Posts

Top 10 Trends in Test and Measurement

As a leader in force measurement, Interface is privy to the evolving landscape of test and measurement. These top 10 trends also shape our future.  Interface constantly invests in new sensor designs, technology, and tools to support our market-defining, high accuracy, quality products.

Interface offers various standard and custom sensors, instrumentation, technical support, and services for customers across various industries worldwide. The feedback we gather from the market and customers defines our priorities.

Based on the current demands of our products, requests for solution support, and incoming inquiries to our application experts, we compiled some key trends for 2023.

  1. Miniaturization: Demand for smaller, lighter sensors is increasing across industries, from robotics and drones to medical devices and lifting technologies, and continues to be the top trend in T&M. Interface’s miniature load cells enable precise measurements in compact spaces. There is also a growing use of embedding our Mini sensors into OEM products for real-time feedback, like surgical robots and fitness equipment.
  2. Multi-Axis Measurements: Analyzing forces in multiple directions is becoming essential for complex testing scenarios. Interface’s Multi-Axis Sensors facilitate comprehensive data collection and a deeper understanding of force interactions.
  3. Wireless Data Acquisition: Eliminating cables simplifies testing setups and improves data access. Interface’s wireless load cells and data acquisition systems enhance data portability and streamline testing processes. These wireless systems, including sensors like our wireless load pins and tension links, provide immediate system monitoring and maintenance technologies without cables for machines, equipment, components, and consumer products.
  4. Smart Sensors and IoT Integration: The use of sensors to make smart decisions is rising, from use in smart city projects to automating production. Interface measurement devices with easy connectivity are revolutionizing test and measurement. Interface’s sensors with digital outputs and compatibility with IoT products enable real-time data analysis, remote monitoring, and predictive maintenance.
  5. Material Characterization: Interface’s force measurement solutions are increasingly used to characterize the mechanical properties of materials, crucial for optimizing product design and performance in industries like aerospace, automotive, and construction. Material testing is also used in circular economy applications, using old materials for new inventions.
  6. Testing in Harsh Environments: Interface’s rugged and environmentally sealed sensors are finding more applications in extreme conditions, from subsea exploration to high-temperature testing. These ATEX, submersible, high-temp, and stainless steel products allow testing in critical real-world scenarios.
  7. Complex Measurement Analysis: Advanced software tools and data analysis platforms are essential for effectively interpreting and utilizing force measurement data. Interface provides software packages such as our Log100 and BlueDAQ Software to facilitate deeper insights and decision-making.
  8. Efficiency and Cost Optimization: Test and measurement processes are refined for efficiency and cost savings in product designs, building new products, and retrofitting existing machinery and equipment. Interface’s solutions contribute by facilitating faster setup, accurate data collection, and improved product quality, leading to reduced testing costs and faster time to market.
  9. R&D Driving Sustainability and Efficiency: Interface has seen an increase in customers using our sensor technologies for products and processes that positively impact the environment. This includes using Interface sensors for applications that include recycling and waste management, restructuring infrastructure, renewable energy production, electric vehicles, and battery development. Interface devices are commonly used in designing long-lasting, low-maintenance consumer products.
  10. Advancing Possibilities in Measurement with Customized Solutions: The need for customized force measurement solutions with diverse industry applications is growing. Interface’s engineering expertise and wide range of products allow it to cater to specific testing requirements and develop bespoke solutions. This includes engineered-to-order load cells, transducers, and complete system configurations like Interface Data AQ Packs.

These are just some of the trends we are observing in 2023. These trends are in addition to priority of providing industry-leading technical expertise and application support to help every customer.

With our commitment to collaboration, innovation, and accuracy, we are well-positioned to work with you as we shape the future of force measurement and contribute to the advancements in various testing and measurement projects across industries.

Interface looks forward to helping you with your inventions, research, testing, and product designs requiring precision measurement technologies in the coming year. Let’s continue the journey together.

 

Load Cells for Renewable Energy Production and Testing

Load cells are a versatile and reliable tool that can be used to measure a variety of forces and pressures. They are an essential part of the production and testing of renewable energy sources, helping engineers ensure these systems are safe and efficient.

Renewable energy companies, component makers, equipment manufacturers, and labs use Interface precision measurement devices for all phases of renewable energy testing and production. Interface’s LowProfile load cells, load pins, multi-axis sensors, wireless telemetry solutions, Mini load cells, and our sensors designed for use in submersible environments and harsh conditions are products used in the renewable energy market.  Find more information about these products in our new Interface Renewable Energy Solutions marketplace.

The advancement in renewables utilizing force measurement solutions enables us to tap into the Earth’s natural resources while preserving them for future generations. This includes growing use cases in advancing capabilities for solar panels, wind turbines, hydroelectric plants, geothermal systems, and bioenergy. This shift towards renewables reverberates across diverse industries, evident in the widespread adoption of electric vehicles and consumer products powered by the elements.

Currently, the top renewable energy sources in the world in terms of their current global installed capacity are hydropower, wind, solar and biomass. It is important to note that the ranking of these sources can change over time, as new technologies are developed, and more renewable energy projects are built.

Hydropower is the world’s largest renewable energy source. It is generated by the power of moving water, such as from rivers or waterfalls. Load cells measure the force of water flowing through a hydroelectric dam to control the flow of water. The information is used in the production and monitoring of the energy production. Load cells can also be used to measure the weight of the concrete used to build a hydroelectric dam and for assessing structural integrity. Check out our Hydropower Turbine Generator Monitoring App Note.

