Posts

Enhancing Structural Testing with Multi-Axis Load Cells

Multiple industries use structural tests for quality control, regulatory requirements, failure analysis, predictive maintenance, design and performance verification, and safety assurance.

Structural tests measure the tension, design proofing, and lifecycle fatigue validation. Load cells provide valuable measurement data in structural testing. These tests apply to assessing the structural components for rockets, aircraft, automobiles, EV batteries, heavy equipment, and infrastructure projects.

There are times when more data is valuable beyond a standard load cell. Multi-axis sensors are essential tools for structural testing, providing valuable insights into the behavior of structures under various loading conditions. These sensors measure forces in multiple directions, enabling engineers to identify potential weaknesses, assess structural integrity, and optimize designs.

Multi-axis sensors offer several technical advantages for structural testing compared to traditional single-axis load cells. Interface’s 2-axis, 3-axis, and 6-axis load cells are all excellent options for structural testing.

TIP:  Use the new Interface Multi-Axis Selection Guide to evaluate the different designs, capacities, and capabilities quickly.

Primary Benefits of Using Multi-Axis Load Cells for Structural Testing

  • Extensive data acquisition: The primary advantage of multi-axis sensors is they can simultaneously measure forces in multiple directions, thoroughly analyzing the force distribution on a structure.
  • Improvements to structural design: The data obtained from multi-axis sensors can be used to refine structural design models, leading to more robust, efficient, and safe structures.
  • Reduction in complexity: Multi-axis load cells can replace multiple single-axis load cells, simplifying test setups and reducing the required data channels. The benefits are saving time during test setup and data analysis.
  • High accuracy: Multi-axis load cells are designed to minimize crosstalk between axes, ensuring accurate measurements even when forces are applied in multiple directions, which is critical in structural test data.
  • Early detection of structural issues: Using multi-axis sensors can help to identify subtle changes in structural behavior that may indicate early signs of damage or deterioration, allowing for timely intervention.
  • Versatile measurement device: Multi-axis load cells are used in various structural testing applications, including complex force distributions and dynamic loading conditions, making them versatile tools for structural and civil engineers.
  • Compact form factor: Interface multi-axis load cells are dimensionally suited for testing structures with limited space constraints.

During the Inventive Multi-Axis and Instrumentation Webinar, our application engineers shared significant technical benefits of multi-axis sensors. Watch the full recorded technical seminar here.

  • Improved understanding of reaction loads at boundary conditions
  • Transmissive loads through DUT
  • Bending and side loads
  • Force vector and center of force
  • Boundary load condition verification
  • Expansion of existing test methods

Applications of Multi-Axis Sensors in Structural Testing

Structural health monitoring: These sensors are used to continuously monitor the condition of structures, identifying early signs of damage or deterioration.

Bridge testing: Multi-axis sensors measure bridges’ load distribution and stress levels during various loading scenarios, ensuring their structural integrity.

Aircraft testing: These sensors measure aircraft structures’ aerodynamic forces and vibration response, ensuring their safety and performance.

Civil engineering testing: Multi-axis sensors are employed in testing a wide range of civil engineering structures, including buildings, dams, and offshore platforms. Visit: Infrastructure Solutions

Multi-axis load cells are an ideal technical solution for structural testing because they can simultaneously measure forces in multiple directions, reduce complexity, and improve accuracy. These versatile sensors can be used in structural testing and ongoing structural monitoring.

ADDITIONAL RESOURCES

Multi-Axis Sensor Application Notes

Interface Solutions for Structural Testing

Structural Testing Overview

Modernizing Infrastructure with Interface Sensor Technologies

Interface and Infrastructure Markets Form a Perfect Partnership

Electric Vehicle Structural Battery Testing

Outlining Force Solutions for Structural Outrigging

Performance Structural Loading

Rocket Structure Testing

 

Interface Solutions in the World of Sports

With our headquarters in the golf capitol of the U.S., it is easy to see why Interface test and measurement solutions rank top for engineers and golf manufacturers to test the force of golf balls, range equipment, clubs, and even the carts that roam the course. But our sensor technologies have a much broader reach, in both sport and geography.

Why is force measurement so heavily involved in the making and designing of sports equipment? It is obvious even by definition; sports are considered an activity involving physical exertion and skill in which an individual or team competes against another or others for entertainment.

The physical exertion often utilizes some type of apparatus, device, tool, material, equipment, or gear that requires measurement of tension, compression, or rotation. Every sport differs and type of testing also will vary, whether from initial fatigue testing or actual designing sensors into the fitness equipment like a treadmill.

Our force measurement sensors are used across a wide variety of sports equipment to evaluate performance, lifecycle, durability, and quality.

