Posts

Interface Weighing Solutions and Complete Systems

Sensors are commonly used for weighing applications throughout the product life cycle, from R&D to distribution. Sensors are used for weighing individual parts or components, inside equipment and machines for measuring weight during assembly and production, weighing ingredients, and weighing final products during distribution and transportation. Interface provides a range of weighing solutions for these use cases, including individual measurement devices, instrumentation, and complete systems to manage large and small projects.

Interface supplies highly accurate and reliable load cells and sensor technologies for weighing and scale solutions, including complete weighing systems. Weighing and scales must be dependable and always provide correct data. That is why Interface’s precision sensors and instrumentation are preferred for weighing systems. To outline our breadth of this product line including complete systems, we recently introduced a new Weighing Solutions Overview.

Interface Weighing Solution Products

Interface offers weighing solutions that are standard products and engineered to order for weighing use cases. This includes our 2023 Weighing Review Award nominated A4200 Weighcheck Load Cells.

A4200 and A4600 WeighCheck™ Load CellsInterface A4600 WeighCheck™ Load Cells in stainless steel and A4200 WeighCheck Load Cells, which is zinc plated, are both high accuracy force measurement weighing solutions. Manufactured and designed by Interface engineers, these exclusive Interface products are specifically designed for tank weighing, where it is necessary to accommodate expansion and contraction of the tank. Interface has expanded with new model options that include signal conditioning features, including customized IO-Link Digital and 3-Wire options. The newly introduced customized A4200 and A4600 3-Wire Amplified Load Cells provide an internally amplified low profile load cell with a voltage or mA signal. This option eliminates the need for an external signal conditioner and comes scaled to the load cell and ready to use.

Standard A4600 and A4200 WeighCheck Load Cell features include:

  • Capacity ranges from 2.5K to 50K lbf (11.1 to 222 kN)
  • High output – 4 mV/V
  • Self-centering in all directions
  • High safe side load – to 400%
  • Standardized output – ±0.1%
  • Zinc plated (A4200) or stainless steel (A4600)
  • Factory assembled for easy field installation
  • Static, dynamic and in-motion capabilities
  • Low height – 4.0 in (101.6 mm) for 2.5K, 5K, 10K (11.1, 22.2, 44.5 kN); 5.0 in (127 mm) for 25K, 50K lbf (111, 222 kN)

Interface offers fully engineered to order and custom options to our WeighCheck load cell models that include our new A4200 and A4600 IO-Link Digital Load Cells with an industry stand M12 connector. IO-Link, a communication protocol used in industrial automation applications to connect sensors and actuators to control systems has multiple benefits. These include increased flexibility, enhanced diagnostics, simplified wiring, improved efficiency, and lower costs.

Engineering Insights to Build Complete Weighing Systems

Interface’s weighing solutions include single and multiple sensor systems, depending on the exact application requirements. Important for this type of test and measurement, we have wired and wireless sensors, data acquisition systems, weight indicators, displays, and transmitters, software solutions and accessories. A review of many of these products and applications are detailed in our popular recorded Weighing Your Options Webinar.

When helping to build customized full weighing system solutions, there is additional configuration and engineering work that goes into delivering the system. One of the most important aspects of building a system is load cell trimming. Excitation trimming the old way adds resistance to the excitation. The system load cell with the lowest output receives the full excitation voltage, while the other system load cells receive proportionately smaller excitation voltages. This creates matched outputs for all load cells in the system.

Signal trimming is the most common and popular type of trimming because it is the easiest to use. It involves adding a relatively high parallel resistance between the signal of each load cell, which creates a leakage path that diverts some of the available load cell signal away from the indicator. More load cell signal will be available to the indicator as parallel resistance increases.

Weighing Applications

 

Crude Oil Weighing

Hospital Bed Weighing

Inventive Agriculture Monitoring and Weighing Solutions

IoT Waste Management Container Weighing App Note

Snack Weighing and Packaging Machine

Ice Machine Weighing

Veterinary Weighing Scales

Weighing Your Options Webinar Recap

Interface Weighing Solutions Overview

Weighing Solutions Brochure

 

Load Cell Stiffness 101

Load cell stiffness refers to the ability of a load cell to resist deformation when a load is applied to it. It is a measure of how much a load cell will deflect or bend under a given load. Stiffness is an important specification of load cells, as it affects their accuracy and sensitivity.

Load cell stiffness is typically conveyed as the ratio of the load applied to the deflection of the load cell. For example, if a load cell deflects 1mm when a load of 100N is applied, its stiffness would be 100N/mm.

The selection of a load cell with an appropriate stiffness is critical to ensuring optimal performance in each application and should be carefully considered in the design and implementation of any measurement system. Load cell stiffness can significantly alter the performance.

High stiffness load cells are preferred in applications where high accuracy and precision are required, as they provide greater resistance to deformation and are less susceptible to measurement errors. High stiffness provides more precise and consistent measurements. They are the preferred choice for many applications, including in aerospace, robotics, material testing and of course calibration and metrology.

