Posts

Collaborative Robots Using Interface Sensors

Industrial evolutions continue to find new and innovative ways to use technologies, from AI to advanced robotics. What is not changing over time is the unique ability for humans to solve challenges and create new solutions. Pairing human ingenuity with machines to increase efficiencies and productivity is what we see today with the fast growing use of collaborative robots.

A cobot, short for collaborative robot, is a type of robot designed to work alongside humans in a shared workspace. Unlike traditional industrial robots, which are typically separated from human workers, cobots are designed to be safe and easy to use working side-by-side people. This interactivity is often referenced as part of moving from Industry 4.0 to Industry 5.0.

Cobots are typically equipped with sensors technologies that allow them to detect the presence of humans and react accordingly. This can include slowing down, stopping, or changing direction to avoid collisions or other safety hazards. Cobots are often used in tasks that are repetitive, dangerous, or require a high level of precision, such as assembly, packaging, or inspection.

One of the main advantages of cobots is their flexibility and ease of use. They can be quickly reprogrammed or taught new tasks, making them a cost-effective solution for many distinct types of manufacturing and assembly operations. Additionally, because they can collaborate with human workers, they can help to improve efficiency and productivity while also reducing the risk of injury or accidents.

In our new case study, Advancements in Robotics and Cobots Using Interface Sensors, we explore how are force measurement sensors used for cobots.

Force measurement sensors are often used in collaborative robotics to provide feedback on the force being applied during a task. This information can be used to ensure that the cobot is performing the task correctly and to detect any issues or errors that may occur. There are several types of force measurement sensors that can be used in cobots.

  • Strain gage sensors: Interface uses proprietary strain gages in our load cells. Use of this type of sensor helps to measure the deformation of a material in response to applied forces. They are commonly used in cobots to measure forces applied to a gripper or end effector.
  • Miniature load cells and load cell load buttons: Interface load cells of all sizes are used for both testing during design as well as embedded into the actual cobot for continuous monitoring. These types of sensors measure the force applied to a structure, such as a robotic arm or a part being manipulated by a gripper. Load cells can be used to ensure that the cobot is applying the correct amount of force to the part being worked on. Our smallest load cells are often used in the production and design of cobots.
  • Torque transducers: Interface transducers are utilized to measure the movement of robots, in rotation and for pivotal activity. These are critical in tasks on production lines, as well in unique industry cobots, such as entertainment.
  • Tactile sensors: These sensors measure the pressure or force applied to a surface. They are commonly used in cobots for tasks that require a high level of sensitivity, such as grasping and manipulating fragile objects.

Advancements in Technology Leads to Multi-Axis Sensors and Cobots

As use of cobots grows, so do the demands for using more data to define precision measured responses and actions. Multi-axis sensors can provide several benefits for cobots, as they allow for more accurate and precise sensing of the robot’s position, orientation, and movement. Here are some ways that cobots can benefit from multi-axis sensors:

  • Improved accuracy: Multi-axis sensors can provide more accurate readings of a cobot’s position and orientation, allowing it to perform tasks with greater precision and accuracy. This can be particularly important for tasks that require precision accuracy, such as assembly or inspection.
  • Enhanced safety: Multi-axis sensors can help to improve the safety of cobots by detecting when the robot is approaching an object or a person and slowing down or stopping to prevent collisions. This can be particularly important when cobots are working near human workers.
  • Greater flexibility: Multi-axis sensors can allow cobots to perform a wider range of tasks, as they can adapt to changes in the environment or the task at hand. For example, a cobot with multi-axis sensors can adjust its position and orientation to grip an object from a variety of angles, or to perform a task in a confined space.
  • Faster response time: Multi-axis sensors can provide real-time feedback on the cobot’s movement, allowing it to adjust more quickly and with greater accuracy. This can help to improve the speed and efficiency of the cobot’s performance.

Cobots are being used in a wide range of industries, as they offer benefits such as improved efficiency, precision, and safety. Some of the industries that are currently using cobots include:

  • Automotive: Cobots are being used in the automotive industry for tasks such as assembly, material handling, and inspection.
  • Electronics: Cobots are being used in the electronics industry for tasks such as assembly, testing, and inspection.
  • Food and beverage: Cobots are being used in the food and beverage industry for tasks such as packaging, sorting, and palletizing.
  • Medical: Cobots are being used in the medical industry for tasks such as assembly, inspection, and material handling.
  • Pharmaceuticals: Cobots are being used in the pharmaceutical industry for tasks such as packaging, inspection, and dispensing.
  • Aerospace: Cobots are being used in the aerospace industry for tasks such as drilling, riveting, and assembly.
  • Plastics and rubber: Cobots are being used in the plastics and rubber industry for tasks such as injection molding, material handling, and inspection.

By using force measurement sensors, cobots can perform tasks with greater accuracy and precision, reducing the risk of errors and improving overall efficiency. They can also help to prevent damage to parts or products being worked on and ensure that safety standards are being met.  Read the full case study below.

