Posts

Interface Multi-Axis Sensor Market Research

Recently, Interface commissioned an independent research report on multi-axis sensors demand and use cases. This is a product line that Interface has made significant investments in as more customers require increased load cell functionality and additional source data from their force sensors. The research results confirm that the current demand is in fact expanding worldwide, and the overall users and market size is expected to grow by double digits over the next six years.

Included below is a brief overview of the state of the multi-axis, as well as an explanation of their overall purpose and why the growth of this type of test and measurement device continues to increase in popularity. We will also continue to break out the results of this research paper, so tune into the InterfaceIQ blog for more multi-axis research content. To learn more about these advanced sensors, view our ForceLeaders webinar Dimensions of Multi-Axis Sensors.

Multi-Axis Sensors Market Overview: The rise of IoT and Industry 4.0 had enabled automation. Machines continue to get smarter and can make split-second decisions using real-time data. Force measurement plays a key role in this transformation. Load cells that are tracking performance and reliability have more insights than ever before. They will continue to grow in their accuracy and capabilities. Load cell and sensor technologies are being used to identify precisely when and where something went wrong on a production line. Load cells will be growing in playing a key role in making production lines more efficient, less reliant on human resources and less costly.

There has been increased need for multi-axis sensors that measure and collect data points on up to six axes. Multi-axis sensors were invented because of the increased requirements for data, both in testing and during actual product use. And this is not slowing down anytime soon. Over the next decade, load cells will continue to keep up with the demand to handle more measurement data points. More sensors will need to be packed into a single device to collect more data with less equipment.

Five Key Take-Aways from Interface’s Multi-Axis Market Research:

  1. There is a growing requirement for high-performance sensor fusion of multi-axis sensor systems to enable the newly emerging technologies and highly demanding applications.
  2. Advancements in technology enabling effective components at a lighter and smaller size, such as the swift rise of unmanned vehicles in both the defense and civil applications and the increasing applications based on motion sensing, are the factors driving the multi-axis sensor use cases for testing and to embed into products.
  3. Digitizing force sensors is another trend changing our product innovators and manufacturer’s designs of machines and equipment through advanced measurement data. Many have strongly invested in more advanced digital electronics to efficiently harvest and store more data. Revolutions in industries and technologies is the dominant trend in force measurement, not to mention the entire manufacturing and engineering industry. Harnessing big data enables product users to remotely monitor assets and increase use of analytics.
  4. With network-connected force measurement through sensors and instrumentation, OEMs have greater control over testing and product development. Equipment using multi-axis sensors to track performance and reliability provide valuable data on how equipment is performing and predict when machines need maintenance.
  5. Global machine makers and equipment builders want smaller force sensors they can permanently install in the products. Smaller, wireless sensors are easier and less expensive to install. As more industrial networks are created to share higher-quality data, more and more sensors will be added to these machines.

What: Multi-axis sensors allow the user to measure forces and torques, which occur in more than one spatial direction, as with measurements in x- and y-direction. This allows manufacturers to obtain more data on a wider variety of axes, allowing them to make better design decisions and ultimately improve the product quality. A crucial focus is force measurement in manufacturing, where force transducers are frequently used to determine the force for weight measurement or in the process of production.

Why? Data-driven test and measurement is at the forefront of product development, especially in highly regulated markets like aerospace, automotive, medical, and industrial. One of the most significant applications for multi-axis sensors is seen in manufacturing facilities who want to integrate more autonomy and robotic processes. The goal is to streamline logistics procedures and reduce human errors and workplace accidents. The report also found that there is a great deal interest for last-mile delivery robots, either on the ground, on the sea or drones in the air.

Interface’s Role: Interface multi-axis load cells are ideal for industrial and scientific applications. They are used by engineers and testing labs in various industries and market segments including aerospace, robotics, automotive, advanced manufacturing, for medical devices and research. Our products designed to provide the most comprehensive force and torque data points on advanced machinery. With our industry-leading reliability and accuracy, these multi-axis sensors can provide the data our customers need to ensure performance and safety in their product design.

