Posts

Interface Solutions in the World of Sports

With our headquarters in the golf capitol of the U.S., it is easy to see why Interface test and measurement solutions rank top for engineers and golf manufacturers to test the force of golf balls, range equipment, clubs, and even the carts that roam the course. But our sensor technologies have a much broader reach, in both sport and geography.

Why is force measurement so heavily involved in the making and designing of sports equipment? It is obvious even by definition; sports are considered an activity involving physical exertion and skill in which an individual or team competes against another or others for entertainment.

The physical exertion often utilizes some type of apparatus, device, tool, material, equipment, or gear that requires measurement of tension, compression, or rotation. Every sport differs and type of testing also will vary, whether from initial fatigue testing or actual designing sensors into the fitness equipment like a treadmill.

Our force measurement sensors are used across a wide variety of sports equipment to evaluate performance, lifecycle, durability, and quality.

Our specialty is building high accuracy solutions for the testing and monitoring of parts and total systems that move and create force, which is vital to makers and product designers of sports equipment and machines. Our force measurement solutions are ideal for stand-alone testing rigs, production equipment, as well as to embed in sports products in order to increase operability and reliability for end users.

Interface force measurement solutions are commonplace in sports gear and equipment R&D labs, design houses, manufacturer test and production facilities. The range of products we provide is as broad as the variety of sport categories, both individual and team. This applies to products used by consumers, as well as by professional athletes, trainers, and pro sport teams. We also collaborate with several engineers and manufacturers that build exercise and training equipment.

Interface has a history of providing our low profiles, s-types and miniature load cells for testing products used in individual sports such as running, weightlifting, mountain climbing, skiing, skating, bowling, fishing and cycling. We have created solutions that measure force and torque for gear used by competitive team sports including football, soccer, hockey, rugby, tennis, baseball, water sports and more. We have even seen an extended use in tools and equipment used in auto racing and even esports, who are using our sensors to test the actual gaming devices like brake pedals, driving gear and touch screens.

Interface is a global supplier of load cells, torque transducers, multi-axis sensors, and instrumentation for sport and fitness equipment. Here a few examples of where Interface solutions were used to influence the design, test, quality, and user experience.


Fitness Equipment Testing

A premiere maker of machines used in training and gyms around the world needs multiple load measurement systems for their different fitness machines. These machines included elliptical, leg press, rowing machine, and the cable machine to start. They want to ensure the machines functioning properly to prevent injuries. It can also be used for trainers who want to conduct strength and endurance tests.  A combination of products such as the WMCFP Overload Protected Sealed Stainless Steel Miniature Load Cell, SSB Sealed Beam Load Cells, and AT103 Axial Torsion Force and Torque Transducers. Paired with Interface’s proper instrumentation, the forces can be measured, graphed, and displayed during the testing stage. Read more about these solutions here.

Golf Club Swing Accuracy

Golfers undergoing training or practice wanted a system that will monitor and record their striking accuracy and swing movement. Interface created a custom made SSB Sealed Beam Load Cell that can be attached in line with the golf handle. When a golf ball is struck, force measurements are recorded, logged, and graphed using the WTS-AM-1E Wireless Strain Bridge Transmitter. The results transmit directly to the WTS-BS-6 Wireless Telemetry Dongle Base Station when connected to the customer’s PC or laptop. Using this solution, the customer was able to successfully record, graph, and log a golf player’s striking accuracy and swing movement with Interface’s wireless force system. Read more here.

Mountain Bike Load Testing

A mountain bike manufacturing company wanted a system that measures their bike frames load capacities and vibrations on the frame. They want to ensure the bike’s high quality and frame load durability during this final step of the product testing process for their future consumers. Interface suggested installing Model SSMF Fatigue Rated S-Type Load Cell, connected to the WTS-AM-1E Wireless Strain Bridge, between the mountain bike’s seat and the bike frame. This will measure the vibrations and load forces applied onto the bike frame. The results will be captured by the WTS-AM-1E and transmitted to the customer’s PC using the WTS-BS-6 Wireless Telemetry Dongle Base Station. With this system, the mountain bike manufacturing company was able to gather highly accurate data to determine that their bikes met performance standards through this final testing. Learn more here.

