Posts

Interface Manufacturing and Production Solutions

Force measurement is integral to advanced manufacturing systems, especially when it comes to how this technology is used in production lines. Force sensors are utilized in both testing and monitoring of a wide variety of machines to ensure accuracy and repeatability throughout the production line. These sensors are also used by production line engineers in the design and development of systems used to ensure accuracy in measurements of force, weight, compression, and torque as products and components move throughout the line, including distribution.

Watch how Interface provided an industrial automation solution for small pallets used in the distribution of manufactured products. In the video, we highlight a request for a pallet weighing solution to use in their warehouse to monitor their products and goods 24/7. They need to use sensor technologies to verify if any products are missing based on the weight, and able to determine pricing for their goods based on the weight.

Interface works with a large range of manufacturers and equipment makers to improve quality and productivity by supplying high-performance measurement solutions. From using miniature load cells to apply the exact force needed to press a brand identity onto fragile consumable, to using multi-axis sensors for verifying performance data when making intricately machined parts, Interface products are commonplace in manufacturing and production.

In fact, Interface offers manufacturing and production standard off-the-shelf, engineered to order and complete OEM solutions including load cells, instrumentation and weighing devices. Our products provide the quality and durability necessary within industrial environments. In addition, we can customize the majority of our products to fit unique and evolving needs as sensor technologies like robotics and advanced manufacturing devices are integrated into production lines.

Load cells are frequently used in monitoring equipment. Interface can custom design force sensors to be installed directly into product for monitoring certain forces in real-time, including for use in industrial automation robotics. This is particularly popular in manufacturing because you can monitor equipment to understand when it may be out of alignment and needs to come down for repair, rather than risking a disruption in production. This is particularly important in automated production lines because it gives engineers and extra set of eyes on machines and improves efficiency overall by reducing downtime.

One of the unique use cases for load cells used for monitoring is in weighing materials held on pillow blocks bearings. Pillow block bearings, or similarly constructed bearing, are used to carry rolled materials or conveyor belt. Interface’s new PBLC1 Pillow Block Load Bearing Load Cell can be placed underneath the bearing to measure the weight of whatever material is being held up. These types of bearing are often found in machines with similar type of bearing are used on conveyor belts moving products down a production line.

Manufacturing Feed Roller System

A customer has a feed roller system and needs to monitor the forces of both ends of the rollers, in order to maintain a constant straight feed. They would also prefer a wireless system. Interface came to the rescue with our Pillow Block Load Cells and WTS Wireless Telemetry Systems. Interface suggests installing two PBLC Pillow Block Load Cells at both ends of the bottom roller to measure the forces being applied. The forces are measured when connected to WTS-AM-1E Wireless Strain Bridge Transmitter Module. The data is then transmitted wirelessly to the WTS-BS-6 Wireless Telemetry Dongle Base Station and the WTS-BS-1-HA Wireless Handheld Display for multiple transmitters, where data can be displayed, graphed, and logged on the customer’s computer.

Production Line Conveyor Belt Adhesion Test

A customer wants to test the adhesion strength in between the many layers and textiles of a conveyor belt. They want to conduct a separation test from the rubber of the conveyor belt from the other layers. They would also like a wireless solution. Interface’s SMA Miniature S-Type Load Cell is installed in the customer’s tensile test load frame, where it measures the forces applied as the test is conducted and the layers are pulled and separated. When connected to the WTS-AM-1F Wireless Strain Bridge Transmitter Module, the data is wirelessly transmitted to WTS-BS-5 Wireless Analog Output Receiver Module with nV output. The WTS-BS-5 can then connect to the 9330 Battery Powered High Speed Data Logging Indicator to display, graph, and log the data with supplied BlueDAQ software.

Industrial Automation Robotic Arm for Production

A manufacturer of a robot arm needs to measure force and torque when the arm picks up and places objects. The manufacturer needs a wireless system to accomplish this in order to log the measurement results. Interface supplied Model 6A40A 6-Axis Load Cell with Model BX8-HD44 Data Acquisition/Amplifier.

Interface force sensors can be used in a number of ways within the manufacturing industry across a variety of applications for the test and monitoring of machines and production lines.