In fact, their unique capabilities are helping the medical industry optimize prosthetic designs and usability standards with multi-axis sensor testing. The automotive industry is using Interface’s multi-axis products in wind tunnels, and the military is using them to test the center of gravity in aerospace applications.

Here are a few applications use cases that show how multi-axis is advancing products in multiple industries:

Wind Tunnel

Seat Testing Machine

Friction Testing

Industrial Robotic Arm

Ball and Socket Prosthetic

Prosthetic Foot Performance

Syringe Plunger Force Measurement

Research was conducted independently by Search4Research.

Interface and The Race to Space

Like many, we are celebrating some incredible milestones in the space industry this year. With every milestone, there is a long path of discovery, invention, and experience that creates these extraordinary moments.

The 53-year history of Interface is rich in experiences supplying force and torque measurement solutions to the engineers and innovators of space vehicles and the structures that support them. For decades Interface has supplied load cells, torque transducers, and multi-axis sensors of all sizes and capacities to the organizations that put the first man on the moon and to those that are pursuing the commercialization of space travel and colonization of other planets.

Our legacy as a reputable provider of sensor technologies has created a reliance on Interface products and expert calibration services. Our products have been and are used today in the development and flight qualification for the ascent and now descent of spacecraft, with rapid expansion and frequency. As we enter a new era of recoverable spacecraft, we are seeing more dependence on Interface as the supplier of the measurement devices used by these remarkable innovators, builders, and test engineers.

Why Interface? It comes down to reliability and accuracy, two extremely important measures of success in the launch and recovery of spacecraft.  These measures are also critical factors given the acceleration in space travel for both valuable cargo and with greater occurrences, humans.

Beyond the performance factors of precision force and torque measurement solutions that Interface engineers and manufactures, we are chosen by the steadfast leaders and new entrepreneurs in the space industries because of quality and our ability to customize our products to exact specifications.

You will find Interface products used in thrust testing, structural testing and even force gravity testing.  Every new test and launch inspire the Interface team to keep doing what we do. In fact, you can find our high-capacity and miniature load cells in use with future engineers and astronauts at universities around the world that are inventing new planetary exploration vehicles and rockets.  Learn more here.

Interface provides products that accurately measure thrust, which is critical in cargo lifting. Every test must be verifiably accurate due to the trustworthiness and safety requirements of moving the ever-increasing valuable payloads, which is beyond stellar communication technologies. It’s now about launching and returning humans, with frequency, in the new era of space travel.

Interface load cells are also commonly used in the production and development of launch structures.  These structures must withstand incredible forces during liftoff and return.

You can also find the Interface blue and stainless-steel load cells in the designs and for testing structures and aerodynamics for payloads of all types.

NASA’s Space Launch System (SLS) core stage is 27 feet in diameter and 200+ feet tall. Core components including liquid hydrogen and oxygen tanks must withstand launch loads up to 9 million pounds-force (lbf). Interface 1200 High-Capacity Standard Precision Low-Profile™ Load Cell Model 1260 for 600,000 lbf capacity, Model 1280 for 1,000,000 lbf capacity and Model 1290 for 2,000,000 lbf capacity were used in the design and testing of the structure.

Load cells were attached to hydraulic cylinders at various locations along test stands to provide precise test forces. Strain gages bonded to rocket structure surface and connected to data acquisition system for stress analysis. Read more here: /solutions/aerospace-industry/rocket-structural-testing/.

Exploring the possibilities of what you can measure?  Interface is here to support your vision and mission. Contact our experts to help you get exactly what you need to accurately measure your designs.

 

 

Solutions Provider for Aerospace & Defense

Interface has developed highly innovative force measurement solutions for a variety of complex and highly regulated industries. These industries require the most accurate and reliable test and measurement equipment on the market because bad data and unknown variables can spell disaster. This fact has never been truer than it is in the aerospace and defense sector.

