Posts

Conveyor Belts Use Load Cells to Keep Things Moving

Conveyor belts are incredibly versatile machines with numerous applications across industries, constantly moving materials from one point to another. During some of the busiest packaging and shipment times of the year, it is a good reminder of why measurement solutions keep things moving fast and efficiently.

Critical for automated manufacturing, conveyor belts rely on precise weight distribution, timing, and speed of the conveyor belt operation to keep production in sync.

Conveyors are used for sorting and merging systems, inspection systems, and automated loading and unloading using robotic arms or other equipment to handle materials efficiently. Their versatility and adaptability make them critical in modernizing industries, including construction, mining, manufacturing, logistics, maritime, and agriculture.

Boxes, cans, bottles, and other packages glide smoothly through packaging lines on conveyor belts, ensuring efficient sorting, labeling, and palletizing. These machines efficiently load and unload ships, trucks, and trains with bulk materials, minimizing manual labor and maximizing throughput. Conveyor belts are crucial in sorting and distributing packages in warehouses and postal facilities, speeding up delivery processes.

It is also important to recognize how specialized conveyor belts transport people in public spaces. Conveyor belts seamlessly whisk luggage from check-in counters to aircraft and vice versa, ensuring a smooth passenger experience.

Force measurement can be applied to testing and monitoring conveyor belts in several ways. One of the most common ways is by using load cells to measure the alignment of the belt. Load cells can detect subtle changes in belt behavior, such as uneven loading or misalignment, which can indicate internal damage like cracks or tears. Early identification of these issues allows for timely interventions, preventing further damage and costly repairs.

Testing the conveyor belt rotation or ability to hold weight is a requirement for equipment makers and engineers. Machine builders use Interface sensors in the design of conveyors. In addition to monitoring the system during peak usage, load cells are instrumental in testing the equipment’s quality and durability.

Load cells on the head and tail pulley shafts continuously monitor belt tension for preventative maintenance. This data helps identify deviations from optimal tension levels, leading to premature belt wear, pulley misalignment, and energy inefficiency.  You can prevent costly repairs and downtime by addressing these issues early on.

Conveyor systems often have multiple belts working in tandem. Load cells can monitor the load distribution across these belts, ensuring balanced operation and preventing the overloading of individual components.

Conveyor Belt Adhesion Test

A customer wanted to test the adhesion strength between a conveyor belt’s many layers and textiles. They wanted to conduct a separation test from the rubber of the conveyor belt from the other layers. They also wanted a wireless solution. Interface suggested a SMA Miniature S-Type Load Cell to be installed in the customer’s tensile test load frame, where it measured the forces applied as the test was conducted and the layers were pulled and separated. When connected to the WTS-AM-1F Wireless Strain Bridge Transmitter Module, the data was wirelessly transmitted to WTS-BS-5 Wireless Analog Output Receiver. The WTS-BS-5 then connected to the 9330 Battery Powered High Speed Data Logging Indicator to display, graph, and log the data with the supplied BlueDAQ software. With Interface’s force measurement system and solution, the customer successfully tested the strength of the adhesion applied to their conveyor belts through the layer separation test.

Force measurement sensors can be built into machines as a real-time monitoring system. This type of force application can let engineers know if there is a problem with the system that needs to be taken down for repairs by reviewing data and seeing discrepancies in the normal forces on the conveyor belt. This is particularly important in maintaining efficiency on production lines to ensure minimal downtown.

Food and Beverage Conveyor Belt equipped with PBLC Pillow Block Load Bearing Load Cells and 920i Programmable Weight Indicator and ControllerFood And Beverage Conveyor Belt

Conveyor belts for the food and beverage industry must be maintained and properly aligned to transport products. A load cell is needed to prevent misalignment and to reduce the risk of damage or malfunction of the belt while in operation. Interface suggested installing PBLC Pillow Block Load Bearing Load Cells onto the conveyor belt. They are designed for easy maintenance. The PBLCs measured and monitored the force of the conveyor belt while preventing misalignment. The PBLC Pillow Block Load Cells successfully maintained the proper alignment of the conveyor belt for the food and beverages being transported while also monitoring the forces being implemented.

In automotive, electronics, and other production settings, conveyor belts move components and products along the assembly line, facilitating efficient workflow and ensuring precise positioning.

