Posts

Interface Solutions for Testing Tools

Interface load cells, torque transducers and instrumentation are commonly used in the test and measurement of different tools and fasteners used in testing products and actual production of various machines and components. The sensor data received in measuring assembly tools and fixtures used in securing nuts, bolts, and screws, is critical in making safe and reliable products.

For example, the ability to measure torque on screws and the force output of a screwdriver or wrench is very important when there are tight tolerances involved like in engineering and build of automotive or aerospace and defense machines and parts.

As we did for the machine testing blog, we’ve detailed a few examples of how Interface force and torque solutions are used in measuring tools performance for both design and assembly.  You can find additional application notes on these examples and more by visiting our industry solutions.

Bolt Fastening

Bolt Fastening Force and Torque

An aerospace company was working on a test plan that involved taking torque and compression measurements on fasteners with varying joint materials. The system required both high and low sampling rates, in addition to the capability of precisely measuring force and torque simultaneously. They required reliable accuracy and long-term stability. The test plan intended to provide verification of required force and torque specifications for fasteners, to ensure safety without compromising installation. Interface suggested a LW or LWCF Load Washer in conjunction with a  T12 Square Drive Rotary Torque Transducer. With this solution, the customer was able to align force and torque measurements to desired levels. This was accomplished by combining the sensors with the high sample rate of the data logging and graphing capabilities of the SI-USB, capturing real-time force and torque levels for examination. The fasteners were tightened to the specified force and torque requirements and were safely installed without impairment to themselves or the joint material. The customer was able to measure the rapid event effectively and accurately. Read more about this bolt fastening solution here.

Aircraft Screwdriver Fastening Control

An airplane manufacturer needed a solution where they can control the torque when fastening screws on their airplane models. They didn’t want to create any damage to materials or apply too much torque when plane components are being fastened together. Interface suggested a T15 Hex Drive Rotary Torque Transducer, which can be attached to the fastening work bench, measuring and recording torque, rotational speed, and angle of the screwdriver. The LWCF Clamping Force Load Cell is installed, measuring the forces applied on the screw being fastened. Results are sent to the SI-USB4 4-channel USB Interface Module, which is connected to the customer’s PC or laptop where data is logged, graphed, and displayed. This solution allowed the airplane manufacturer to calibrate their screwdriver by measuring its torque, rotational speed, and angle, when attaching materials together for their airplane. They were also able to measure the forces being applied to the screw, to ensure it was not applying too much torque to the components. You can learn more about the aircraft screwdriver application here.

Torque VerificationRatchet Wrench Torque Verification

A customer wanted to perform regular torque testing on his ratchet-type torque wrench while recording these values for future examination. Interface supplied a model TS15 Square to Flange Reaction Torque Transducer with the INF-USB3 PC Interface Module for the customer to use. The customer mounted TS15 to work bench through flange and inserted the ratchet-type torque transducer into the TS15. Using this product, the customer was able to accurately perform their calibration checks and view the results while logging them to their PC Computer.  Learn more about this wrench torque verification testing here.

While not nearly as complex as machine testing applications, tools testing is equally important to the outcome of a project. The tools and fasteners used, even those as simple as a bolt and wrench, need to be accurately measured and assembled to avoid loose connection or overtightening that can damage the product. Interface provides a host of tool testing solutions for nearly anything that outputs force or torque. To learn more about our tool testing solutions, visit us at www.interfaceforce.com.

Additional Resources

Force Measurement Solutions for Bolt and Screw Fastening

Bolt Fastening- Force

Fastening Work Bench

Engine Head Bolt Tightening

Force Solutions for Testing Machines

In test and measurement, one of the most common application for force sensors is industrial-scale testing machines of all kinds. Force and torque data is used in several ways with these types of applications. They can be used in the design phase to help perfect a product or component as it relates to force input or output. They can also be used as a monitoring device to tell users when a machine or its accessories need to be repaired or replaced.

For machine makers, product engineers and test lab equipment users, Interface supplies precision load cells, torque transducers, data acquisition devices and accessories.

Machine testing is one of our most prominent use cases for measurement sensors. Interface has seen quite a few different applications across industries. We’ve noted a few of our application notes that highlight these use cases by outlining how force measurement solutions are used in various machines.

Proving Theoretical Cutting Forces of Rotary Ultrasonic Machining

Rotary ultrasonic machining is a hybrid process that combines diamond grinding with ultrasonic machining to provide fast, high-quality drilling of many ceramic and glass applications. This new method has been theoretically proven using computer models. Rotary ultrasonic machining generates forces of a very small magnitude. To prove this theory, any load cell used for measurement must be sensitive, while at the same time retaining high structural stiffness within a compact, low-profile envelope. Interface suggest using its 3A120 3-Axis load cell installed in the rotary ultrasonic machine to measure the forces being applied to a sample part. With clear signals and minimal crosstalk, the applied forces are recorded and stored using an the BSC4D Multi-Channel PC Interface Module. The 3-Axis load cell provides excellent data helping uncover the relationship between machine cutting parameters and the forces applied on the component. Using this knowledge, the machining process can be reliably optimized for new materials and operations. Review the complete cutting forces of rotary ultrasonic machine application note.