 

Golf Ball Tee Testing Machine

A customer wanted to ensure their golf ball automatic tee mechanism is working for their consumers- both buying their tee’s for home use or for golfing ranges. They needed a system that will sense the presence of a golf ball, which will trigger and automatically dispense new golf ball to the tee. Interface’s WMC Sealed Stainless Steel Miniature Load Cell was installed within the golf tee, which would measure the golf balls pressure on the tee when loaded or unloaded. This load cell is electrically connected to the motor which initiates the cycle to release another ball onto the tee. Force measurements can be measured using the 9330 High Speed Data Logger when connected to the customer’s PC or laptop. With Interface’s products, the customer was provided a force solution that was able to measure the presence of a golf ball on their auto-tee machine. Get more information here.

These are just a few examples of Interface’s work in the sporting goods and fitness industry. If it moves, rotates, pushes, or pulls, chances are that Interface has a solution that can help perfect the performance. To learn more about our work in sports and consumer goods.

ADDITIONAL RESOURCES

Interface Measures Fitness Equipment with Extreme Accuracy – Case Study

Why Product Design Engineers Choose Interface

Race Car Suspension Testing

CPG Treadmill Force Measurement

CPG Gaming Simulation Brake Pedal

CPG Bike Power Pedals

CPG Bike Helmet Impact Test

Mountain Bike Shocks Testing

Fine-Tuning Testing Solutions for Championship Racing Vehicles

Interface Entertainment and Amusement Industry Solutions

The special effects of a movie or the thrills you experience on a roller coaster take a lot of engineering work behind the scenes. Force measurement plays a major role in the design, development, testing, manufacturing, and maintenance of equipment used in creating entertainment and amusement features.

Interface load cells, torque transducers and instrumentation are used when quality, safety, and durability matters. You see our products used in a variety of entertainment and amusement industry solutions. This includes testing gaming simulation devices, monitoring outdoor stage equipment, designing interactive displays, operating lifting equipment, testing film drones and cameras, as well as for designing amusement rides and theme park robotics.

The part engineering plays and use of sensor technologies has grown significantly over the years in the entertainment and amusement industry. The expertise and products propel the machinery that delights audiences, while keeping purveyors, operators, and consumers safe.

Interface offers force measurement products for testing, monitoring, and embedding sensors into products by makers for various equipment used in theatre, film, video gaming, television, theme parks and entertainment venues, as well as creating spectacular multimedia attractions.

With the entertainment industry’s growth into many different submarkets, Interface’s deep range of load cells and other sensor products are used for quality testing and accurate data collection. Beyond our standard products, Interface’s experts often collaborate with specialty engineers to design customizable measurement solutions for unique applications in the entertainment industry. Interface offers highly accurate sensor systems to ensure safety and eliminate risks when building and maintaining equipment used by industry professionals.

In our industry solutions, we’ve outlined how Interface is taking part in the entertainment markets. Learn about the products and application examples that demonstrate how engineers in the entertainment industry take advantage of our robust force measurement catalog.

Entertainment Applications Using Interface Measurement Solutions

  • Display Equipment
  • Cranes and Lifts for Rigging
  • Animatronics
  • Amusement Park Rides
  • Stage Equipment and Design
  • Touch Screens and Monitors
  • Theme Park Robotics
  • Drones for Videography
  • Camera and Multimedia Equipment
  • Outdoor Festival Wind Monitoring
  • Stunt Devices
  • Operating Equipment and Machines
  • Set and Venue Designs
  • Equipment Safety Monitoring

Drone Videography

A videographer team wanted to ensure the propeller motors compensate for weight shifting or uneven weight distribution of the video camera being attached when they film landscapes and other aerial shots. Four Interface WMC Sealed Stainless Steel Miniature Load Cells were installed to the necessary propeller motors to compensate for an uneven weight load. The WMC’s measure the weight of the film camera attached and detect weight shifting or uneven weight distribution of the video camera. The four WMC load cells accurately measured the payload weight and maintained stability of the propeller motors to when the drone was in air with the attached film camera. This information was communicated to the drone’s on-board processor for monitoring and recording this information during flight. More information is available here.

Entertainment LED Screens

A customer constructing a huge venue wanted to weigh their extremely large LED display screens. They also wanted to measure the force of the structure that is supporting the screens, to ensure stability and structural integrity. Interface suggested their LW General Purpose Load Washer Load Cells being assembled within rods that are part of the support structure. The LED screen hangs off the structure, which connects to the rods. The compression forces applied to the rod will be measured by the LW’s installed in between. The load washers are paired with WTS-AM-1E Wireless Strain Bridge Transmitter Modules, where the force results are wirelessly transmitted to both the WTS-BS-1 Wireless Handheld Display for Unlimited Transmitters and the WTS-BS-4 Wireless Base Stations with included Log100 software. Interface’s wireless load washer system successfully weighed the forces of the large LED screen for the customer’s new venue. Learn more.