For our worldwide customers in aerospace, Interface supplies a variety of sensor solutions, including load cells, tension links, load shackles, wireless instrumentation and more. And Interface is a proud supplier to some of the world leading manufacturing aircraft, spacecraft, military, and defense organizations such as the U.S. Government, NASA, Lockheed, Northrop Grumman, Raytheon, Bombardier, Embraer, Boeing, Airbus Gulfstream, Cessna and more of the world’s most prominent (and well known) rocket builders.

To further highlight our work in the aerospace and defense industry, we’ve also put together a case study outlining, in detail, some of the specific applications in which force measurement sensors can be used. The case study dives deeper into three specific applications highlighting the products used for aircraft wing fatigue, aircraft engine hoist, and parachute deployment and deceleration testing.

READ: The new Aerospace & Defense Case Study can be read in full here.

As a premier partner to these and many other leading global aerospace and defense companies, we’ve seen a lot of high-profile applications which require both off-the-shelf and custom manufactured force solutions. Our engineers and application experts partner with our customers to ensure they get the product that fits the exact requirements, weather it’s a submersible sensor or built for extreme compression and fatigue condition tests.

Our precision load cells have been used on thousands of different projects, both big and small. From aircrafts to ground vehicles and infrastructure, here are a few examples of the projects we’ve supplied various load cells, from jumbo to mini, various torque transducers, multi-axis sensors, customized load pins and as well as wireless telemetry testing systems:

ADDITIONAL RESOURCES:

Exploring Aerospace Force Measurement Solutions Blog

Launching into Orbit with Interface

Force Measurement for Space Travel

 

Faces of Interface Featuring Ginny Bradley

In today’s Faces of Interface, we’re introducing you to Ginny Bradley. As International Application Engineer, Ginny is responsible for supporting our Global Sales Network of distributors outside of the U.S. This includes distributors on every continent, from Asia to South America, and expanding in operations due to continued growth and demands for Interface products worldwide.

Ginny’s journey into the engineering and manufacturing world is quite different than her husband’s, Jay Bradley, who was featured in a previous ForceLeaders post. Now we are sharing the story of his equally brilliant wife of 33 years, and we’re excited to tell her story.

Ginny grew up as a military brat moving up and down the east coast of the United States, after living in Japan as a young child. Her father was a flight deck officer on an aircraft carrier, and due to her exposure to the world of aerospace, Ginny was always extremely interested in science, math, and technology. This led Ginny to pursue a degree in computer science, which eventually became her minor, and she graduated with a degree in accounting and business administration from the University of Central Florida.

After college, Ginny went to work for the nonprofit organization, Foundation for Senior Living. She began as a staff accountant and eventually was promoted to head of HR and accounting. Ginny spent 24 years with the Foundation for Senior Living and really enjoyed her time there. However, she was on call 24/7 due to the fast-paced nature and small staff typical of nonprofits, and eventually she felt it was time for a change.

Ginny took on contract accounting jobs for a few years and then began talking to her husband about Interface. She was always intrigued about his work at Interface because of her interest in math and science, so she decided to give it a shot when a position on our front desk opened 10 years ago.

Ginny’s propensity for learning had her right in the thick of the Interface world not too long after she started. She quickly moved into an accounting and sales role, followed by a data entry and sales role. Ginny picked up on the ins and outs of Interface and its customers, and soon she was asked to become an international application engineer.

In this role, Ginny is responsible for ensuring products and solutions are aligned with customer needs. Her math and science background, along with her interest in and exposure to the aerospace and defense industries, helped her quickly grasp the various Interface product lines and provide valuable advice to customers. She also has the special benefit of being able to lean on her husband, who is an experienced engineer, when she needs a little more technical detail. In addition, she can apply her accounting background to process large POs, help customers align pricing with their needs, and more.

As international application engineer, Ginny’s day is always engaging as she works with people from all over the world from Europe to APAC, including distributors in Germany, China, Canada, India, United Kingdom, Australia, and many others around the globe.