Conveyor belts easily handle diverse materials, from transporting heavy metal sheets in steel mills to delicate circuit boards in electronics factories. They are the go-to for transporting vast quantities of mined ores, coal, grains, and other bulk materials over long distances and uneven terrain.

Conveyor belts move waste and recyclables efficiently in processing facilities, ensuring efficient sorting and processing. Industrial automation robotics often supports this as part of advanced conveyor systems.

Automating Conveyor Production Lines

Collaborative robots, known as cobots, are used to working alongside humans next to conveyor belts on the production line. Extensive safety measures must be taken for the conveyor and the robot for optimal efficiency and operations. A multi-axis sensor is a tool for this use case. The 6A40 6-Axis Load Cell is installed at the head of the cobot. The 6A40 6-Axis Load Cell interfaces with the BX8-HD44 BlueDAQ Series Data Acquisition System for data collection of force and torque measurements on the line. The customer connected the BX8’s analog outputs to their control system. As a result, the customer can log, display, and graph these measurements during the robot and belt operations. The results are sent to the customer’s control system via analog or digital output.

Interface products are commonplace in these types of applications. Force measurement is integral to advanced manufacturing systems like conveyor belts. Our sensors are utilized to ensure accuracy and repeatability throughout the production line.

We understand manufacturing test and measurement applications, and our custom OEM solutions are ideal for manufacturers who require direct installation to monitor weight, force, and torque into conveyor belt systems.  Contact our application experts to see how we can help you modernize your conveyor systems with advanced sensor technologies.

ADDITIONAL RESOURCES

Manufacturing Solutions

Interface Solutions for Heavy Equipment

Heavy Machinery Solutions

Production Line Solutions

Interface Solutions for Production Line Engineers

Examining Machine Builder Applications

 

Using Multi-Axis Sensors to Bring Robotics to Life

The advent of robotics brought with it the expansion of machine capabilities across many industries. The range of robotics today spans industrial, entertainment, autonomous, medical, educational, defense and consumer robots.

As with all invention and innovation, the demands for more data and precision testing have grown dramatically in recent years. Due to the nature of robotic movement, and the engineering that must be done to make this movement work, testing sensor technologies are advancing to improve robotics capabilities and to make them more accurate.

In the force measurement world, one of the best sensor devices that lends itself perfectly to robotics are multi-axis sensors. Interface’s multi-axis sensors are designed to provide the most comprehensive data points for advanced testing. With our industry-leading reliability and accuracy, Interface’s multi-axis sensors can provide the data our customers need to ensure performance and safety requirements are met in their robotic designs.

Multi-axis sensors can provide several benefits for use in robotics, as they allow for accurately measuring the robot’s position, orientation, and movement. Here are some ways that robots can benefit from multi-axis sensors:

  • Improved accuracy: Multi-axis sensors provide more accurate readings of a robot’s position and orientation, allowing it to perform tasks with greater precision and accuracy. This can be particularly important for tasks that require precision accuracy, such as assembly or inspection.
  • Enhanced safety: Multi-axis sensors help to improve the safety of robots by detecting when the robot is approaching an object or a person and slowing down or stopping to prevent collisions. This can be particularly important when robots are working near human workers.
  • Greater flexibility: Multi-axis sensors allow robots to perform a wider range of tasks, as they can adapt to changes in the environment or the task at hand. For example, a robot with multi-axis sensors can adjust its position and orientation to grip an object from a variety of angles, or to perform a task in a confined space.
  • Faster response time: Multi-axis sensors can provide real-time feedback on the robot’s movement, allowing it to adjust more quickly and with greater accuracy. This can help to improve the speed and efficiency of the robot’s performance.

Multi-Axis Robotic Arm Using Force Plate

In this application note, we highlight a customer that needs to measure the reaction forces of their robotic arm for safety purposes. The reaction loads occur at the robotic arm’s base; therefore, they need a force measurement system at the base of the robotic arm. Interface suggests using our force plate option to install at the base of the robotic arm. The solutions includes 3-Axis Force Load Cells are installed between two force plates, then installed at the bottom of the arm. This creates one large 6-Axis Force Plate. The sensors force data is recorded and displayed through the two BX8 Multi-Channel Bridge Amplifier and Data Acquisition Systems onto the customer’s computer. Read more about this application here.