Gaming Simulation Brake Pedal

A gaming company wanted to switch from the standard racing pedals to a load cell based pedal system for their racing simulation game. Compared to the standard racing simulation pedals, load cell pedals are more advanced and offer more accurate results. They also wanted a wireless system that will measure the strength of the pressure received by the pedals that will detect the perfect amount of braking power. Interface’s BPL Pedal Load Cell was installed onto the gaming brake pedal to measure the force applied when someone puts their foot on it. Forces were measured and recorded using the WTS-AM-1E Wireless Strain Bridge Transmitter Modules, where data is transmitted to the WTS-BS-6 Dongle Base Station when connected to the customer’s PC or laptop. Interface’s BPL Pedal Load Cell measured and recorded the pedal forces applied to their racing gaming brake pedals. In comparison to traditional simulation pedals that measure the distance of the pedals when pressed, Interface’s load cell pedal system provided a more realistic experience for gamers. Read more.

Interface enables incredible innovation across industries and the entertainment world is no different. We’re proud to help customers create incredible experiences and find new ways to captivate audiences. To learn more about our work in the entertainment industry here.

Entertainment-Brochure

ADDITIONAL RESOURCES

Gaming Hardware Benefits from Force Measurement Solutions

Why Product Design Engineers Choose Interface

Protecting Ultra HD Monitors

Robotic Arm Animated Application Note

 

Gaming Hardware Benefits from Force Measurement Solutions

When you think of the video game industry, hardware doesn’t quite get the same attention as the games themselves. Yet, the virtual environments and the software development that goes into creating one of the largest entertainments and now sporting sectors in the world, only operates when you have good hardware solution.

Whether it is the monitor, gaming chair, keyboard, controller, or computer, they all need to endure the enthusiasm of active and competitive gamers. This means each device must go through rigorous testing in the lab before it is ever released to the consumer.

Interface provides a variety of test and measurement solutions for gaming hardware manufacturers, from precision load cells of large and small sizes to wireless instrumentation and digital output modules for integration into simulation components.

One of the most popular gaming genres in the world is racing. It has elevated from single user experiences to the growing and ultra-competitive eSports phenomenon. The physical hardware of gaming pedals, chairs, and steering devices that a gamer uses to move and break the car in a virtual world is critical to creating a true experience.

As an example, the player expects the pedal to provide the feedback and feel of a real race car to not only immerse themselves in the game, but also to improve their performance and accuracy. To create a high-quality gaming pedal, sensors are used in the design engineering and manufacturing of these devices.

Load cells are a key component of a gaming brake pedal. In development and product design, force measurement testing utilizes load cells to help gaming pedal manufacturers perfect the amount of force needed to slow or stop a virtual car in various situations. It also is a benefit for testing durability and reliability.

Testing is also just one application of force measurement. These same sensors are carried over into the actual manufacturing process. Load cells are often integrated into the design of the gaming pedal to measure force in real time during play. This type of OEM solution enhances the overall gamer’s experience because it helps to improve performance of the pedal.

Interface develops a wide variety of highly accurate and reliable force measurement sensors for these types of applications. In addition, we also provide wireless strain bridge transmitters and data acquisition devices, as well as the software needed to create an entire force measurement system for measuring gaming pedals. In fact, we recently had the opportunity to develop a system that would measure brake pedals used for virtual racing.

Included below is an application note we put together to demonstrate the type of system we can develop, as well as the process used to help our customer develop a premium gaming brake pedal.

GAMING SIMULATION BRAKE PEDAL

When a gaming company, our customer, wanted to switch from standard racing pedals to a load cell based pedal system for their racing simulation game, they turned to Interface. Compared to the standard racing simulation pedals, load cell pedals are more advanced and offer more accurate results. Their goal was to find a wireless system that measures the strength of the pressure received by the pedals that will detect the perfect amount of braking power.

Interface provided a BPL Pedal Load Cell, which can be installed onto the gaming brake pedal to measure the force applied when someone puts their foot on it. Forces are measured and recorded using the WTS-AM-1E Wireless Strain Bridge Transmitter Modules, where data is transmitted to the WTS-BS-6 Dongle Base Station when connected to the customer’s PC or laptop.