“My favorite thing about working at Interface is the ability to work with these customers directly and help them solve real-world challenges,” Ginny Bradley, International Application Engineer

In her free time, Ginny likes to spend time with Jay and their three children. She enjoys being hands on with various projects around the house including arts and crafts. She and Jay are currently renovating their home. Her absolute favorite pastime is adventuring around Northern and Southern Arizona with her best friend and going on wine tours. Their most recent big trip was a wine tour back East in the Finger Lakes area near where Jay grew up, and Jay accompanied them.

Now you know a little bit more about the Bradleys, our Interface dynamic duo! If you want to learn more about our outstanding team, check back in every month for a new entry about our ForceLeaders in our Faces of Interface Series.

To locate and contact any of our International Distributors, go here.

Faces of Interface Featuring Richard Snelson

Richard Snelson, president of Measurements Incorporated, is the leader of our outstanding manufacturers’ representative firm serving the Mid-Atlantic coast of the US. The origin of the company, that supports customers in this region with application solutions for structural, material, and environmental testing, is an intriguing story.

In this new Faces of Interface feature, Richard highlights one of his favorite projects and provides his thoughts on representing the most reliable and accurate force measurement products in the industry from Interface.

Richard grew up in Philadelphia, Pennsylvania, and was brought up hearing all about his ‘old man’ and the incredible work he got to do with customers across the technology landscape. His father and two partners started Measurements Incorporated in 1976. The company had spun out of another company called Micro Measurements. At that time, they sold a limited range of product lines to a wide range of customers. Some of the most memorable customers Richard would hear about from his dad included those that worked with bridges, battle tanks and even cadavers.

After high school, Richard attended Indiana University of Pennsylvania, where he would go on to earn a split degree in business, marketing, and management. During his college years, Richard also received a ton of career experience working multiple jobs. His summers were spent as a technician in the Princeton Plasma Physics Lab, where his role include working on a reactor. He also worked on the Brooklyn Bridge, replacing cables on the massive structure, as well as working for a friend of his dad in the oil and gas industry. These jobs not only put Richard through college, but they also exposed him to hands-on experience working with organizations and on projects like what his dad would talk about at home when he was growing up.

The experiences and incredible stories he was told throughout his youth pushed Richard to accept a role working for his father’s company. He started out selling one product line, XY plotters, to major test labs and facilities across the Mid-Atlantic. After finding a great deal of success, Richard was given the entire state of Delaware to sell every product line in the company’s portfolio. This eventually expanded into Pennsylvania and Maryland.

As he grew his expertise as a sales rep at Measurements Incorporated, Richard also began buying out the other two owners as they retired and eventually retained sole ownership of the company in 2003. Today the company carries an ever-expanding product line of test and measurement equipment and serves some of the most reputable organizations across multiple industries including, aerospace, defense, medical, industrial, and more.

I put myself in the customer’s place and offer a complete solution, sometimes reminding them of things they might not initially think of and the end result is that we are all successful.” Richard Snelson, president of Measurements, Incorporated.

Like his father, Richard has also collected many of his own fun, interesting, and sometimes incredibly nerve-racking stories. Among his favorite are the two times he was asked to head over to One World Trade Center to oversee installation equipment and then later assess a challenge with a sensor on the building’s enormous spire on the very top. Richard and few other men from the company charged with some of the tower’s maintenance and caretaking went up to the top together. During the assessment, Richard and the maintenance company’s president were tasked with repelling up the spire to identify and fix the sensor. Richard enjoyed an unforgettable experience and got a sweat-inducing picture in the process that you can see in his photo above!

Richard has a long-time relationship with Interface that began in 2006. He raves about the quality of the brand and the confidence he and his customers have in the accuracy and reliability of our force measurement sensors. He has great respect for the people he works with regularly, including his Regional Sales Director, Elliot Speidell. Richard often finds himself identifying the signature blue paint job on our load sensors during customer facility tours. He’s proud that he’s able to offer the industry’s leading force measurement solutions to some of the world’s most prominent organizations.