Our specialty is building high accuracy solutions for the testing and monitoring of parts and total systems that move and create force, which is vital to makers and product designers of sports equipment and machines. Our force measurement solutions are ideal for stand-alone testing rigs, production equipment, as well as to embed in sports products in order to increase operability and reliability for end users.

Interface force measurement solutions are commonplace in sports gear and equipment R&D labs, design houses, manufacturer test and production facilities. The range of products we provide is as broad as the variety of sport categories, both individual and team. This applies to products used by consumers, as well as by professional athletes, trainers, and pro sport teams. We also collaborate with several engineers and manufacturers that build exercise and training equipment.

Interface has a history of providing our low profiles, s-types and miniature load cells for testing products used in individual sports such as running, weightlifting, mountain climbing, skiing, skating, bowling, fishing and cycling. We have created solutions that measure force and torque for gear used by competitive team sports including football, soccer, hockey, rugby, tennis, baseball, water sports and more. We have even seen an extended use in tools and equipment used in auto racing and even esports, who are using our sensors to test the actual gaming devices like brake pedals, driving gear and touch screens.

Interface is a global supplier of load cells, torque transducers, multi-axis sensors, and instrumentation for sport and fitness equipment. Here a few examples of where Interface solutions were used to influence the design, test, quality, and user experience.


Fitness Equipment Testing

A premiere maker of machines used in training and gyms around the world needs multiple load measurement systems for their different fitness machines. These machines included elliptical, leg press, rowing machine, and the cable machine to start. They want to ensure the machines functioning properly to prevent injuries. It can also be used for trainers who want to conduct strength and endurance tests.  A combination of products such as the WMCFP Overload Protected Sealed Stainless Steel Miniature Load Cell, SSB Sealed Beam Load Cells, and AT103 Axial Torsion Force and Torque Transducers. Paired with Interface’s proper instrumentation, the forces can be measured, graphed, and displayed during the testing stage. Read more about these solutions here.

Golf Club Swing Accuracy

Golfers undergoing training or practice wanted a system that will monitor and record their striking accuracy and swing movement. Interface created a custom made SSB Sealed Beam Load Cell that can be attached in line with the golf handle. When a golf ball is struck, force measurements are recorded, logged, and graphed using the WTS-AM-1E Wireless Strain Bridge Transmitter. The results transmit directly to the WTS-BS-6 Wireless Telemetry Dongle Base Station when connected to the customer’s PC or laptop. Using this solution, the customer was able to successfully record, graph, and log a golf player’s striking accuracy and swing movement with Interface’s wireless force system. Read more here.

Mountain Bike Load Testing

A mountain bike manufacturing company wanted a system that measures their bike frames load capacities and vibrations on the frame. They want to ensure the bike’s high quality and frame load durability during this final step of the product testing process for their future consumers. Interface suggested installing Model SSMF Fatigue Rated S-Type Load Cell, connected to the WTS-AM-1E Wireless Strain Bridge, between the mountain bike’s seat and the bike frame. This will measure the vibrations and load forces applied onto the bike frame. The results will be captured by the WTS-AM-1E and transmitted to the customer’s PC using the WTS-BS-6 Wireless Telemetry Dongle Base Station. With this system, the mountain bike manufacturing company was able to gather highly accurate data to determine that their bikes met performance standards through this final testing. Learn more here.

 

Golf Ball Tee Testing Machine

A customer wanted to ensure their golf ball automatic tee mechanism is working for their consumers- both buying their tee’s for home use or for golfing ranges. They needed a system that will sense the presence of a golf ball, which will trigger and automatically dispense new golf ball to the tee. Interface’s WMC Sealed Stainless Steel Miniature Load Cell was installed within the golf tee, which would measure the golf balls pressure on the tee when loaded or unloaded. This load cell is electrically connected to the motor which initiates the cycle to release another ball onto the tee. Force measurements can be measured using the 9330 High Speed Data Logger when connected to the customer’s PC or laptop. With Interface’s products, the customer was provided a force solution that was able to measure the presence of a golf ball on their auto-tee machine. Get more information here.

These are just a few examples of Interface’s work in the sporting goods and fitness industry. If it moves, rotates, pushes, or pulls, chances are that Interface has a solution that can help perfect the performance. To learn more about our work in sports and consumer goods.

ADDITIONAL RESOURCES

Interface Measures Fitness Equipment with Extreme Accuracy – Case Study

Why Product Design Engineers Choose Interface

Race Car Suspension Testing

CPG Treadmill Force Measurement

CPG Gaming Simulation Brake Pedal

CPG Bike Power Pedals

CPG Bike Helmet Impact Test

Mountain Bike Shocks Testing

Fine-Tuning Testing Solutions for Championship Racing Vehicles