Advancement in Robotics and Cobots Using Interface Sensors Case Study

 

Interface Manufacturing and Production Solutions

Force measurement is integral to advanced manufacturing systems, especially when it comes to how this technology is used in production lines. Force sensors are utilized in both testing and monitoring of a wide variety of machines to ensure accuracy and repeatability throughout the production line. These sensors are also used by production line engineers in the design and development of systems used to ensure accuracy in measurements of force, weight, compression, and torque as products and components move throughout the line, including distribution.

Watch how Interface provided an industrial automation solution for small pallets used in the distribution of manufactured products. In the video, we highlight a request for a pallet weighing solution to use in their warehouse to monitor their products and goods 24/7. They need to use sensor technologies to verify if any products are missing based on the weight, and able to determine pricing for their goods based on the weight.

Interface works with a large range of manufacturers and equipment makers to improve quality and productivity by supplying high-performance measurement solutions. From using miniature load cells to apply the exact force needed to press a brand identity onto fragile consumable, to using multi-axis sensors for verifying performance data when making intricately machined parts, Interface products are commonplace in manufacturing and production.

In fact, Interface offers manufacturing and production standard off-the-shelf, engineered to order and complete OEM solutions including load cells, instrumentation and weighing devices. Our products provide the quality and durability necessary within industrial environments. In addition, we can customize the majority of our products to fit unique and evolving needs as sensor technologies like robotics and advanced manufacturing devices are integrated into production lines.

Load cells are frequently used in monitoring equipment. Interface can custom design force sensors to be installed directly into product for monitoring certain forces in real-time, including for use in industrial automation robotics. This is particularly popular in manufacturing because you can monitor equipment to understand when it may be out of alignment and needs to come down for repair, rather than risking a disruption in production. This is particularly important in automated production lines because it gives engineers and extra set of eyes on machines and improves efficiency overall by reducing downtime.

One of the unique use cases for load cells used for monitoring is in weighing materials held on pillow blocks bearings. Pillow block bearings, or similarly constructed bearing, are used to carry rolled materials or conveyor belt. Interface’s new PBLC1 Pillow Block Load Bearing Load Cell can be placed underneath the bearing to measure the weight of whatever material is being held up. These types of bearing are often found in machines with similar type of bearing are used on conveyor belts moving products down a production line.

Manufacturing Feed Roller System

A customer has a feed roller system and needs to monitor the forces of both ends of the rollers, in order to maintain a constant straight feed. They would also prefer a wireless system. Interface came to the rescue with our Pillow Block Load Cells and WTS Wireless Telemetry Systems. Interface suggests installing two PBLC Pillow Block Load Cells at both ends of the bottom roller to measure the forces being applied. The forces are measured when connected to WTS-AM-1E Wireless Strain Bridge Transmitter Module. The data is then transmitted wirelessly to the WTS-BS-6 Wireless Telemetry Dongle Base Station and the WTS-BS-1-HA Wireless Handheld Display for multiple transmitters, where data can be displayed, graphed, and logged on the customer’s computer.

Production Line Conveyor Belt Adhesion Test

A customer wants to test the adhesion strength in between the many layers and textiles of a conveyor belt. They want to conduct a separation test from the rubber of the conveyor belt from the other layers. They would also like a wireless solution. Interface’s SMA Miniature S-Type Load Cell is installed in the customer’s tensile test load frame, where it measures the forces applied as the test is conducted and the layers are pulled and separated. When connected to the WTS-AM-1F Wireless Strain Bridge Transmitter Module, the data is wirelessly transmitted to WTS-BS-5 Wireless Analog Output Receiver Module with nV output. The WTS-BS-5 can then connect to the 9330 Battery Powered High Speed Data Logging Indicator to display, graph, and log the data with supplied BlueDAQ software.

Industrial Automation Robotic Arm for Production

A manufacturer of a robot arm needs to measure force and torque when the arm picks up and places objects. The manufacturer needs a wireless system to accomplish this in order to log the measurement results. Interface supplied Model 6A40A 6-Axis Load Cell with Model BX8-HD44 Data Acquisition/Amplifier.

Interface force sensors can be used in a number of ways within the manufacturing industry across a variety of applications for the test and monitoring of machines and production lines.

ADDITIONAL RESOURCES

Force Measurement Solutions for Advanced Manufacturing Robotics

Robotics and Automation are Changing Modern Manufacturing at Interface

Vision Sensor Technology Increases Production Reliability

Industrial Automation Brochure

Weighing Solutions Brochure

Smart Pallet Solution

Interface Solutions for Safety and Regulation Testing and Monitoring

Electrical Engineers Choose Interface Sensor Technologies

Interface is a premier provider of force, torque and weighing solutions to electrical engineers around the world who are responsible for creating new products, solving problems, and improving systems.