ADDITIONAL RESOURCES

Force Measurement Solutions for Advanced Manufacturing Robotics

Robotics and Automation are Changing Modern Manufacturing at Interface

Vision Sensor Technology Increases Production Reliability

Industrial Automation Brochure

Weighing Solutions Brochure

Smart Pallet Solution

Interface Solutions for Safety and Regulation Testing and Monitoring

Electrical Engineers Choose Interface Sensor Technologies

Interface is a premier provider of force, torque and weighing solutions to electrical engineers around the world who are responsible for creating new products, solving problems, and improving systems.

Electrical engineers vary in specialization and industry experience with responsibilities for designing and testing electrical systems and components such as power generators, electric motors, lighting systems, and production robots. They use their expertise and knowledge of electrical systems and components to design, develop, assess, and maintain safe and reliable electrical systems. There are many electrical engineers who work on complex systems and who are responsible for troubleshooting and diagnosing problems that may arise.

The electrical engineers whose primary focus is research and development look to create new electrical technologies and advance existing systems. Projects related to renewable energy, smart grids, wireless communication systems, and electric vehicles utilize all types of measurement solutions throughout all phases of their R&D. Accuracy of testing is essential for electrical engineers, to ensure components comply with safety regulations and industry standards.

How does an electrical engineer use sensor technology for testing?

Sensors are a critical tool for electrical engineers in testing and optimizing the performance of electronic devices, systems, and processes. The type of sensor used, and the specific testing application will depend on the needs of the project or product, including the following examples.

  • Structural testing: Sensors are used to measure the structural integrity of materials and components. Load cells convert force or weight into an electrical signal that can be measured and analyzed. For example, Interface’s standard load cells are frequently used to measure the amount of strain or deformation in a material under load, which can help electrical engineers design stronger and more reliable structures. See how Interface’s products were used in an EV battery structural testing project.
  • Process control: Sensor technologies, including load cells and torque transducers are frequently utilized in manufacturing processes to monitor and control various parameters. Electrical use this data gathered through various instrumentation devices to ensure that the manufacturing process is operating within the desired parameters and to optimize the process for efficiency and quality.
  • Environmental testing: Environmental sensors are commonplace for measuring temperature, humidity, pressure, and other environmental factors. Electrical engineers can use this data to test and optimize the performance of electronic devices and systems under various environmental conditions. Read Hazardous Environment Solutions from Interface to learn more.

Electrical engineers use load cells in a variety of applications, such as measuring the weight of objects, monitoring the force applied to a structure, or controlling the tension in a cable or wire. The choice of load cell will depend on the specific application and the requirements for accuracy, sensitivity, and capacity. Electrical engineers must also consider factors such as environmental conditions, installation requirements, and cost when selecting a load cell.

Electrical engineers work in a wide range of industries and sectors, as their expertise is required in many different areas of technology and engineering. Interface has supplied quality testing devices and components to EEs in every sector, from electronics to construction.

Electrical engineers in the electronics industry use Interface products in designing and developing components such as microchips, sensors, and circuits. Demands for intrinsically safe load cells and instrumentation come from electrical engineers that are responsible for designing, maintaining, and improving power generation and distribution systems, including renewable energy systems such as solar, wind, and hydropower.

More than any time in Interface’s 55-year history, electrical engineers who work on a variety of aerospace and defense projects, are using Interface sensor products for designing and testing avionics systems, communication systems, and navigation systems.

We also continue provide electrical engineers who engage in designing and developing the electrical and electronic systems in vehicles, including everything from powertrains and engine management systems to infotainment systems and driver assistance technologies with new and innovative force measurement solutions.

Manufacturing electrical engineers who engage in designing and optimizing manufacturing processes, as well as designing and evaluating the electronic components and systems used in manufacturing equipment are frequently using Interface sensors. This includes the rising demands for sensors in robotics.

Electrical engineers across many different industries depend on Interface, just as all the companies and organizations around the world depend on their expertise. Interface is a proud partner of engineers across all disciplines.

ADDITIONAL RESOURCES

Interface Celebrates Engineers

Interface Solutions for Production Line Engineers

Quality Engineers Require Accurate Force Measurement Solutions

Interface Solutions for Material Testing Engineers

Why Civil Engineers Prefer Interface Products

Why Product Design Engineers Choose Interface

ForceLeaders Summit in Huntsville

Interface ForceLeaders Summit 2023 will take place in Huntsville, Alabama, on April 20 at the Huntsville Marriot at the Space & Rocket Center. Experts will share valuable insights, tips, product demos, and applications for load cells, transducers, new sensors, instrumentation and more. Registration is required.

