and measurement solutions.  This includes sensors and instrumentation solutions for the development, testing and performance monitoring of all types of batteries, with growing interest for lithium-ion battery testing.

Interface will be discussing this and other force measurement solutions at the upcoming Auto Test Expo in Europe. Join us in Stuttgart or contact our application engineers to collaborate on a testing solution that works for your next project.

Additional Automotive Industry Resources

Interface Automotive Force Measurement Solutions

Driving Force in Automotive Applications

Test and Measurement for Electric Vehicles

The Future of Automotive is Electric

AxialTQ Technical White Paper Details Comparative Testing

WTS Brake Pedal Force Testing

Automotive + Vehicle Brochure

Automotive Window Pinch Force Testing App Note

Automotive Head Rest Testing App Note

Advancing Auto Testing with Interface Measurement Solutions

Advancing Auto Testing with Interface Measurement Solutions

What classifies as the automotive industry involves a complex and dynamic mix of suppliers, makers and designers of all types of vehicles, as well as prototypes of the changing demands and requirements of consumers both big and small.  Whether we look at where we are today with hybrid and electric motors, or autonomous rigs and people movers in test now, one thing that is constant is Interface’s role in providing vital measurement solutions for testing and real-time performance monitoring in the automotive and vehicle markets.

Automotive is one of the industries in which Interface has worked with since the introduction of our first load cells more than five decades ago. Force and torque measurement is critical to testing at every stage of design and manufacturing. Our sensor solutions, instrumentation and accessories are used across all facets of component development, including the testing of engines and exterior bodies, tires, batteries, fuel pumps and more.

Interface products are used for crash walls, brake testing, energy storage tests in the lab, seat belt and headrest testing, just to name a few. The fact is torque and force play a major role in making the vehicle move and ensuring it’s safe for drivers and pedestrians alike.  Interface is showcasing some of these solutions at the upcoming Automotive Test Expo. Registration to attend is free.

As the industry evolves, so do we. In fact, our advanced product AxialTQ was created for the automotive industry for testing of EVs. This revolutionary torque transducer is now used in all types of line production, assembly and part, including:

  • Internal Combustion Engine (ICE) Lab Testing and End of Line (EOL) Testing
  • Drivetrain Lab Testing
  • Automotive Accessory Lab Testing
  • Electric Vehicle (EV) Motor EOL and EV Lab Testing

For more about this dynamic product, you can watch our latest AxialTQ Webinar here.

Interface supplies high quality, precision load cells to automotive manufacturers, including custom one-off sensors and special application-specific designs. Standard off-the-shelf models such as our 2400 series , our 3200 series Stainless Steel LowProfile™ Load Cells, and our WMC Miniature Load Cell family are popular with machine builders and used anywhere a rugged stainless steel load cell is required.

Research and development facilities with precision applications favor our 1200 Series LowProfile™ Load Cells with their special moment compensated design. These are used in auto manufacturer assembly lines in a variety of production monitoring and verification applications. Our exceedingly accurate LowProfile™ Load Cells have been used in NASCAR and IndyCar garages for testing individual springs and entire vehicle suspensions.

A moment compensated Interface load cell has as much as 1,000 times less error from side load or moment as our competitor’s products. And many of our sensors feature 10x mechanical overload protection, which helps protect against unintended loads. Our Model BPL Load Cell is a very LowProfile™ load cell used for measuring force on gas, brakes or clutch pedals.

With a wide range of automotive vehicle load cell sensors, force and torque measurement capabilities, and features such as moment compensation, temperature compensation, and mechanical overload protection, Interface can help you design a solution perfect for your automotive application. In fact, here are a few examples of our products in action.

Airbag Connector Testing

Testing airbag connectors functionality is needed ensure perfect deployment to meet the ultimate test of saving lives. There are eight to twelve connectors installed in each vehicle, and tests are needed to be made in order to clarify the connectors are working effectively. The amount of force needs to be tested in order to see when an electrical current has triggered use.  Utilizing the WMC Sealed Stainless Steel Miniature Load Cell to the actuator of the test rig. The airbag connector is held in place at the bottom of the test rig. Forces are applied and measured using the 9330 High Speed Data Logger as the connector is pushed down to latch together.  Read more about this use case.

Seat TestingSeat Testing

During testing there was consistent overloading and replacing of the single-axis load cells. After a thorough inspection, it was discovered that this was due to bending moments that had never been quantified so a multi-axis sensor was defined as the best solution.  An Interface Model 6A68C 6-Axis load cell was installed in their existing test machine. The 6-Axis Sensor was intentionally oversized allowing the customer to measure the unidentified bending moments while preventing any damage. Data Acquisition and Amplifier BX8 was used to graph, log, & store the data collected at the sensor. Read more here.

Automotive Headrest Testing

When a manufacturer for automotive head rests wanted to test the durability of their products by conducting several fatigue tests and force tests on the head rests to make sure it meets durability and high-quality standards, Interface was able to help. The solution was to install Model 1000 Fatigue-Rated LowProfile™ Dual Bridge Load Cell to the customer’s actuator mechanism. This load cell is perfect for fatigue testing and reports highly accurate results through the fatigue cycling. The results are collected by using the SI-USB4 4-Channel USB Interface Module, which synchronizes the data directly from the load cell and the string pot (for measuring distance) to the customer’s computer. Using this system, the head rest manufacturer was able to get highly accurate data through the fatigue testing cycle. Watch the testing video in action!

 

Engine DynamometerEngine Dynamometer

Internal combustion engines are by far the most common power source for land vehicles. From a 2-stroke motor in a lawn mower, to a V-8 stock car engine, horsepower and torque are the benchmarks of engine performance. Engine manufacturers and aftermarket suppliers use an engine dynamometer (dyno for short) to accurately measure an engine’s performance. An engine dyno isolates an engine’s power output to help quantify its overall performance, applying a load directly to the engine and utilizing a load cell to measure the torque absorbed by the loading mechanism. Horsepower is then calculated using the torque and RPM of the engine. To conduct this test, a precision S-Type Load Cell is attached to a torque arm which “feels” the torque from the engine loading system. The Interface Model SSMF is a great choice because it is fatigue-rated for a number of fully reversed cycles and is environmentally sealed to withstand harsh environments. Utilizing the Model CSC Signal Conditioner provides a clear signal to a data-acquisition system. Using this test solution, the load cell reacts precisely with the amount of torque being produced by the engine and provides accurate signals to the data-acquisition system. Engineers are then able to analyze the power transfer for the engine and optimize for performance. Read more about this solution here.

For additional automotive solutions and use cases, go here.