When he’s not dangling off one of the tallest buildings in the world or helping solve key customer challenges with a bevy of critical instrumentation, Richard enjoys time spent with family, his wife of 36 years Tracey, their two children Courtney and Derek, and their grandson Everett. The family loves to spend their time outdoors and can often be found sailing on the Chesapeake Bay.  Richard also enjoys recreational shooting and cruising around on his motorcycle.

We couldn’t have asked for a better partner in Richard and his team at Measurements Incorporated. We are happy to share his story. Looking for more Faces of Interfaces? Go check out our ForceLeaders here.

 

Load Shackles 101

A load shackle is a u-shaped, load-bearing connecting device designed to be used with a removable pin. Load shackles can be used in a number of different rigging and load securement applications to provide sensor technologies in the connection of different types of lifting slings, chains or ropes to an object or to each other.  A load shackle is essentially the installation of a load monitoring pin into the shackle body allowing you to replace existing rigging hardware with a load cell for force measurement and weighing data.

Load shackles are rugged in design and are used to provide accurate and reliable measurement of tensile loads, as well as support applications for harsh and challenging environments. The industries that most regularly take advantage of our load shackles include industrial, aerospace and defense, agriculture, and construction. Applications for lifting, moving and weighing objects can be monitored as well as optimized for performance using load shackles. They are often designed into engineered structures or for use with cranes, winches or other robust lifting mechanisms.

Interface offers a wide variety of load shackle designs for different environments and force measurement needs, ranging from 2.2K to 2205K lbf. Our load shackles come in both cabled and wireless, as well as environmental resistance options including flameproof and IP67. Visit our overview here.

Load shackles come in many standard shapes and sizes, including customization options to meet a specific design or use requirement. Some of our shackles are exclusively designed to meet the needs of applications in hazardous environments like the oil and gas industry, or marine industry where they’ll be submerged in water during testing and for continuous use, or in areas with high heat and flames. Some of our most popular load shackles are listed below:

WTSSHK-B Wireless Crosby™ Bow Load Shackle  – Suitable for use in a wide range of industrial and marine weighing applications, these load shackles are robust, reliable and easy to install. The unique telemetry housing is manufactured from tough high-performance polyamide resin making it strong yet light, resulting in a better-balanced load shackle when compared to others available on the market.

ISHK-B Bow Type Crosby™ Cabled Load Shackle – The Interface range of ISHK-B load shackles are designed for lifting and weighing in rugged or harsh environments, including submersible applications. The shackle pins are forged from high tensile stainless steel to 6.5 MT (14.3K lbf) and high tensile carbon steel from 9.5 MT (20.9K lbf), and are machined to an exacting specification. The basic shackle uses the Crosby G2130 (1 to 25 MT / 2.2K to 55.1K lbf), G2140 (40 to 120 MT / 88.2K to 265K lbf) and GN Rope H10 (150 to 1K MT / 331K to 2205K lbf).

Flame Proof Bow Type Crosby™ Cabled Load Shackle – The Interface range of flameproof load shackles is designed for lifting and weighing in rugged or harsh environments, and also meet the requirements for operation in Zone 1 and 2 hazardous areas. The shackle pins are forged from high tensile stainless steel and are machined to an exacting specification. The basic shackle uses the Crosby G2130 (1 to 25MT or 2.2K to 55.1K lbf) and G2140 (40 to 400MT or 88.2K to 882K lbf) series.

Load Shackle Application:

Load shackles are commonly used in the construction industry to measure heavy machinery. For cranes outfitted with a lifting attachment such as a claw, a tension sensing load shackle is used on the pulley mechanism to measure the weight lifted by the crane. The tension sensor can provide real-time data to the construction crew to help monitor the lifting process and provide the operator with the information necessary to refrain from lifting weights that are too heavy for the crane to handle. If the claw arm lifts more than the crane is able to withstand, the attachment could break off, or worse, the crane could topple over.

In a recent example, Interface’s customer used a WTSSHK-B Wireless Load Shackle connected to load-bearing strings and a WTS-BS-1-HA Wireless Handheld Indicator to gather data. The customer was able to successfully lift and read the weight (wirelessly) on a handheld display while the material was being relocated.