Testing Lab Essentials Webinar

Interface experts will detail standard measurement devices that are essential to all testing labs. They will highlight calibration standards and calibration grade equipment, along with instrumentation and data acquisition systems. What types of equipment do you need in the lab to meet the testing demands of today and in the future? Join us to learn more about equipment, best practices, tips and frequently asked questions.

Interface Solutions for Production Line Engineers

Due to the influence of IoT, AI and big data, the role of production line engineer has become far more critical as manufacturers demand peak efficiency. These engineers need to stay current in automation technologies used to design, build, and monitor a production line for the benefits of decreasing speed to market, lowering costs, and improving outputs at the highest quality standards.

Among the many software and hardware solutions these individuals must also understand connected sensors are among the most important. Sensors are the nervous system of an automated production line, telling which machines must perform certain tasks, when, and how. They are a source for smart factories and smart manufacturing.

Sensors modernize manufacturing, assembly, and production lines by enabling real-time monitoring and control of the production process.

Measurement solutions provide accurate data on production parameters such as temperature, speed, pressure, force, and other relevant variables, which can then be used to optimize the production process, detect, and resolve problems in real-time, and prevent downtime. Additionally, sensors can be integrated into industrial IoT systems to provide valuable insights and analytics that can help manufacturers make data-driven decisions.

One of the sensor types that play a key role in these automated production lines are force sensors. Force sensors can be used by production line engineers across several different facets of an automated line. When designing a manufacturing line, there are quite a few factors that go into the full system. This includes process monitoring, quality control, predictive maintenance, energy management and inventory management. Force sensors play a role in each of these types of data points and processes.

For instance, a production line engineer can install sensors onto a machine that outputs a great deal of torque and monitor that torque to ensure the components creating that force are running smoothly, or if there are certain indicators that say it needs to be pulled off the line briefly for maintenance. When products on the line trigger certain force parameters such as weight, this can also tell the automated production line it is ready for the next stop in the process. Production line engineers design these lines around the sensing capabilities available and connected force sensing products have made a major difference in helping things become more efficient.

There is another automated process that also requires force sensors that is used as part of a manufacturing line, or as a standalone system – robotics. Production line engineers are doing a great deal of research and development into robotics to automate process that are repetitive, or far too delicate for human hands. Force sensors, in this use case, are used in both the testing of robotics to ensure accuracy or developed into the robotics to monitor certain functions over time.

Robotics can improve assembly and production processes, leading to higher efficiency, improved quality, and reduced costs. As technology continues to advance, the use of robotics by production line engineers in assembly and production is likely to become even more widespread.

Here at Interface, we have a great deal of experience in developing solutions for industrial automation and manufacturing lines. We have developed a few application notes to outline how production line engineers use our sensor solutions and force measurement products.

6-Axis Force Plate Robotic Arm

A customer wanted to measure the reaction forces of their robotic arm for safety purposes. The reaction loads occur at the robotic arm’s base; therefore, they needed a force measurement system at the base of the robotic arm. Interface suggested using their force plate option to install at the base of the robotic arm. Four 3-Axis Force Load Cells were installed between two force plates, then installed at the bottom of the arm. This creates one large 6-Axis Force Plate. The sensors force data is recorded and displayed through the two BX8 Multi-Channel Bridge Amplifier and Data Acquisition Systems onto the customer’s PC or laptop. Interface’s 6-Axis Force Plate was able to successfully measure the reaction forces of the customer’s robotic arm. Read more here.

Press Load Monitoring

Press forming is a method to deform varied materials. For instance, materials such as steel can be bent, stretched, or formed into shapes. A force measurement solution is required to monitor the forces being applied by the press forming machine. This ensures quality control and traceability during the production process. For large press forming machines, Interface recommends installing the 1000 High-Capacity Fatigue-Rated LowProfile™ Load Cell. When the material is placed under the punch plate to form a shape, the force applied is measured by the 1000 Series Load Cell. The force results captured is sent to the INF-USB3 Universal Serial Bus Single Channel PC Interface Module, where results can be graphed and logged on the customer’s PC with provided software. Interface’s force measurement products and instrumentation accurately monitored and logged the force results of the press force machine, ensuring zero-error production performance. Learn more about this application here.