Using Interface’s BPL Pedal Load Cell, the customer was able to measure and record the pedal forces applied to their racing gaming brake pedals. In comparison to traditional simulation pedals that measure the distance of the pedals when pressed, Interface’s load cell pedal system provided a more realistic experience for gamers.

The applications for Interface load cells grow larger every year. Hardware manufacturers want more data to help improve their products and confirm their designs through test and measurement. Interface is proud to be the world’s leading provider of the most accurate and reliable sensors. From gaming to farming and everything in between, chances are Interface has a solution for that can fit your exact requirements. If we don’t, we have the expertise to work directly with our customers to help develop a custom solution that is guaranteed to fit!

To learn more about Interface and wide range of products and systems built for nearly every industry, call to speak to an application engineer to discuss your next project at 480-948-5555.

Load Cells for Consumer Product Applications

Typically, when engineers talk about load cells and their multitude of uses, it is assumed the applications are large-scale industrial projects like airplanes, rockets, and automobiles. However, did you know Interface load cells are regularly used for research and development (R&D), manufacturing, and end-of-line testing for countless consumer products?

Force is one of the most critical pieces of measurement in product development. This is especially true for consumer products that we interact with every day. Load cells are the tools that ensure products feel, handle and react the way they should in a consumer’s hand.

Here are a few examples showcasing how load cells touch almost everything the consumer touches.

A perfect example of a consumer product where force measurement plays a critical role in human interaction is in the abundance of numerous touch screens. Load cells are used in the R&D process to measure the accuracy, pressure, and sensitivity of the touch screen consumer interacts with on a minute-by-minute basis. The little things we don’t think about when using a tablet or smartphone, such as the smooth feeling of scrolling through social media pages, is possible because of testing using a load cell.

Another common consumer application type of load cells being used to improve product feedback and interaction is with simulation programs. High-end flight simulators often use load cells to measure the force of haptic feedback on the joysticks or chair when interacting with a flight simulator. The feeling of drag or rough winds a pilot experiences in a simulation is measured and refined for accuracy using a load cell.

Load cells are also an integral part of the manufacturing process for consumer goods. If you’ve ever seen a piece of candy with a logo stamped on it, chances are high a load cell was involved in determining the level of force to apply an exact brand stamp. Load cells are used on the stamping machine to ensure the right amount of force is used to apply the logo without crushing the candy.

In the food and drug industries, load cells are used in manufacturing facilities and on a wide variety of packaging machines. They are used for ultrasonic welding, which is the sealing process for plastic, paper or fabric shopping bags, garbage bags, and diapers. Potato chip assembly lines use load cells to weigh the bags as they fill them with chips to know when to stop and move on to the next bag. And the same stamping process used for candy in applying labels is used on pills.

Companies also incorporate load cells in end-of-line product testing. Furniture often goes through rigorous testing to ensure reliability. The furniture has various loads applied to it to confirm it can hold heavier weights over time, the furniture can also be bent and flexed to check the quality of the materials.  To reduce waste and ensure product quality, many consumer bottles use a torque transducer for end-of-line testing to test the proper cap implementation.

Batteries are another consumer product that goes through R&D and end of line testing to measure the force needed to damage the casing.  This is used to eliminate poorly designed and assembled batteries, as the acid inside can do immense harm if a child or adult is able to accidentally crush one.

Force measurement is also something that plays a role directly in the products we use. For instance, scales we use to weigh ourselves, food, and more, have load cells in them. Racecar gaming brake pedals are another example. High-end racing simulators need their brake pedal to be very accurate at measuring the amount of force applied to it to react as a real car would. Load cells are implemented in the base to provide accurate force readouts to the simulator in real-time.

Most products we all interact with every day have had some force testing or are currently using a sensor to manage its use and reliability.  Other consumer products that use Interface load cells, in all capacities and models, include treadmills, skis, bicycles, coffee makers, gaming brake pedals, boats, golf balls, desk drawers, guitars and robotic vacuums. And that is just to name a few.

Load cells and other force measurement tools like torque transducers are an integral part of developing, testing, and manufacturing reliable and accurate consumer goods. Think about this the next time you are handling your smartphone or carrying in groceries from the store. None of it would be possible without the use of force measurement equipment.

Contributor:  Kim Williams, Business Development Manager at Interface