Electrical engineers vary in specialization and industry experience with responsibilities for designing and testing electrical systems and components such as power generators, electric motors, lighting systems, and production robots. They use their expertise and knowledge of electrical systems and components to design, develop, assess, and maintain safe and reliable electrical systems. There are many electrical engineers who work on complex systems and who are responsible for troubleshooting and diagnosing problems that may arise.

The electrical engineers whose primary focus is research and development look to create new electrical technologies and advance existing systems. Projects related to renewable energy, smart grids, wireless communication systems, and electric vehicles utilize all types of measurement solutions throughout all phases of their R&D. Accuracy of testing is essential for electrical engineers, to ensure components comply with safety regulations and industry standards.

How does an electrical engineer use sensor technology for testing?

Sensors are a critical tool for electrical engineers in testing and optimizing the performance of electronic devices, systems, and processes. The type of sensor used, and the specific testing application will depend on the needs of the project or product, including the following examples.

  • Structural testing: Sensors are used to measure the structural integrity of materials and components. Load cells convert force or weight into an electrical signal that can be measured and analyzed. For example, Interface’s standard load cells are frequently used to measure the amount of strain or deformation in a material under load, which can help electrical engineers design stronger and more reliable structures. See how Interface’s products were used in an EV battery structural testing project.
  • Process control: Sensor technologies, including load cells and torque transducers are frequently utilized in manufacturing processes to monitor and control various parameters. Electrical use this data gathered through various instrumentation devices to ensure that the manufacturing process is operating within the desired parameters and to optimize the process for efficiency and quality.
  • Environmental testing: Environmental sensors are commonplace for measuring temperature, humidity, pressure, and other environmental factors. Electrical engineers can use this data to test and optimize the performance of electronic devices and systems under various environmental conditions. Read Hazardous Environment Solutions from Interface to learn more.

Electrical engineers use load cells in a variety of applications, such as measuring the weight of objects, monitoring the force applied to a structure, or controlling the tension in a cable or wire. The choice of load cell will depend on the specific application and the requirements for accuracy, sensitivity, and capacity. Electrical engineers must also consider factors such as environmental conditions, installation requirements, and cost when selecting a load cell.

Electrical engineers work in a wide range of industries and sectors, as their expertise is required in many different areas of technology and engineering. Interface has supplied quality testing devices and components to EEs in every sector, from electronics to construction.

Electrical engineers in the electronics industry use Interface products in designing and developing components such as microchips, sensors, and circuits. Demands for intrinsically safe load cells and instrumentation come from electrical engineers that are responsible for designing, maintaining, and improving power generation and distribution systems, including renewable energy systems such as solar, wind, and hydropower.

More than any time in Interface’s 55-year history, electrical engineers who work on a variety of aerospace and defense projects, are using Interface sensor products for designing and testing avionics systems, communication systems, and navigation systems.

We also continue provide electrical engineers who engage in designing and developing the electrical and electronic systems in vehicles, including everything from powertrains and engine management systems to infotainment systems and driver assistance technologies with new and innovative force measurement solutions.

Manufacturing electrical engineers who engage in designing and optimizing manufacturing processes, as well as designing and evaluating the electronic components and systems used in manufacturing equipment are frequently using Interface sensors. This includes the rising demands for sensors in robotics.

Electrical engineers across many different industries depend on Interface, just as all the companies and organizations around the world depend on their expertise. Interface is a proud partner of engineers across all disciplines.

ADDITIONAL RESOURCES

Interface Celebrates Engineers

Interface Solutions for Production Line Engineers

Quality Engineers Require Accurate Force Measurement Solutions

Interface Solutions for Material Testing Engineers

Why Civil Engineers Prefer Interface Products

Why Product Design Engineers Choose Interface

Benefits of Proof Loading Verification

Proof loading is a critical test that is performed on sensors or load cells to verify their performance and accuracy under extreme conditions. Engineers may need to request proof loading verification to ensure that the sensors or other measuring devices being used in a particular application are accurate, reliable, and safe for use.

Upon request, Interface provides proof loading at the build phase of engineered-to-order load cells, as well as load pins, load shackles and tension links. By simple definition, proof loading is a safe overload rating for a sensor.

Load proofing is a special test that guarantees the sensor performs at maximum capacity before it’s released to the customer. If a manufacturer does proof loading, it will be documented in the sensors specifications that are shipped with the product. It is commonly requested for sensors that are used in lifting applications.

Additionally, quality engineers and testing professionals may request proof loading as part of quality control or compliance requirements. By ensuring that sensors and load cells are tested and validated before use, companies can ensure that they meet regulatory standards and maintain a high level of quality in their products and services.

The Proof Loading Process

By requesting proof loading, sensor users can verify the accuracy and reliability of sensors and load cells and ensure that they are functioning correctly and within their specified limits. Proof loading can also identify any issues or problems with sensors or load cells before they are put into service, allowing for repairs or replacements to be made if necessary.