Snack Weighing and Packaging Machine

A snack manufacturing brand wanted to weigh the amount of their snacks that is automatically dispersed into the bags during the packaging process. In this case, they wanted to weigh their potato chips being packaged. The company also wanted to ensure the potato chips are at the exact weight needed due to regulatory standards to be distributed out to consumers in the public. Interface’s solution was to use multiple SPI Platform Scale Load Cells, and install it to the potato multi-head weigher and packaging machine. The SPI Platform Scale Load cells were installed inside of the mount that attaches the head weigher to the packaging machine. Force results from the potato chips were read by the load cells and sent to the ISG Isolated DIN Rail Mount Signal Conditioner, where the customer is able to control the automated production from their command center. Using this solution, the customer was able to determine the weight of the potato chips being distributed into their bags with highly accurate results. They also were able to control the automated production process with the provided instrumentation. They will use this same weighing method for other snacks that need to be packaged. Read about the solution here.

Production line engineers turn to Interface due to our quality, accuracy, and reliability. Our products are used to test, monitor in real time, and created automated processes within a manufacturing line. As automation and robotics grow, you will continue to see new applications for sensors in this sector.

ADDITIONAL RESOURCES

IoT Industrial Robotic Arm App Note

Quality Engineers Require Accurate Force Measurement Solutions

Vision Sensor Technology Increases Production Reliability

Force Measurement Solutions for Advanced Manufacturing Robotics

Robotics and Automation are Changing Modern Manufacturing at Interface

Industrial-Automation-Brochure-1

 

Data Acquisition Systems 101

Engineers and testing professionals use data acquisition systems to enable smart decisions. The data retrieved through DAQ systems empower users to identify points of failure, optimize performance, and create efficiencies in products and processes.

When it comes to measuring force, the accuracy and reliability of the sensor is a critical component to receiving quality data. The data acquired from measurement devices, including load cells, torque transducers, and other types of force sensors, is valuable for product development, research, and robust testing to ensure performance and durability of all types of innovations. Ultimately, utilizing precision-based data provides enhanced control and response for all types of applications and use cases. Interface provides a wide range of data acquisition instrumentation that is easily paired with our force measurement products.

By definition, a data acquisition system is a collection of components used to acquire data via analog signals and converting them to digital form for storage, research, and analysis. Data acquisition systems, also called DAQ systems, typically are made up of sensors, signal conditioners, converters, plus computer hardware and software for logging and analysis. Interface experts are available to help pair the transducers with the right instrumentation.

The data acquired through the measurement device is only useful if it is logged for analysis and traceability. This is where instrumentation, in particular DAQ systems come into play, in not only transferring data, but also obtaining the right type of data in a format and data transfer method that works with existing user systems.

Data acquisition that utilizes analog output has long been the standard in the industry. As new requirements for use cases and applications grow, test and measurement professionals and engineers find these systems advantageous because of the lower cost, easy integration, and scalability. They also like the advantage of daisy-chaining multiple sensors together on a single cable run to maximize the amount of data through single tests. More data improves the quality of analysis and monitoring.

Advancements in sensor technologies coincide with growing demands for digitalization and to gather more testing data. This is seen using multi-axis sensors, along with requirements for multi-channel acquisition that can integrate into existing systems already designed with specific digital connections and protocols.

In addition to improving speed of data output, acquisition systems offer an abundance of value-added benefits. This is primarily due to the digital signal, as they are less susceptible to noise and are more secure. The systems also typically have built in error detection. Digital signals are best for transmitting signals across longer distances or when you need to allow for simultaneous multi-directional transmissions. Many people like the ease of integration, both into existing networks as well as with other testing devices.

Data acquisition systems and accessories come in many shapes and sizes, wired and wireless and there are also a handful of different software options in different systems. All these various products such as digital instruments, input and output modules, cables, monitors, and accessories. Interface offers a range of DAQ products, including full systems including the sensors.

Interface Complete Data Acquisition Systems

BlueDAQ Data QA Pack

Force sensors can easily connect via the BlueDAQ Family Data AQ Pack for fast and accurate data acquisition. This solution provides a convenient way to view the test results from transducers including single axis, dual axis, 3-axis, and 6-axis multi-axis sensors. Check out our BX8-HD44 BlueDAQ Series Data Acquisition System for Multi-Axis Sensors with Lab Enclosure.

T-USB-VS Rotary Torque Transducer Data AQ Pack

Connecting dynamic torque transducers to the T-USB Rotary Torque Transducer Data Acquisition Pack will provide you with convenient way to view the test results for your torque transducers that have internal USB functionality.