Friction TestingFriction Testing Machine

A testing laboratory was looking to replace two single axis load cells used in their friction testing machine with one sensor that could measure force on the x, y, and z axis simultaneously. Interface’s 3A60 3-Axis load cell was installed on their existing machine with an Interface BSC4D-USB Multi-Channel PC Interface hooked directly to a PC laptop to monitor and log the data in real time. The testing laboratory was able to simplify their sensor set-up and improve their data collection, creating more value for their end customer. Friction testing is a common use case.  To learn more about this application for a friction testing machine, go here.

Spring Compression Testing Machine

In an upgrade in machinery and testing equipment, a customer sought a solution to test the performance of their springs in their specially designed spring test stand using a new wireless solution. Interface suggests using the WTS-5200XYZ 3-Axis Force Moment Load Cell which has 3 integral WTSAM-1E Wireless Transmitters and installing it into the customer’s spring compression frame. The WTS-5200XYZ 3-Axis Force Moment Load Cell will measure the force compression of the spring. The integral WTS-AM-1E Wireless Strain Bridge Transmitter Modules will transmit and display the information wirelessly to the LCCA Wireless Instrument enclosure. It can also be programmed to trigger an alarm.  You can read about the spring testing machine here.

Weighing and Packaging Machine

A food brand wanted to weigh the amount of their snacks that is automatically dispersed into the bags during the packaging process. In this case, they also want to weigh their potato chips being packaged and ensure the potato chips are at the exact weight needed due to regulatory standards. Interface’s suggested using multiple SPI Platform Scale Load Cells and install them to the potato multi-head weigher and packaging machine. The SPI Platform Scale Load cells were installed inside of the mount that attaches the head weigher to the packaging machine. Force results from the potato chips were read by the load cells and sent to the ISG Isolated DIN Rail Mount Signal Conditioner, where the customer could control the automated production from their command center. With these products, the customer was able to determine the weight of the potato chips being distributed into their bags with highly accurate results. They also were able to control the automated production process with the provided instrumentation. They will use this same weighing method for other snacks that need to be packaged. Learn more about the packaging machine here.

Interface sensors are used across industries to test advanced machinery because our products provide the most accurate data on the market to help improve the efficiency and quality of equipment and testing machines. To learn more about Interface solutions for testing machines, check out our application notes page at www.interfaceforce.com/application-notes/.

Force Sensors Advance Industrial Automation

Industrial automation heavily relies upon the use of sensor technologies to advance production and manufacturing. In the next phase of the industrial revolution, also referred to as Industry 4.0, gains in operational efficiencies are often rooted in innovative tools, robotics, and equipment renovations. These types of enhancements require use of interconnectivity, automation, machine learning, and real-time data. Interface is playing a significant role in enabling these advancements with smart force and torque measurement solutions.

Randy Franks at Sensor Tips poses the following question in a recent article: How can force sensing be integrated for Industry 4.0 upgrades?

“Upgrading facilities to industry 4.0 standards is one of the most significant trends in the manufacturing industry today. To do this, original equipment manufacturers (OEMs) are pushing hard to renovate their facilities with connected, automated devices and machines to create greater efficiency and cost savings. Smarter devices can ease the transition.”

He continues in his post to note, “For Industry 4.0, force measurement solutions providers are integrating actuators that move and control a mechanism or system with load cells to create fully automated force test systems.”

Illustrating how this work, Randy writes about manufacturers of mobile devices using force measurement testing automation to pressure test touch screens with the new Interface ConvexBT miniature-sized load button load cells

Click here to read the rest of the article.

Force Measurement Solutions for Bolt and Screw Fastening

Among the many applications of force measurement devices, one that appears to be a simple application can have a big impact on worker safety, productivity, waste reduction, assembly and product performance. In this new animated application note highlight, we take a look at the tools used for bolt fastening measurement.

Bolts and screws are used to secure different pieces or components together for nearly every product imaginable, especially when it comes to large machinery and even automobiles. The success of these products and the manufacturing of these components requires a strict level of detail that goes into the tightness of a bolt. It’s not like your typical “do it yourself” furniture where you just tighten a screw or bolt until you can’t anymore. The precision needed for certain objects to be tightened to the exact measurement is mandatory.

Interface provides measurement solutions for all types of industrial automation and toolset testing used in thousands of applications that ultimately are utilized in the building of products. In the example below, we provided devices that are used to determine the exact bolt force and tightness necessary. The goal of measuring the tightness is to avoid under or overtightening. As you can imagine, under tightening can cause components to come apart. However, over tightness can also cause significant damage to the pieces being bolted together.