Proof loading for sensors is a process of subjecting a sensor to a higher-than-normal load or stress to confirm that it can withstand that load or stress without any permanent damage or deviation from its calibration. The purpose of proof loading is to validate the accuracy and reliability of the sensor under extreme conditions, ensuring that it will perform correctly when it is in service.

During proof loading, the sensor is exposed to a controlled overload, typically between 150% to 200% of its maximum rated capacity. The sensor’s response to the load is monitored, and the output is compared to its expected behavior. If the sensor performs within acceptable limits and returns to its pre-loaded state after the load is removed, it is considered to have passed the proof load test.

When should you request proof loading for a load cell?

Proof loading for a load cell should be requested when there is a need to verify its calibration and ensure its accuracy and reliability under extreme conditions. This is particularly important when the load cell is used in safety-critical applications, such as in crane and hoist systems, industrial weighing and process control systems, and structural testing applications.

Proof loading is commonly used for sensors that are used in safety-critical applications, such as load cells used in cranes and hoists, pressure transducers used in oil and gas pipelines, and temperature sensors used in furnace applications. By performing proof loading tests, manufacturers and end-users can have greater confidence in the performance and reliability of their sensors, which can improve overall safety and efficiency.

In general, there are several situations where it is advisable to request proof loading for a load cell:

  • Before critical applications: In safety-critical applications, such as those involving lifting, handling, and transportation of heavy loads, a proof load test should be performed before the load cell is put into service to ensure that it can handle the required load without any issues.
  • After installation: It is recommended to perform a proof load test on the load cell immediately after installation to ensure that it is functioning correctly and within its specified limits.
  • After repair or maintenance: If the load cell has undergone repair or maintenance, a proof load test can be used to verify that it is still performing accurately and within its specifications.
  • After an extended period of non-use: If the load cell has not been used for an extended period, it may be necessary to perform a proof load test to ensure that it is still functioning correctly.

It is important to note that proof loading should only be performed by qualified and trained personnel using the appropriate equipment and procedures. This will ensure that the load cell is not damaged during the testing process and that it continues to perform accurately and reliably after the test is completed.

Proof loading is particularly important in safety-critical applications such as in the construction industry, transportation industry, and other industrial applications where lifting and handling heavy loads are involved. In these applications, the accuracy and reliability of sensors and load cells are crucial, as any inaccuracies or deviations from the expected behavior can result in dangerous and costly accidents.

Overall, proof loading is an essential test that engineers may need to request to ensure the safety and reliability of sensors and load cells in various industrial applications.

ADDITIONAL RESOURCES

IoT Lifting Heavy Objects

Cranes and Lifting

Recap of Use Cases for Load Pins Webinar

Tension Links 101

Aircraft Lifting Equipment App Note

 

Introducing the Interface Consumer Product Testing Case Study

The global consumer products market is a multi-billion dollar industry that thrives on innovation and new product development. There are numerous opportunities to utilize sensor-based technologies to test for safe use and monitor product performance.

Interface is a source of quality precision force sensor technologies used throughout the product lifecycle from concept and R&D, through engineering and testing, to manufacturing and eventually consumption. We supply force measurement solutions for use in equipment, machines, tools, and integration into actual products like our miniature load cells to measure performance and use. We even provide products to accurately measure and monitor hardware used in consumer product distribution. Interface load cells and instrumentation help consumer product designers and fabricators drive usability, adoption, production efficiencies, and ensure safety to satisfy the needs of all types of consumers.

In our latest case study, Interface Delivers for Consumer Products, we highlight specific use cases and products that are used by the consumer products industry. Interface offers multitudes of products, from sensors used to measure weight on the production line of a consumer good to regulating how the consumer can use the product by using embedded load cells into the actual product.

Here are a few examples of how our force sensors are used in the consumer products industry:

  • Keyboards and buttons: Force sensors can be used to measure the force applied to keys on a keyboard or buttons on electronic devices, such as smartphones or game controllers, to ensure that they have a consistent and satisfying feel for the user.
  • Package testing: Force sensors can be used to measure the force applied to packaged consumer goods, such as food and beverage containers, during transportation and handling to ensure that they are not damaged and that their contents are protected.
  • Automotive testing: Force sensors can be used to measure the forces applied to various components of a vehicle during crash testing, such as doors and seat belts, to ensure that they meet safety standards and provide adequate protection for the occupants.
  • Sports equipment: Force sensors can be used to measure the force applied to sports equipment, such as golf clubs, tennis rackets, and baseball bats, to ensure that they meet performance and safety standards.
  • Wearable devices: Force sensors can be used to measure the force applied to wearable devices, such as fitness trackers, to ensure that they are durable and can withstand the wear and tear of daily use.