Learn more in this product video

To learn more about our wide variety of load shackles and their many applications, please contact our application specialists today.  You can see all of Interface’s Load Pins, Load Shackles and Tension Links here.

This post is part of our Interface 101 series where we provide a basic overview of the wide variety of product lines we offer here at Interface. In this series, we explain our force measurement product line and its benefits and then provide a few examples of our product’s in real-world situations. Here are some of our other popular 101 posts.

 

Load Pins 101

A load pin is a type of load cell that can replace bolts, clevis, sheave, and equalizer pins, as well as other load-bearing components to measure tensile and compression forces. Load pins are internally gauged with a bored center containing strain gauges, allowing them to convert force into an electrical signal for engineers to accurately collect data.

Most applications for load pins in the past have been for overhead equipment like cranes and lifts. Load pins have expanded in popularity and are now often used to test and measure force, load, and limitations in a much larger variety of applications. This includes uses not only for cranes and lifting devices, but also construction equipment, industrial machines, nautical craft and equipment, aerospace, and civil engineering applications. A primary system approach with structural applications is for safety and to prevent excesses in loading and lifting.

New model types with wireless and Bluetooth technology are also resulting in more use cases for these specialized force measurement solutions. This applies to both test and measurement as well as for installed OEM components within a larger structure or apparatus.

Top Load Pin Benefits

  • Easy to install new or retrofit
  • Robust construction
  • Replaces existing load bearing pins without any system modifications
  • Engineered to order designs available
  • Can be supplied with integral connector
  • Custom sizes and higher capacities available

Load pins come in many standard shapes and sizes, as well customization options to meet a specific design or use requirement. Interface provides these measuring devices, which often replace a bolt or pin, for safety and application monitoring. Some of our load pins are exclusively designed to meet the needs of applications in hazardous environments like the oil and gas industry, or marine industry where they’ll be submerged in water during testing and for continuous use.

The Interface Load Pins are machined from high tensile stainless steel and are suitable for exposed situations including seawater. We offer standard load pins with ratings between 1.1K lbf to 3.3M lbf (500kgs to 1500 MT). We also offer custom manufactured load pins suit applications from 100 kgs to 1500+ MT.

LP Stainless-Steel Load Pin – Great for lifting applications for both short and long distances. This product can be amplified with 5VDC, 10VDC or 4-20mA Outputs. It can also be made to meet ATEX requirements. Model LP Load pin is available in capacities up to 3,000,000 lbf (13.3 kN).

WTSLP Wireless Stainless-Steel Load Pin This advanced load can transmit wirelessly up to 600 (1,969 feet) meters in distance (clear line of sight) to a handheld display or USB base station.  The capacities range goes all the way up to 3,000,000 lbf (13.3 kN). The wireless option utilizes low power consumption for long battery life. It is configured and calibrated via PC using a base station and telemetry toolkit and compatible with Interface WTS Wireless products. The load pin is robust and uses a lightweight housing. It is environmentally sealed to IP67.

Load Pin Application

One of the largest scale applications of load pins we provided were used to measure force on a large bridge infrastructure project in the western U.S. The goal was to continuously monitor the standard force created by regular traffic, as well as the seismic force before, during, and after earthquakes. The monitoring sensors needed to be integrated into a dampener that would be attached to the structural tower.

The solution allows the company to monitor force from emitted data to cross-reference the standard traffic force with the seismic force to understand its effect on the bridge. Its purpose is to help with predictive maintenance and influence future bridge designs to better compensate for the forces of an earthquake or other natural disasters, which are common in this part of the world.