Sensors must be able to provide the robust data requirements needed in designing and using robotics. Testing for industrial robots, which are used in manufacturing and assembly processes to automate tasks that are repetitive, dangerous or require precision, need exact measurements to clear the path to use. This data from sensors is used in design and production to evaluate reliability and quality of craftmanship. These types of robots are used in a variety of industries such as automotive, electronics, and aerospace.

Safety is primary for service and medical robots, as they are designed to interact with humans and perform tasks in healthcare, cleaning and surgical procedures, diagnosis, and rehabilitation.

Precision and accuracy are what defines the testing requirements for military robots. Whether these robots are used in military applications, such as bomb disposal, reconnaissance, and search and rescue missions or to operate in dangerous environments where it is not safe for humans to work, they must be thoroughly tested for high accuracy in operation.

While educational and entertainment robotics involve human interaction, so sensor technologies must match the use cases for teaching students about robotics, programming, and technology. They are often designed to be easy to use and intuitive, allowing students to experiment and learn through direct experience. Robots designed for entertainment purposes, such as robotic toys or theme park attractions are interactive. Robust sensor data makes the robots more engaging and may incorporate features like voice recognition or facial recognition to provide an authentic experience.

Lastly, autonomous robots undergo vast amounts of design tests using force and torque sensors due to the requirements of operating independently, without human intervention. They are often used in applications such as space exploration, agriculture, or transportation.

Interface offers a wide variety of multi-axis sensor options including 2-axis, 3-axis, 6-axis, and axial torsion load cell sensors. The benefits of using multi-axis sensors aligns to the advancements in robotics, as the expectations to do more means more data is needed to thoroughly test and measure every capability and interaction with accuracy.

ADDITIONAL RESOURCES

BX8 & 6-Axis

Multi-Axis Sensor Applications

Mounting Tips for Multi-Axis Sensors

Recap of Inventive Multi-Axis and Instrumentation Webinar

Dimensions of Multi-Axis Sensors An Interface Hosted Forum

Multi-Axis Sensors

Multi-Axis Sensors 101

 

Interface Sensors Used for Development and Testing of Surgical Robotics

Electro-mechanical and software advancements in the medical device and healthcare industry have made all kinds of surgical robotics a reality. Manufacturers and design engineers of these robots come to Interface during the stages of research and development, product engineering and refinement, and testing to perfect surgical use cases. The sensor technologies we provide are preferred in these processes and in final integration due to the fact these devices are highly regulated and require the utmost in accuracy and reliability.

The types of surgeries currently being performed with robotics include what were once considered invasive and a higher risk of failure such as coronary bypass, removing cancer tissue, transplants, laser incisions, and more. With surgical robotics, the medical professionals rely on precision to perform these surgeries with as minimal invasion as possible.

The product development process for surgical robotics is extremely meticulous and requires a wide variety of tests to confirm the accuracy of the product. One of the key components to testing in this field is force measurement. As you can imagine, force plays a massive role in surgical robotics. Every action performed needs to be forced tested to ensure that whatever the surgical task, the robot is doing it with precision.

For surgical robotics, minute forces need to be measured because they are working with highly fragile subjects within a human body. To measure these tiny forces, Interface offers a variety of Interface Mini™ Solutions.  Interface Mini Load Cells are used for light touch, light weight, or for less space. Our miniature load cells provide exceedingly accurate measurements similar to our full-size load cells with proprietary alloy strain gages. They are used in R&D, test and for OEM use in robot components.

All our miniature beam load cells, load cell load buttons, load washer, miniature tension force load cells, S-type load cells, and sealed stainless steel load cells are commonly used based on their capacity and designs.  A variety of our load cells can be used in an off-the-shelf application. Our engineers can also work with you to design custom load cells to fit your exact needs, which is common in robotics.

Interface recently developed an application note to outline how force measurement can be used in testing force feedback using a combination of load cells, torque transducer and data acquisition device on a robotic surgical device.

Robotic Surgery Force Feedback

A biomechanical medical company wanted to test the force, torque, and tactile feedback from their robotic arm for invasive surgery. The surgeon’s movements are mirrored by the robotic arm during surgery, and it was essential all haptic force feedback is measured to ensure safety during invasive surgery. A number of Interface’s force and torque measurement products were suggested for this robotic arm. These includes our load button, S-types, Mini overload protected torque transducers and DAQ instrumentation.  Included below are the roles of each device:

Each one of Interface’s load cells or torque transducers played a part in the ensuring the safety and functionality of robotic arms during invasive surgery. The force feedback that was measured from the robotic arm ensured that the robot used the perfect amount of force when using surgical tools that create incisions during surgeries. It also measured the torque being produced, ensuring the robot arm was moving smoothly and at the right speeds. Read the application note for this surgical robot here.