Our specialty is building force measurement solutions for the testing and monitoring of parts and total systems, which is vital to manufacturers and designers of consumer packaged goods. Accurate measurement is necessary in design, prototyping and producing final consumer products across all industries for performance and safety. These solutions are ideal for consumer product stand-alone testing rigs, production equipment, as well as embedding into products to increase operability and reliability for end users.

Additional consumer products applications utilizing Interface quality measurement solutions include:

These are just a few examples of how force sensors are used in the consumer products industry to measure the force applied to a variety of products. The use of force sensors is essential for ensuring that consumer products meet safety and performance standards, and for providing consumers with a high-quality user experience.

To better illustrate and address our solutions designed for consumer products across sectors, we have developed a case study outlining the consumer product testing challenges and technology we offer for these customers.
Interface Delivers for Consumer Products Case Study

Interface Solutions for Safety and Regulation Testing and Monitoring

Among the many challenges we help to solve, safety and the stringent requirements for helping to make products safer for all types of users is top of the list. Interface’s solutions are known for quality and accuracy, which are at the forefront of all decisions used for safety and regulation testing. It is one of the top reasons consumer product makers choose Interface force, torque and weighing test and measurement solutions.

Everyone involved in the production and sale of products have a role to play in ensuring product safety and compliance with regulations, from the manufacturer to retailer of any product. They are all responsible for designing, testing, and producing safe products.

Manufacturers have the primary responsibility for ensuring that products are safe and compliant with regulations. Governments have the authority to establish safety standards and regulations for products and to enforce these standards through inspections, fines, and recalls. Independent testing lab are used to conduct safety and compliance testing. These labs provide impartial and objective test results. Retailers also have a responsibility to ensure that the products they sell are safe and compliant with regulations. By working together, they can help to promote public trust in products and reduce the risk of accidents and injuries.

In engineering, safety and regulation testing of products is crucial for ensuring that products are safe for use and meet industry standards. This type of testing helps to identify potential hazards and design flaws that could harm consumers or cause damage to property. It also ensures that products comply with regulations and standards set by governing bodies such as the Consumer Product Safety Commission (CPSC) and the International Electrotechnical Commission (IEC). This helps to protect consumers, promote public trust in products, and reduce the risk of liability for manufacturers. By performing safety and regulation testing, engineers can help to ensure that products are reliable, effective, and trustworthy.

Safety and regulation testing helps manufacturers in several ways:

  1. Liability reduction: By ensuring that products meet safety standards and regulations, manufacturers can reduce their risk of liability in the event of accidents or injuries caused by their products.
  2. Consumer trust: Consumers are more likely to trust and purchase products that have been tested and found to be safe and compliant with regulations.
  3. Marketability: Products that meet safety and regulation standards are more likely to be accepted in the market and sold to a wider range of customers.
  4. Brand reputation: A company’s reputation is closely tied to the safety and quality of its products. By demonstrating a commitment to safety and compliance, manufacturers can enhance their brand reputation and build consumer trust.
  5. Cost savings: Investing in safety and regulation testing can help manufacturers identify and correct design flaws before products are mass-produced, reducing the cost of recalls and liability claims.

We work with manufacturers of heavy machinery, vehicles, consumer goods, medical devices and pharmaceuticals, and even aircraft and rocket ship builders. All these industry experts know that precision test and measurement solutions are essential for eliminating the serious threat to humans when their inventions and products are not thoroughly tested and monitored properly.

Testing is the first step in the process of ensuring safety. Interface load cells and torque transducers are used to test a wide variety of parameters related to force. For instance, Interface provides solutions for projects involving the testing of cranes and ensuring that these massive machines are able to lift the weight that the particular products specifications allow. This ensures safety for the user and those on the ground by putting the machine through rigorous testing using load cells to measure the cranes maximum limits with various loading conditions. Watch a quick demonstration video of crane safety test solutions from Interface.

In addition, force measurement can be used to measure small and precise forces during the testing phase. One such example is the use of load cell load buttons to measure the clamping force of a vascular clamp used in surgery. This force needs to be tightly tuned in regulation with stringent medical requirements. Forces to small or large could have serious repercussions for the patient. This is simple test that makes a dramatic difference in which the clamp force is applied to these miniature load cells and the force signal is sent to the tester.

One specific requirement that Interface has a great deal of experience in supplying solutions for torque testing on lug nuts, bolts and other assembly equipment. While tightening these parts may seem like a simple process, industries like automotive and aerospace have strict requirements for the exact tightness and tolerance for bolts. We provide torque testing systems that evaluate these parameters accurately to meet those regulations. Any misstep in tightening can lead to sever failure that puts the user at significant risk, not mention pedestrians when it comes to the automotive industry.

The next use of force measurement in the realm of safety is by using these sensors for real time monitoring. Load cells and torque transducers can be designed into a product to allow for monitoring of the product in use, telling the user when the product it is monitoring needs to be repaired, notifying them if a vehicles or machine is holding weight above its capacity, or there is potential failure of a machine or product.