READ THE SEISMIC BRIDGE MONITORING APPLICATION NOTE HERE

READ THE INFRASTRUCTURE CASE STUDY HERE

The project required a custom product that could handle the inimitable and considerable force of a bridge under every scenario of distress. Engineers developed a custom load pin to handle the force of movement in the bridge in the event of an earthquake. This load pin was much larger than our standard version and is rated at 900,000 lbf. The large load pins were designed to be integrated into the dampener with wireless data acquisition modules connected to the load pins to allow for remote access to the data. With the integration of Interface’s custom load pins and data acquisition module, the customer was always able to continuously collect data for real-time evaluation. The sturdy construction of our load pins and 900,000 lbf rating allowed for readings during all degrees of seismic activity.

To learn more about our wide variety of load pins and there many applications, please contact our application specialists today.

Faces of Interface Featuring James Richardson

Born in Arizona but growing up in the rural area of Cotton City, New Mexico, James Richardson was only exposed to the opportunity of a career in engineering after moving back to Arizona. After graduating as his high school class Salutatorian in 1995, he started college in Eastern Arizona.

He later moved to Mesa in 1999 where he took a job working for his uncle at Dewitt Equipment fixing restaurant and cooking equipment like ovens, fryers and microwaves, and along with refrigeration equipment including air conditioning units, freezers, and ice machines. It was also during this time he learned to braze, solder and TIG weld.

At Dewitt, his on the job training for fixing equipment built up his foundation for engineering. The spark that really kicked it off came on a sweltering Arizona summer day when James was repairing an A/C unit on a restaurant’s loose gravel rooftop. The temperature was so high that the gravel began to sink, melting the soles of his shoes. At this point, James realized he enjoyed working with his hands and on advanced equipment; however, it was time to finish his formal education in engineering and pursue a job that included more time inside where there was ample air conditioning.

By this time James had already completed an Associate Degree at Maricopa Community College and he was about 18 months from completing a Bachelor of Science in Mechanical Engineering degree at Arizona State University. Completing this degree, he later earned a Master’s in Engineering Management from Ohio University. Towards the end of his bachelor’s degree, he got an internship at Honeywell Aerospace. His first job after earning his degree was with Enertron Inc., a leading provider of thermal management solutions for the aerospace, military, medical, telecommunications, and IC fab equipment industries. In this role, he designed heat sinks for circuit boards used for lasers, lighting and computers.

After three years with Enertron, he moved to Cleveland Electric Laboratories where he served as an applications engineer working on turbine engine instrumentation. This is where James got his first hands on experience with force measurement equipment. His job was to design instrumentation for strain, temperature, and pressure measurements. At one point he even designed a load pin for a customer.

In his role, he was also introduced to Interface. The company he was working for owned several Interface products and he became familiar with their high-quality and premium accuracy. Then in 2015, a headhunter called him out of the blue to offer him a chance to work for Interface. James was excited about the prospect of working for a company that put quality first. In fact, the thing that hooked him about Interface was the declared focus of “Quality is Our Driving Force,” and the fact that each of the four interviewers reiterated the importance of this statement in their interview.

James joined Interface as a production engineer. He remained in this role for about four years before being promoted to Senior Engineer, and then to his current role as Mechanical Engineering Manager where he leads a team of five other engineers. In this leadership position, James is responsible for overseeing development efforts for some of Interface’s most important product lines including the specialized 1923 and 1925 wireless custom solutions and our downhole products for the energy markets. James was instrumental in the latest new product release, the new ConvexBT Load Button Load Cell.

In addition to this critical role, James also loves to learn about the many ways that Interface products directly affect him and people close to him. This includes how measuring systems ensure the proper weight of food in nutritional planning and packaging, measurement of things like blood donations, and safety test systems for airplanes. The work done at Interface is incredibly important to everyday life and many people don’t even realize it.

In his free time, James can be found spending time with his wife of 21 years and their four children, two sons and two daughters. The family enjoys the outdoors together, partaking in activities like bike rides and hikes. He also brings some of his passion for engineering home. He’s intrigued by the possibilities of 3D printing and owns a printer himself. He’s designed and printed things like bowties, wallets, wall-mounts for various gadgets, and even toys for the kids. In case you missed it, the photo of James is his own 3-D printed bowtie. It was a big hit at the Interface holiday party.