This is just one example of Interface’s work in robotics, and surgical robotics specifically. There are a growing number of devices used in special, precision surgeries that utilize force to perform its task.

Additional Resources Related to Medical, Healthcare and Robotics

Spotlighting Medical Device and Healthcare Solutions

Medical and Healthcare Brochure

OEM: Medical Bag Weighing

Force Solutions for Medical Tablet Forming Machines

Interface OEM Solutions Process

6-Axis Force Plate Robotic Arm App Note

Force Measurement Solutions for Advanced Manufacturing Robotics

Interface Sensors Used for Internet of Things

What is creating the increasing demands for sensor technologies today? One thing is just using sensors in things, putting sensors into things that didn’t use to utilize sensors. Advancing the use of data in objects, equipment, consumer goods, machines and tools is increasing the needs for advanced and reliable measurement devices. It’s why demand for Interface products used in Internet of Things applications are expanding rapidly.

Sensor data is being used through the entire life cycle of a product design, from early design to testing, through production and even aftermarket sales. The valuable insights that engineers and manufacturers gather from real-time user data and feedback in both test and actual market use is advancing iterations, use cases, and smart application types.  Interface is seeing this in the demands for miniature sensors used by OEMs and wireless technologies. The smarter the device, the better the sensor. That is why Interface is a preferred partner when IoT needs accurate information to make smart decisions.

Big data along with advancing IoT communication capabilities is presenting opportunities for manufacturing to use efficient, accurate, and cost-effective sensor solutions designed for making products and machines smarter. Users of IoT solutions and manufacturers of IoT products are using valuable sensory data to constantly measure applied forces, helping with innovation and redesigns. It’s being used for all types of smart devices, industrial automation robots, medical equipment, and even wireless mobile testing labs.

What type of products are being used in IoT?

We are seeing Interface load cells, torque transducers, multi-axis sensors, DAQ and instrumentation systems are designed for all kinds of advanced IoT applications. While many are taking advantage of our expanding line of wireless and Bluetooth load cells and instrumentation, we also see numerous requests for our Mini Load Cells to be designed into the actual product.

Interface has been supplying these sensor technologies for years. To capture some of growing demands miniaturized and wireless sensors, we’ve recently launched a new solutions area on our website, Internet of Things. We explore Industry 4.0 and wireless applications, offer a new Interface IoT Solutions brochure and highlight products that are used for IoT use cases.

Our solutions align with the requirements of IoT and Industry 4.0.  You see this in the array of capabilities in our products, including:

  • Wireless communications and enabled sensors for real-time collection
  • Miniature load cells and sensor technologies for modernization and innovation of product designs
  • Robotic sensor solutions for use in autonomous and mounted devices
  • OEM designed sensor solutions to use for stability and product intelligence
  • Intrinsically safe products used in harsh and changing environments
  • Safety and regulatory sensors for constant monitoring
  • Bluetooth and wireless telemetry system components used for monitoring and testing
  • Stainless steel and rugged designs for different temperatures and climates
  • Advanced instrumentation and software for accurate and reliable data capture
  • OEM engineered products for high-production counts

Whether you are using Interface measurement products for prototype testing, temperature testing, component and usability studies or small-scale testing machines, we have solutions that make your tests cordless, digital, and using internet speed to capture data.

Recent IoT Applications Using Interface Measurement Solutions

  • Smart factory tools and machines
  • Wireless testing equipment for labs
  • Autonomous vehicle components
  • Robots and robotic parts
  • Weighing and lifting apparatus
  • Safety regulation feedback and sensing devices
  • Predictive usability and durability testing
  • Fitness and health equipment use
  • Touch screen testing
  • Home health feedback sensors

To learn more about our products used for IoT applications, contact our application engineering experts.