WTS Wireless Data AQ Pack

Utilizing the popular WTS Wireless Data Acquisition Pack provides convenient wireless communication with speeds up to 200 samples per second. Learn more in our Interface Wireless Telemetry System Review. See the complete line Interface WTS here.

DIG-USB PC Interface Module Data AQ Pack

Interface’s DIG-USB Data Acquisition Pack enables a straightforward way to view the test results our load cells or torque transducers. Check out the popular DIG-USB Output Module and the DIG-USB-F Fast USB Output Module.

9325 Portable Display Data AQ Pack

Interface’s 9325 Data Acquisition Pack makes your system portable. The 9325 allows simple display of strain bridge based measurements such as load cells, torque transducers, and other mV/V output transducers with sensitivity up to +/-1 V/V.

INF-USB-VS3 PC Interface Module Data AQ Pack

Our INF-USB-VS3 Data Acquisition Pack connects Interface mV/V load cells or torque transducers to provide real-time data analysis.  Here is more information about the INF-USB3 Universal Serial Bus Single Channel PC Interface Module.

Interface Data Acquisition Systems are modular. We offer the complete system, including enclosures, along with single components to complete a system. Consult with our application engineers to learn what system would be best for your test and measurement programs.

Data AQ Pack Brochure

 

 

 

Taking Measure of Miniature Load Cells Webinar

Interface force measurement engineers and solution experts host an online discussion focused on products used to withstand one or more conditions related to temperature, cycling, moisture, environmental stresses. Learn about Interface’s stainless steel load cells, environmentally sealed options, submersible test and measurement products, enclosures, wireless capabilities, load pins, intrinsically safe products. We detail solutions used for all types of applications used in industries that include medical device, aerospace and defense, industrial automation, infrastructure, maritime and general test & measurement. We discuss sensors models, capabilities, features and FAQs. We dive into use cases, tips, measurement know-how and OEM products.

Most Popular Interface Content in 2022

Interface is committed to providing valuable content and resources related to force measurement and supplemental topics based on how our customers use our products. Every year, we publish content in a variety of formats, including our blogs, newsletters, catalogs and brochures, case studies, industry solutions and white papers. In 2022, we added 125 new pieces of content, along with 109 new Interface IQ Blog posts.

Research tells us that blogs and publications are an important source to keep up with the latest developments in the field of practice. This certainly applies to test and measurement, engineering, product development and metrology. This type of material can be a fantastic way to stay informed and inspired, as well as up to date on trends and peer-related subject matter.

The question we like to answer every year, what are you reading?

Interface’s Most Read 2022 IQ Blogs

  1. 2022 Test and Measurement Industry Trends
  2. Shunt Calibration 101
  3. Force Measurement Installation Guides
  4. Types of Force Measurement Tests 101
  5. Interface Submersible Load Cells
  6. EV Battery Testing Solutions Utilize Interface Mini Load Cells
  7. Choosing the Right Torque Transducer
  8. Solutions to Advance Agriculture Smart Farming and Equipment
  9. Interface Sensors Used for Internet of Things
  10. Flange Style Load Cells and Torque Transducers 101

The subjects we right about, sometimes technical, and other times focused on use cases, are driven by our customer’s interests. Often, these subjects are relevant over an extended period. We are now entering our fifth year of the Interface IQ Blog. In fact, the most read posts on our website this year dated back as far as 2018. Are you a subscriber?

Interface’s Most Popular IQ Blogs

  1. Understanding Load Cell Temperature Compensation
  2. Strain Gages 101
  3. Load Washers 101
  4. S-Type Load Cells 101
  5. Load Pins 101
  6. Load Cell Basics Sensor Specifications
  7. Interface Engineered to Order Solutions
  8. The Anatomy of a Load Cell
  9. Understanding Uncertainty in Load Cell Calibration
  10. Load Cell 101 and What You Need to Know

Many test and measurement professionals find it valuable to read and stay current on the latest research and technical papers related in their industry. Interface produces new technical papers and case studies every year. The top technical white papers and case studies that captured the most interest in 2022 include:

Interface introduced a helpful guide in 2022 to navigate some of the content that has gained the most interest over the years. You can find this in our new 101 Force Measurement Series. It is a sequence of blogs that we add that are we categorize as 101-level references. This new guide also adds associated content on the same subject matter.

We look forward to learning from your interests and adding updated content in the coming year.