Low stiffness load cells may be used in applications where flexibility and compliance are necessary, such as in weighing systems that must accommodate vibration or movement. Load cells with low stiffness may be more suitable for applications where flexibility and compliance are important, such as in dynamic force measurement or shock testing.

The determination of load cell stiffness requires consideration of several key factors, including:

  • Load capacity of the load cell should be considered when determining its stiffness. Load cells with higher load capacities typically require greater stiffness to maintain their accuracy and precision under load.
  • Sensitivity of the load cell, or the amount of output change per unit of input change, should also be considered. Load cells with higher sensitivities may require greater stiffness to maintain their accuracy, as they are more sensitive to changes in the applied load. Read more in Load Cell Sensitivity 101
  • Environmental conditions in which the load cell will be used should also be considered, such as temperature, humidity, and vibration. In some cases, load cells with lower stiffness may be necessary to accommodate for environmental factors such as thermal expansion.
  • Application requirements specific to the use case, such as the required measurement range, accuracy, and resolution, will define the success of our project or program. Load cells with higher stiffness may be necessary for applications requiring high accuracy and precision, while load cells with lower stiffness may be more suitable for applications requiring greater flexibility and compliance.
  • Natural frequency, which is the frequency at which it oscillates when subjected to an external force is a consideration. Load cells with high stiffness have a higher natural frequency, which allows them to respond more quickly to changes in the applied force, resulting in faster and more accurate measurements.

Load cell design plays a critical role in controlling load cell stiffness. There are several key design factors that can affect the stiffness of a load cell, include material selection, geometry, strain gage placement and mechanical configuration. Read Get an Inside Look at Interface’s Famously Blue Load Cells to review our precision design features.

The choice of materials used in the load cell construction can have a significant impact on its stiffness. Load cells made from materials with higher Young’s modulus, such as stainless steel, are stiffer than load cells made from materials with lower Young’s modulus, such as aluminum.

Load cells with thicker walls, larger cross-sectional areas, and shorter lengths are stiffer than load cells with thinner walls, smaller cross-sectional areas, and longer lengths.

Strain gages placed closer to the neutral axis of the load cell will experience less strain and deformation, resulting in a stiffer load cell.

The mechanical configuration of the load cell, including the number and arrangement of its sensing elements, can also affect its stiffness. Load cells with more sensing elements arranged in a parallel or series configuration can be designed to be stiffer than load cells with fewer sensing elements.

Load cell design plays a critical role in controlling load cell stiffness to ensure that it meets the stiffness requirements of the application. If you have questions about the load cell that best fits your application, please contact us. Our experts are here to help.

ADDITIONAL RESOURCES

Interface Load Cell Field Guide

How Do Load Cells Work?

LowProfile Load Cells 101

Load Cell Basics Sensor Specifications

Load Cell Basics Webinar Recap

Interface Solutions for Safety and Regulation Testing and Monitoring

Among the many challenges we help to solve, safety and the stringent requirements for helping to make products safer for all types of users is top of the list. Interface’s solutions are known for quality and accuracy, which are at the forefront of all decisions used for safety and regulation testing. It is one of the top reasons consumer product makers choose Interface force, torque and weighing test and measurement solutions.

Everyone involved in the production and sale of products have a role to play in ensuring product safety and compliance with regulations, from the manufacturer to the retailer of any product. They are all responsible for designing, testing, and producing safe products.

Manufacturers have the primary responsibility for ensuring that products are safe and compliant with regulations. Governments have the authority to establish safety standards and regulations for products and to enforce these standards through inspections, fines, and recalls. Independent testing labs are used to conduct safety and compliance testing. These labs provide impartial and objective test results. Retailers also have a responsibility to ensure that the products they sell are safe and compliant with regulations. By working together, they can help to promote public trust in products and reduce the risk of accidents and injuries.

In engineering, the safety and regulation testing of products is crucial for ensuring that products are safe for use and meet industry standards. This type of testing helps to identify potential hazards and design flaws that could harm consumers or cause damage to property. It also ensures that products comply with regulations and standards set by governing bodies such as the Consumer Product Safety Commission (CPSC) and the International Electrotechnical Commission (IEC). This helps to protect consumers, promote public trust in products, and reduce the risk of liability for manufacturers. By performing safety and regulation testing, engineers can help to ensure that products are reliable, effective, and trustworthy.

Safety and regulation testing helps manufacturers in several ways:

  1. Liability reduction: By ensuring that products meet safety standards and regulations, manufacturers can reduce their risk of liability in the event of accidents or injuries caused by their products.
  2. Consumer trust: Consumers are more likely to trust and purchase products that have been tested and found to be safe and compliant with regulations.
  3. Marketability: Products that meet safety and regulation standards are more likely to be accepted in the market and sold to a wider range of customers.
  4. Brand reputation: A company’s reputation is closely tied to the safety and quality of its products. By demonstrating a commitment to safety and compliance, manufacturers can enhance their brand reputation and build consumer trust.
  5. Cost savings: Investing in safety and regulation testing can help manufacturers identify and correct design flaws before products are mass-produced, reducing the cost of recalls and liability claims.