Another interesting fact about James is that throughout his career he’s tried to connect with co-workers from different countries by learning their language. Throughout his life he’s learned a little bit of Polish and German, and is fluent in Spanish, which he learned while spending two years as a missionary in South America.

We asked James to describe his thoughts on his career in engineering in another language. He responded, “Un dicho o una frase que a mí me gusta pensar, cuando algo no sale buenisimo, es: “Siempre hay una manera mejor.” This translates to a saying or phrase that I like to think of when something doesn’t turn out great, “There is always a better way.”

To learn more about the ConvexBT, check out the datasheet here:

ConvexBT

Understanding Uncertainty in Load Cell Calibration

In force measurement testing, accuracy is the most critical factor in ensuring the data you collect can help to identify challenges, failures and opportunities in the product design and development cycle. Here at Interface, we have mastered the art of load cell accuracy by employing a vertically integrated manufacturing process that allows us to control the development of our products most critical components.

Even the most high-end manufactured load cells and finely tuned components endure accuracy degradation over continued use. Therefore, we have also invested in equipment and talent with deep expertise in load cell recalibration, as well as offering gold and platinum standard calibration systems to customers. Recalibration is recommended on an annual basis, or of course, whenever our customers feel they need to confirm they are getting the right data out of their load cells.

One of the key factors of calibration and recalibration is understanding how to estimate practical uncertainty in load cell calibration. Measurement uncertainty is defined as an estimate of the range of measured values within which the true value lies or, alternatively, the degree of doubt about a measured value. In every application, there will be an uncertainty requirement on the force measurement. The equipment used to make the measurement must be traceable to a realization of the SI unit of force (the newton) within this required uncertainty.

Each application is different in terms of its uncertainty requirement. For instance, an application testing force in the aerospace and defense or medical sector will include a much more stringent uncertainty requirement than something like a commercial scale used to measure someone’s weight or food. It is critical to understand the uncertainty requirement on the application to ensure the force measurement device used is calibrated to handle the project.

How does one go about estimating uncertainty in load cell calibration? The first thing to understand is the GUM, a guide to the expression of uncertainty in measurement. This guide establishes general rules for evaluating and expressing uncertainty in measurement that are intended to be applicable to a broad spectrum of measurements.

Next, we have included a list of different considerations, as we measure uncertainty here at Interface. These factors will help guide you as you determine uncertainty for yourself. This list includes:

  1. Determine what parameter is to be measured and the units of measure.
  2. Identify the components of the calibration process and the accompanying sources of error.
  3. Write an expression for the uncertainty of each source of error.
  4. Determine the probability distribution for each source of error.
  5. Calculate a standard uncertainty for each source of error for the range or value of interest.
  6. Construct an uncertainty budget that lists all the components and their standard uncertainty calculations
  7. Combine the standard uncertainty calculations and apply a coverage factor to obtain the final expanded uncertainty.

It is also important to consider the different methods of load cell calibration. There are three different methods, and each has an approximate feasible expanded uncertainty. The different calibration methods include:

  • Direct dead weight – this method is the best for accuracy at 0.005% uncertainty, but it is slow, and the equipment is space inefficient.
  • Leveraged dead weight – middle of the road for accuracy at 0.01% uncertainty, and slow and space inefficient.
  • Hydraulic force generation comparison – this method has reasonable accuracy at 0.04% uncertainty and is also the fastest and most space-efficient option.

The final point is the sources of error in calibration. Error is defined as the difference between the measured value and the true value. There is a long list of different factors that can cause error and increase uncertainty. These factors may include drift, creep, misalignment, or environmental factors such as temperature. To compensate for this, it is important to understand the various formulas that can be used to find the true value based on the given measurement and the various factors for error.

To learn more about uncertainty and the different ways users can address uncertainty and overcome it, please give us a call at 480-948-5555, or visit our website to contact our Application Engineers.

Contributor:  LaVar Clegg, Interface

Source: NCLSI Measurement Training Summit 2014