Quality Engineers Require Accurate Force Measurement Solutions

In engineering and manufacturing, when introducing a product onto the market the requirements and regulations can be immense. Each industry has strict guidelines to ensure safety, durability, quality, and overall customer satisfaction. To meet these requirements, most product and component maker will have experienced quality engineers to help meet the necessary requirements in production.

Quality Engineers work in a variety of industries including automotive, transportation, infrastructure, aerospace and defense, industrial automation, medical and healthcare devices, and consumer product manufacturing. Their role is to monitor, test, and report on the quality. They are also instrumental in strategy, process development, and increasing output. Depending on the position, they are responsible for inspecting and testing raw materials, components, mechanical systems, hardware and software, as well as final products.

The Quality Engineer works with manufacturers, developers, project managers. Commonly, they are aligned with quality assurance and quality control teams to develop processes, test procedures and implement systems that ensure manufactured products and fabrication processes meet quality standards, safety regulations, and satisfy all stakeholders. They are the safeguard for companies that are creating, building and distributing products and materials.

Accuracy of testing and measurement data is fundamental to quality engineers. Critical to quality assurance and control processes, quality engineers rely heavily on all types of Interface high-accuracy load cells, weighing systems, and instrumentation for force measurement quality systems. Manufacturing quality engineers rely on products from Interface to test both products and equipment on a manufacturing line to ensure they perform reliably and meet certain safety standards.

Force measurement systems also make role of a quality engineer easier through the use of accurate data. This is because force measurement often enables automated, real-time monitoring of many processes used in the making of things. Interface precision load cells are used to monitor assembly line machine processes, test and monitor automation equipment like robotics, and weighcheck systems, and ruggedized equipment for quality control onsite and in remote locations.

Included below are a few examples of how force measurement systems are used in quality engineering.

Medical Device Interventional Guidewire Quality Inspection

A medical device manufacturer needs to do quality checks on threaded ends of their interventional guidewire devices. The threaded end of the guidewire contains an extremely small 000-120 thread that needs to be tested with go and no-go gauges in order to see if it will mate with other critical subassemblies. They requested a custom made turnkey test stand that is both inexpensive and flexible for varying lengths and models of guidewires.  Interface suggests a system where the customer can axially load and insert the guidewire through the MRT Miniature Flange Style Reaction Torque Transducer, secure it, and use an automated stepper motor on a slide base to test the thread quality. When in use, the MRT measures the torque magnitudes of both no-go and go gauges which indicate quality of the threaded guidewire.

Snack Weighing and Packaging Machine Quality Monitoring

One aspect of quality in the consumer packaged goods space is ensuring equal distributions of individually wrapped snack bags such as chips or candy. When snack manufacturing brand wanted to weigh the amount of their snacks that is automatically dispersed into the bags during the packaging process, Interface offered a solution. We suggested multiple SPI Platform Scale Load Cells, and installed them to the potato multi-head weigher and packaging machine. The SPI Platform Scale Load cells were installed inside of the mount that attaches the head weigher to the packaging machine. Force results from the potato chips were read by the load cells and sent to the ISG Isolated DIN Rail Mount Signal Conditioner, where the customer is able to control the automated production from their command center. The customer was able to determine the weight of the potato chips being distributed into their bags with highly accurate results. They also were able to control the automated production process with the provided instrumentation. They will use this same weighing method for other snacks that need to be packaged utilizing this machine.

Vehicle Crash Test Load Cell Wall Quality Inspection

A facility wanted to do crash tests on their vehicles for quality inspection. There are multiple tests such as structural testing of the vehicle, developmental tests, and regulatory and compliance tests and they needed to measure the force of the vehicle crash tests, on all axes. Interface’ suggested using multiple 3A400 3-Axis Force Load Cells, and attach it to the back of a cement crash wall. When connected to the BX8-HD44 Interface BlueDAQ Series Data Acquisition System, force result measurements will be recorded and displayed with the customer’s PC or laptop. The customer was able to measure the force of impact for all of their different vehicle crash testing demonstrations.

The applications of force measurements for quality engineers are large, and the necessity of obtaining this data is critical to creating, safe, reliable and high-quality products.

ADDITIONAL RESOURCES

Interface Solutions for Material Testing Engineers

Why Civil Engineers Prefer Interface Products

Why Product Design Engineers Choose Interface

The Five Critical Factors of Load Cell Quality

Our Reputation is Defined by Our Industry-Leading Quality

Interface Solutions for Research and Development