Bolt Fastening Application

To show the process of measuring bolt tightness, check out this latest use case video demonstration.

For this bolt fastening application, the customer used an Interface Model LWCF Load Washer along with an Interface Model INF-USB3 Single Channel PC Interface Module to monitor force being applied during bolt tightening. The data transferred from the bolt clamping force load cell load washer with a thru-hole, to the instrumentation is displayed, logged and graphed directly onto a computer for analysis and performance testing.

This is a basic example of the test and measurement process, however, Interface also contributed to a number of real-world projects and created applications notes to provide an illustration. One of our favorites is when an industrial automation company was building an automated assembly machine for an automotive manufactur­ing plant.

The product engineers and testing team needed to tighten all of the head bolts on an engine on their assembly line to a specific torque value. Having the head bolts precisely and consistently tightened to the engine block is critical to the operation of the engine.

To measure this force, several Interface Model T33 Spindle Torque Transducers were installed in their new machine to control torque and angle and ensure the head bolt was properly tight­ened. The square drive of the T33 allowed the customer to fix their tool directly to the end of the torque sensor, streamlining the installation.

Using this solution, the head bolts were correctly installed according to manufacturer specifications, producing an engine that meets performance and reliability expectations of the auto manufacturing plant.

Here are additional solutions that showcase how Interface load cells, torque transducers, instrumentation and custom solutions are used for various tools and manufacturing processes across various industries.

Aircraft Screwdriver Fastening Control

Fastening Work Bench

Bolt Fastening Force and Torque

Interface Solutions for Robotics and Industrial Automation

Contact us to learn more how we can help you ensure the right fastening and machine control for your next projects.

 

 

 

Robotics and Automation are Changing Modern Manufacturing at Interface

As the leader in manufacturing force measurement solutions for more than 51 years, the day of carrying out monotonous tasks on the manufacturing line by hand is a history not worth repeating.

Innovation is a core value at Interface. It is essential in helping us advance and grow our production experience and responsiveness to our customer’s advanced application use of our load cells, torque transducers, and thousands of other products that we manufacture.

Continuous Improvement SME Lance Gerdes shares his insight into how a focus on innovation is leading to the introduction of automation tools and robotics onto the manufacturing floor at Interface’s 50,000 square foot headquarters in Arizona.

It is difficult to look back fondly on the days that lacked automation of production line tasks. Line work was straining and tedious during those days, as most technicians would agree. Fast-forward to today, companies who are incorporating new technology are typically experiencing process improvements, increased efficiency, reduced overhead, improved quality output and better run facilities overall.

Results speak for themselves. Manufacturing facilities equipped with automation can significantly reduce time spent on repetitive work, freeing up time for technicians to focus on other areas that advance production and get products to market.

Interface recently invested in a line of collaborative robots to upgrade our facilities. With responsibility for the specialized 1923 Wireless Load Cell product line at Interface, looking back there are many of the typical tasks our technicians used to carry out that involved full days of certain repetitive tasks by hand. The days where my technicians were forced to focus on these tasks represented a significant barrier to peak productivity. Times have changed and so has Interface!

Today with the introduction of automation, we are operating more efficiently than in those dark ages without robotics. We are using collaborative robots to handle tasks, including the application of RTV, which is a silicone sealant used on load cells to protect them from environmental factors. In the past, the technician would be responsible for applying this adhesive in addition to hand-tooling. By automating the adhesive step of this task, those technicians are averaging 50% more efficiency in their workflow.

“Robotics used to facilitate automation is a “must-have” addition to every manufacturing floor.” Lance Gerdes

The return on investment is easily achievable in a year or less. Interface has seen as high as a 15% production increases across the board. As a champion of continuous improvements in our manufacturing, I am excited to see our production results. This success is now leading us to look into more tasks that can be automated using collaborative robotics.

One concern regarding the rise of robotics in the industrial sector we constantly get questions about is the use of robotics as a replacement for our human workforce. This could not be further from the truth at Interface. If anything, robotics will eventually increase the skill set of our current technicians and open up new job openings for Interface as we grow. As we get more advanced collaborative robotics integrated into our work, it improves our capabilities. We will need operators for this automation equipment. And, as we become more efficient and increase profit margins, we’ll have the capacity to grow Interface’s products and services. A win for more jobs, more solutions, and more happy customers!

Robotics and automation are changing the way manufacturing floors operate for the better. At Interface, we look forward to researching and applying new ways that each department can implement automation and robotics technology.

Contributor:  Lance Gerdes, Continuous Improvement SME, Interface

More than half of Interface’s team members work in production. The average tenure for our team is nearly a decade. Our diverse talent in skill and capabilities serve more than 4,500 global customers in various markets each year. For more detailed insights on the inner-working of the Interface manufacturing floor, Interface’s revolutionary products and profiles on our excellent team subscribe to the InterfaceIQ blog at /blog/.