For instance, machines on a production line can be monitored and irregular data can show that it needs to be brought down briefly for repairs. Having machines with issues that are not noticed do not only affect efficiency, but it can also pose a threat to nearby workers. Additionally, monitoring something like a crane is also a way to ensure it is not overloaded.

All these applications provide notable examples of how force measurement can guarantee meeting safety requirements and regulations, as well as monitoring for safe conditions in real time. To provide a visual example, we have developed several applications notes, a few of which we have included below.

Regulatory Medical Device Stent And Catheter Testing

A customer needed to apply known forces to stent and catheters to ensure they pass all necessary strength and flexibility testing. Interface suggested an MBP Overload Protected Beam Miniature Load Cell be placed behind the guide wire for the stent or catheter. The motor will spin the linear drive and push the load cell and guide the wire through the testing maze. The MBP Overload Protected Beam Miniature Load Cell is connected to the DIG-USB PC Interface Module. All forces are measured and stored on PC. Using this solution, the customer was able to perform required testing and log to PC, followed by being able to review results and take actions as needed. Get more information about this testing in our Stent and Catheter Testing App Note.

Equipment Safety with Bolt Tension Monitoring

A customer wanted to monitor the tension of the bolts that are used on their industrial large metal pipes. Interface suggested installing multiple LWCF Clamping Force Load Cells, each connected to WTS-AM-1E Wireless Strain Bridge Transmitter Modules. The load cells were installed under the tightened bolts on the pipes and measured the compression forces from the bolts. The real-time results were transmitted wirelessly from the WTS-AM-1E’s to the WTS-BS-6 Wireless Telemetry Dongle Base Station when connected to the customer’s PC. Real-time results from the LWCF’s were displayed using provided Log100 Software. Interface’s load cell monitoring system successfully monitored the compression forces of the bolts in real time.

Public Safety Bridge Seismic Force Monitoring Solution

A customer wanted to monitor seismic activity that occurs to a bridge by using force sensors and then continuously monitoring bridge forces before, during and after earthquakes occur. The customer also preferred a wireless solution so they would not need to run long cables on the bridge. Using Interface’s LP Load Pin custom made to fit their needs, alongside the Interface WTS Wireless Telemetry System, continuous force monitoring was able to take place without long cables, allowing the customer to monitor continuous loads, log information to the cloud and review information. Read Bridge Seismic Force Monitoring Solution App Note for more information.

If you are looking for accurate and dependable solutions to assist with testing and monitoring for safety and regulatory requirements, contact us.

ADDITIONAL RESOURCES

Crane Block Safety Animated Application Note

Load Cells for Consumer Product Applications

Interface Solutions for Production Line Engineers

CPG Bike Frame Fatigue Testing

MARITIME Crane Block Safety Check

Crane Safety Requires Precision Measurements Ship to Shore

Entertainment Venue Force Measurement and Monitoring Solutions

 

Can Load Cells Be Repaired?

Load cells are very resilient. Most are constructed with sturdy materials that can withstand long and arduous cycling and multitudes of testing projects. In fact, with proper treatment, regular calibration services and use within specifications, load cells can last many years. Even with such high quality and durability, it is important to perform regular diagnostic checks of a load cell to maintain the health of any force measurement device.

FACT: Interface has load cells that are in use today that we manufactured several decades ago. As the saying goes, Interface load cells are built to last.

A load cell can be damaged or lose accuracy. Load cells can be repaired depending on the extent of damage. Some common issues such as cable damage, electrical faults, or environmental factors can be repaired by replacing parts or recalibrating the load cell. However, more severe damage such as physical damage to the load cell itself may make it beyond repair and require replacement.

What is the most common type of damage to a load cell?

Most often, a load cell is damaged by overloading or exceeding its rated capacity. This can result in physical deformation or strain on the load cell, leading to permanent damage and reduced accuracy.

Other common causes of damage to load cells include exposure to harsh environmental conditions such as extreme temperatures, moisture, or corrosive substances, as well as electrical faults such as voltage spikes or short circuits. Additionally, mechanical stress from improper installation or handling can also cause damage to load cells.

What steps should be taken to evaluate a load cell that might be damaged?

  • Visual Inspection: Ensure that the physical installation, correct interconnection of components and the system are all intact. For example, has the load cell been dropped or have any damage to connectors or adapters? Reference the installation and operation manuals available with each product.
  • Electrical Testing: Use an Ohmmeter to check the bridge circuitry and zero balance. Evaluate the resistance and output of the load cell. If there is a notable change in resistance or output, it may indicate that the load cell is damaged. This is also a good time to check the troubleshooting guide.
  • Test Loads: Apply a range of test loads to the load cell and observe if the readings are consistent and within the expected range.
  • Calibration: If the load cell is not functioning correctly, recalibrate it using a weight calibration system or load cell calibrator to see if the readings are within the expected range.
  • Professional Evaluation: Request a thorough inspection of the device to determine the load cell can be repaired or needs to be replaced.