We work with manufacturers of heavy machinery, vehicles, consumer goods, medical devices and pharmaceuticals, and even aircraft and rocket ship builders. All these industry experts know that precision test and measurement solutions are essential for eliminating the serious threat to humans when their inventions and products are not thoroughly tested and monitored properly.

Testing is the first step in the process of ensuring safety. Interface load cells and torque transducers are used to test a wide variety of parameters related to force. For instance, Interface provides solutions for projects involving the testing of cranes and ensuring that these massive machines are able to lift the weight that the particular product’s specifications allow. This ensures safety for the user and those on the ground by putting the machine through rigorous testing using load cells to measure the cranes maximum limits with various loading conditions. Watch a quick demonstration video of crane safety test solutions from Interface.

In addition, force measurement can be used to measure small and precise forces during the testing phase. One such example is the use of load cell load buttons to measure the clamping force of a vascular clamp used in surgery. This force needs to be tightly tuned in regulation with stringent medical requirements. Forces too small or large could have serious repercussions for the patient. This is a simple test that makes a dramatic difference in which the clamp force is applied to these miniature load cells and the force signal is sent to the tester.

One specific requirement that Interface has a great deal of experience in supplying solutions is for torque testing on lug nuts, bolts and other assembly equipment. While tightening these parts may seem like a simple process, industries like automotive and aerospace have strict requirements for the exact tightness and tolerance for bolts. We provide torque testing system devices that evaluate these parameters accurately to meet those regulations. Any misstep in tightening can lead to severe failure that puts the user at significant risk, not to mention pedestrians when it comes to the automotive industry.

The next use of force measurement in the realm of safety is by using sensors for real time monitoring. Load cells and torque transducers can be designed into a product to allow for monitoring of the product in use, telling the user when it needs to be repaired. They can help by notifying the user if a vehicle or machine is holding weight above its capacity, or if there is potential failure of a machine or product.

For instance, machines on a production line can be monitored and irregular data can show that it needs to be brought down briefly for repairs. Having machines with issues that are not noticed do not only affect efficiency, but it can also pose a threat to nearby workers. Additionally, monitoring something like a crane is also a way to ensure it is not overloaded.

These applications provide notable examples of how force measurement can guarantee meeting safety requirements and regulations, as well as monitoring for safe conditions in real time. To provide a visual example, we have developed several applications notes, a few of which we have included below.

Regulatory Medical Device Stent And Catheter Testing

A customer needed to apply known forces to stents and catheters to ensure they pass all necessary strength and flexibility testing. Interface suggested an MBP Overload Protected Beam Miniature Load Cell be placed behind the guide wire for the stent or catheter. The motor will spin the linear drive and push the load cell and guide the wire through the testing maze. The MBP Overload Protected Beam Miniature Load Cell is connected to the DIG-USB PC Interface Module. All forces are measured and stored on a computer. Using this solution, the customer was able to perform required testing and logged, followed by being able to review results and take actions as needed. Get more information about this testing in our Stent and Catheter Testing App Note.

Equipment Safety with Bolt Tension Monitoring

A customer wanted to monitor the tension of the bolts that are used on their industrial large metal pipes. Interface suggested installing multiple LWCF Clamping Force Load Cells, each connected to WTS-AM-1E Wireless Strain Bridge Transmitter Modules. The load cells were installed under the tightened bolts on the pipes and measured the compression forces from the bolts. The real-time results were transmitted wirelessly from the WTS-AM-1E’s to the WTS-BS-6 Wireless Telemetry Dongle Base Station when connected to the customer’s PC. Real-time results from the LWCF’s were displayed using provided Log100 Software. Interface’s load cell monitoring system successfully monitored the compression forces of the bolts in real time.

Public Safety Bridge Seismic Force Monitoring Solution

A customer wanted to monitor seismic activity that occurs to a bridge by using force sensors and then continuously monitor bridge forces before, during, and after earthquakes occur. The customer also preferred a wireless solution so they would not need to run long cables on the bridge. Using Interface’s LP Load Pin custom made to fit their needs, alongside the Interface WTS Wireless Telemetry System, continuous force monitoring was able to take place without long cables, allowing the customer to monitor continuous loads, log information to the cloud, and review information. Read Bridge Seismic Force Monitoring Solution App Note for more information.

If you are looking for accurate and dependable solutions to assist with testing and monitoring for safety and regulatory requirements, contact us.

ADDITIONAL RESOURCES

Crane Block Safety Animated Application Note

Load Cells for Consumer Product Applications

Interface Solutions for Production Line Engineers

CPG Bike Frame Fatigue Testing

MARITIME Crane Block Safety Check

Crane Safety Requires Precision Measurements Ship to Shore

Entertainment Venue Force Measurement and Monitoring Solutions

 

Weighing Your Options Webinar

Interface force measurement experts detail solutions used for all types of weighing and lifting applications. We discuss sensor models, capabilities, features and tips using various load cells, load pins, shackles, tension links, weighcheck systems and instrumentation. Learn about use cases, FAQs, measurement applications, options for harsh environments and OEM products. If you are exploring quality measurement solutions that provide high accuracy and reliability for scales, cranes, lifting equipment or tools, join us.