Additional Resources

Wireless Telemetry System

WTS 1200 Standard Precision LowProfile® Wireless Load Cell

WTS Brake Pedal Force Testing

IoT Solution That Monitors Rigging and Lifting in Real-Time Showcased at OTC50

Advancements in Instrumentation Webinar Recap

Solutions to Advance Agriculture Smart Farming and Equipment

Force Measurement Solutions for Advanced Manufacturing Robotics

One of the most significant trends in advancing manufacturing is the use of robotics for smart factory automation. These types of machines are designed and coded to perform a variety of mundane and repetitive tasks on a manufacturing line or within an industrial facility. This allows humans to utilize their skills to work on more complex and productive tasks.

These activities are often characterized as picking, assembly, labeling, packaging, finishing work and inspection. Integrating robotics into manufacturing has many benefits including improved workplace safety, increasing productivity, and reducing material waste and costs. Interface uses robotics in our advanced manufacturing efforts in the assembly and building of world-class sensor technologies that are used around the world.

As with all points within a factory, there are many tasks that are very simple, while others can be very intricate requiring precision. As tasks become more difficult, the accuracy of the robot’s functionality is incredibly important. This is when sensors and precision measurement become instrumental to automation.

To ensure supreme accuracy, force measurement sensors are being used to improve processes as well as designed into robotic systems for monitoring performance data in real time. Force measurement sensors help manufacturers optimize the activities and tasks assigned to automated functions.

Popular types or robots used in advanced manufacturing environments using Interface load cells and our force measurement solutions include:

  1. Articulated – Often used in assembly, these robots have rotary joints to allow for a range of motion. Sensors such as mini or load button load cells are used in the testing and actual embedded in the joints to measure force and pressure.
  2. Gantry – These robots have three linear joints that move in different axes The X, Y, Z measurements are often tested with multi-axis load cells as this cartesian robot requires accuracy and precision.
  3. Cylindrical – This type of single robotic arm moves up and down, often stabilized by a cylindrical rod. They often are used in assemblies, welding, and handling of materials. These are tested with load cells for their ability to articulate the movement with exactness.

Interface products are playing a big role in manufacturing automation, especially in the design and development of robotics that use measurement in performance. They are used in all types of industries including automotive, medical, agriculture, and of course general manufacturing.

We supply a wide variety of sensors that measure force, torque, pressure, pulling force and more. We also are well-known worldwide for the accuracy and reliability of our products, making us the perfect fit for high-precision robotics applications.

Here are a few application examples where force measurement provides enormous value in testing and using robotics to advance manufacturing.

Industrial Robotic Arm in Production Line

Robotic arm solutions are becoming commonly used on production lines. When a manufacturer of a robot arm needed to measure force and torque when the arm picks up and places objects, Interface supplied a Model 6A40A 6-Axis Load Cell with Model BX8-HD44 Data Acquisition and Amplifier. The 6A40-6 Axis Load Cell was able to measure all forces and torques (Fx, Fʏ, Fz, Mx, Mʏ, Mz) and the BXB-HD44 Data Acquisition Amplifier was able to log, display, and graph these measurements while sending scaled analog output signals for these axes to the robot’s control system. This helped the customer optimize the multiple forces on the robot needed for moving objects on the production line. Read more about this solution here.

Robotic Arm

This customer needed to lift and move delicate objects, like a glass bottle, in an automated environment with a robotic arm without causing damage to the objects that are being lifted and moved. Delicacy was the key here. Two ConvexBT Load Button Load Cells were used in the grips of the robotic arm to measure the amount of pressure being applied to the object it is lifting and moving. The DMA2 DIN Rail Mount Signal Conditioner converts the signal received from the 2 ConvexBT Load Button Load Cells from mV/V to volts to the PLC Controller which tells the robotic arm to stop clamping pressure when a specified amount of pressure is applied to the object. The two ConvexBT Load Button Load Cells accurately measured the amount of pressure applied to the object the robotic arm was lifting and moving without causing any harm or damage to the object. Watch Robotic Arm Application Note and read more here.

More robotic applications are being tested every day. Interface is proud to be able to supply the necessary technology to enhance production lines, improve shipping and logistics operations and speed up repetitive processes with robotics so workforces can thrive and develop skills that advance manufacturing overall.

Additional Resources

OEM Industrial Robotic Arm App Note

Automation and Robotics Demands Absolute Precision

Robotics in Play with New Animated Application Using ConvexBT

Interface Solutions for Robotics and Industrial Automation