It is important to follow safety protocols and to use proper equipment and techniques when evaluating a load cell to avoid causing additional damage.

After a thorough physical inspection along with mechanical and electrical installation checks, it is determined that a load cell is not performing to specifications it is time to contact the manufacturer for Services & Repair to schedule a return of the product for further evaluation and potential load cell repair.

Use Cases for Frequent Calibration Services and Repair Evaluations

  • Harsh environmental conditions can cause corrosion and electrical failures
  • Loading forces that exceed the load cell rated capacity can cause shifting of the zero-load output of the load cell
  • Moment loading of the load cell can cause zero shifts and other undesirable behavior
  • High cycle rates or fatigue applications can cause premature failure

Many of these symptoms can be repaired or mitigated if they are identified early during appropriate evaluation and calibration cycles. In addition, load cells are prone to losing accuracy through normal wear and tear and ageing. There are times when loading conditions and use case environments necessitate the need for more frequent evaluation and calibration cycles. The process of calibration can include adjusting the measuring instrument to bring it in alignment with the standard specifications.

It is always recommended that users consult an application engineer or user’s manual to avoid situations where a load cell can be damaged or degrade accuracy too quickly. Interface has deeps expertise in repair and calibration, built and proven over 55 years in the business of making and calibrating load cells.

Interface provides repair evaluation and services on load cells we make and from other manufacturers. Repairs include a complete evaluation of the device prior to repair and calibration upon completion. Our standards for calibration are world-class. Our calibration labs are managed by experts in diagnostics, testing and repair with engineering and metrology grade equipment designed by the leaders in force measurement.

If you’re already a load cell user and have not had your products calibrated in some time, we recommend scheduling your calibration service online here. Load cells can provide years and years of quality data as long as they are properly taken care of. Put your trust In Interface to make that happen.

Additional Resources

Services & Repair

Mechanical Installation Load Cell Troubleshooting 101

How Do Load Cells Work?

Regular Calibration Service Maintains Load Cell Accuracy

System Level Calibration Validates Accuracy and Performance

 

Crane Safety Requires Precision Measurements Ship to Shore

Maritime companies include businesses and governments that develop and utilize hardware to support shipyards, marine terminals, cargo and trade support, exploration and defense, fishing, aquaculture, seafood processing, commercial diving, energy infrastructure and platforms, along with marine transportation. There are multiple categories of maritime companies, including those that build ships, provide maintenance, and oversee logistics for moving an estimated 11 billion tons of goods every year.

A subset of these maritime companies operates vessels and equipment that are responsible for the transport of people and cargo. It is estimated that in the United States, maritime companies employ over 400,000 workers. They are responsible for operating, transporting, moving, and transferring equipment and materials. There is a heavy reliance on reliable cargo cranes and lifting equipment to assist workers in these functions.

Due to the nature of work, safety and regulation are key to maintaining core operations for any type of maritime transport. The work performed on the vessels, as well as on dock, rely on heavy-duty equipment that utilizes accurate measurement for performance, weighing, monitoring, and reporting. Fundamental is the durability of the sensor equipment to withstand unpredictable environmental conditions. Quality, ruggedized equipment that is durable is vital in the operations that utilize waterways to transport goods port to port. This is where Interface plays a vital role as a supplier of measurement and weighing solutions that are designed for maritime use.

One of the most common use cases for Interface Maritime solutions is in the design and operational use of cranes. Cargo handling and crane operations are considered to be one of the most dangerous maritime jobs. The unpredictable nature of onshore and offshore environments requires crane operators to function with precise and accurate measurements throughout all procedures.

Sensors and instrumentation must be able to withstand the various exposures related to maritime work, while meeting the demanding schedules for heavy lifting, as well as moving single and multiple cargo containers at a time. In these types of maritime operations, speed is also an advantage for loading and unloading vessels. Considerations of weight of the cargo and environmental condition monitoring require accurate measurement.

Crane Capacity Verification and Block Safety Monitoring

As demonstrated in the Crane Capacity Verification Application and Crane Block Safety Check Application a customer requires a system to detect if their crane block can lift heavy loads securely, in order to keep working conditions and personnel safe at docks and other maritime transportation applications. If lifting capacities are exceeded, the customer wants a system to alarm them in real-time.


Interface products are ideal for use in heavy equipment that the maritime industry relies upon for a wide variety of equipment used to push, pull, lift, release, contain, and move things in water and on land. Wireless and environmentally protected submersible solutions are standard fare for this industry. Interface load cells, torque transducers, load pins, load shackles and tension links, as well as DAQ and instrumentation solutions provide accurate force and torque data to monitor and confirm the design and in-action processes.  To keep your instrumentation protected, inquire about our Interface Enclosures.

Additional Resources

  1. Maritime Measurement Solutions for Onshore and Submersible Applications
  2. Ruggedized Test and Measurement Solutions Webinar
  3. Interface Submersible Load Cells
  4. Serving the Maritime Industry
  5. Hydrofoil Testing in Wave Tank
  6. Crane Force Regulation
  7. Crane Capacity Verification
  8. Crane Block Safety Check
  9. WTS Yacht Rigging Inspection
  10. Mooring Line Tension Testing
  11. Mooring Quick Release Hooks (QRH)
  12. Commercial Fishing Wire Rope Testing

Quality Engineers Require Accurate Force Measurement Solutions

In engineering and manufacturing, when introducing a product onto the market the requirements and regulations can be immense. Each industry has strict guidelines to ensure safety, durability, quality, and overall customer satisfaction. To meet these requirements, most product and component maker will have experienced quality engineers to help meet the necessary requirements in production.

Quality Engineers work in a variety of industries including automotive, transportation, infrastructure, aerospace and defense, industrial automation, medical and healthcare devices, and consumer product manufacturing. Their role is to monitor, test, and report on the quality. They are also instrumental in strategy, process development, and increasing output. Depending on the position, they are responsible for inspecting and testing raw materials, components, mechanical systems, hardware and software, as well as final products.

The Quality Engineer works with manufacturers, developers, project managers. Commonly, they are aligned with quality assurance and quality control teams to develop processes, test procedures and implement systems that ensure manufactured products and fabrication processes meet quality standards, safety regulations, and satisfy all stakeholders. They are the safeguard for companies that are creating, building and distributing products and materials.

Accuracy of testing and measurement data is fundamental to quality engineers. Critical to quality assurance and control processes, quality engineers rely heavily on all types of Interface high-accuracy load cells, weighing systems, and instrumentation for force measurement quality systems. Manufacturing quality engineers rely on products from Interface to test both products and equipment on a manufacturing line to ensure they perform reliably and meet certain safety standards.

Force measurement systems also make role of a quality engineer easier through the use of accurate data. This is because force measurement often enables automated, real-time monitoring of many processes used in the making of things. Interface precision load cells are used to monitor assembly line machine processes, test and monitor automation equipment like robotics, and weighcheck systems, and ruggedized equipment for quality control onsite and in remote locations.

Included below are a few examples of how force measurement systems are used in quality engineering.

Medical Device Interventional Guidewire Quality Inspection

A medical device manufacturer needs to do quality checks on threaded ends of their interventional guidewire devices. The threaded end of the guidewire contains an extremely small 000-120 thread that needs to be tested with go and no-go gauges in order to see if it will mate with other critical subassemblies. They requested a custom made turnkey test stand that is both inexpensive and flexible for varying lengths and models of guidewires.  Interface suggests a system where the customer can axially load and insert the guidewire through the MRT Miniature Flange Style Reaction Torque Transducer, secure it, and use an automated stepper motor on a slide base to test the thread quality. When in use, the MRT measures the torque magnitudes of both no-go and go gauges which indicate quality of the threaded guidewire.

Snack Weighing and Packaging Machine Quality Monitoring

One aspect of quality in the consumer packaged goods space is ensuring equal distributions of individually wrapped snack bags such as chips or candy. When snack manufacturing brand wanted to weigh the amount of their snacks that is automatically dispersed into the bags during the packaging process, Interface offered a solution. We suggested multiple SPI Platform Scale Load Cells, and installed them to the potato multi-head weigher and packaging machine. The SPI Platform Scale Load cells were installed inside of the mount that attaches the head weigher to the packaging machine. Force results from the potato chips were read by the load cells and sent to the ISG Isolated DIN Rail Mount Signal Conditioner, where the customer is able to control the automated production from their command center. The customer was able to determine the weight of the potato chips being distributed into their bags with highly accurate results. They also were able to control the automated production process with the provided instrumentation. They will use this same weighing method for other snacks that need to be packaged utilizing this machine.

Vehicle Crash Test Load Cell Wall Quality Inspection

A facility wanted to do crash tests on their vehicles for quality inspection. There are multiple tests such as structural testing of the vehicle, developmental tests, and regulatory and compliance tests and they needed to measure the force of the vehicle crash tests, on all axes. Interface’ suggested using multiple 3A400 3-Axis Force Load Cells, and attach it to the back of a cement crash wall. When connected to the BX8-HD44 Interface BlueDAQ Series Data Acquisition System, force result measurements will be recorded and displayed with the customer’s PC or laptop. The customer was able to measure the force of impact for all of their different vehicle crash testing demonstrations.

The applications of force measurements for quality engineers are large, and the necessity of obtaining this data is critical to creating, safe, reliable and high-quality products.

ADDITIONAL RESOURCES

Interface Solutions for Material Testing Engineers

Why Civil Engineers Prefer Interface Products

Why Product Design Engineers Choose Interface

The Five Critical Factors of Load Cell Quality

Our Reputation is Defined by Our Industry-Leading Quality

Interface Solutions for Research and Development