Wind power is the second largest renewable energy source. The energy is generated by the wind, which turns the blades of wind turbines to generate electricity. Wind power is a clean and renewable source of energy, and it is becoming increasingly cost-competitive. Load cells can be used to measure the torque and thrust of wind turbines to optimize the performance and ongoing operations. Load cells can also be used to measure the weight of the blades of wind turbines to make sure that the blades are strong enough to withstand the forces of wind depending on where the location.  Wind Turbine Bolt Monitoring provides an example of how our products are used in this type of energy production.

There are current programs around the world that are researching and development wind turbines that are located at sea. These offshore energy programs require force measurement solutions that are a submersible, ruggedized and wireless for use in energy production. Learn more by reviewing our Floating Wind Turbine Monitoring application note.

Solar photovoltaic (PV) and solar thermal are the third largest renewable and clean energy sources. Solar PV is generated by the sun’s light, which is converted into electricity by solar panels. Load cells can be used to measure the weight of solar panels to guarantee that the panels are properly supported and that they will not be damaged by wind or rain. Load cells can also be used to measure the force of the wind on solar panels to improve design and for ongoing element monitoring when in use. Get more details by reviewing Solar Panel Strength Testing.

Solar thermal is generated by the sun’s heat, which is used to heat water or air to generate steam or hot air, which can then be used to drive turbines to generate electricity. Load cells are used to measure the pressure and temperature of the water or air that is heated by the sun. Load cells can also be used to measure the weight of the solar collectors that are used to heat the water or air. Both use cases help in maintenance and to understand how to best protect the equipment from damage.

Biomass is the next largest renewable energy source and is generated by burning organic materials, such as wood, crops, or waste products. Biomass is a renewable source of energy, but it can also produce greenhouse gases. Measuring the energy production is critical. Load cells are vital in accurately measuring the weight of biomass fuel to safeguard against overloading the system. Load cells can also be used to measure the steam that is generated by burning biomass fuel. Interface Supports Renewable Energy Innovation details more examples.

Renewables_InfographicPoster

Read Interface Solutions for Growing Green Energy to see additional product applications.

Renewable and clean energy are often used interchangeably. Some sources are considered both renewable and clean. Renewable energy sources are important for ensuring our long-term energy security through sustainability. Clean energy sources are important for reducing our greenhouse gas emissions which science notes can significantly reduce our carbon footprint and combat the detrimental effects of global warming. Interface provides solutions that are helping to develop and deliver both renewable and clean energy.

As the world increasingly embraces renewables, we take significant steps toward building a more resilient and environmentally responsible energy landscape. This not only benefits us today but also fosters a healthier planet for future generations to enjoy. At Interface, we are committed to supporting this sustainable journey and contributing to a brighter, cleaner future for all of earth’s inhabitants.

ADDITIONAL RESOURCES

Interface Solutions for Growing Green Energy

Interface Supports Renewable Energy Innovation

Demands for Quality Energy Measurement Solutions

Energy Solutions

Windmill Energy App Note

Wave Energy Generator

Floating Wind Turbine Monitoring

Interface Helps Power the World

Interface Details Hydrogen Electrolyzers Solution in Design News

Interface Most Promising Energy Tech Solution Provider

Industry 5.0 and the Role of Force Measurement

The next industrial revolution is coined Industry 5.0. The fifth wave of significant advancement comes on the heels of Industry 4.0, which focused on efficiency and productivity enhancements. The next revolution in our midst is heavily dependent on data, sensors, and enablement tools used for industrial automation. Of course, that means sensor solutions from Interface are perfectly aligned in facilitating the next advancements.

The use of artificial intelligence (AI), robotics, and other smart-enabled technologies are at the heart of Industry 5.0. To further automate and optimize production processes, there is a strong emphasis on human-centricity, sustainability, and resilience. Interface is working with industry leaders, integrators, and innovators to provide advanced sensor technologies that will support the adoption of Industry 5.0 products, with all the benefits of optimization and reliability.

One of the challenges in the design and implementation of Industry 5.0 solutions is interconnectivity. To maximize the connectivity between humans and machines, the equipment needs to be tested and monitored utilizing different sensors for adoption, efficiency and dependability. The use of robotics, AI, and other smart technologies are leading to sustainability in industrial and manufacturing facilities. This requires measurement data that is accurate and easily retained for continuous improvements. Learn more in our case study: Advancements in Robotics and Cobots Using Interface Sensors.

Wireless Enabled Force Measurement

The use of wireless and Bluetooth technologies is common for facilitating the connection between sensors and data analysis used in defining how these technologies are used in manufacturing and industrial environments. Using wireless load cells with wireless digital instrumentation, data is used for real-time adjustments and performance monitoring. This is particularly important in managing environmental worker safety working in collaboration with advanced machines and robots. Check out our WTS and BTS solutions for more options.

For robotics in particular, free range of motions is particularly important. This is standard in future use, especially as manufacturers grow in dependency in advanced robotics use cases across the manufacturing continuum. To test advanced robotics and accurate movement for different axes, multi-axis sensors are a smart choice due to their capabilities in simultaneously measuring 2, 3, and 6 axes at a time. These sensors are paired with data acquisition systems like our BX8 Data Acquisition System for Multi-Axis Sensors to fully utilize the depth of measurement data for better decisions.

We also help to enable automation across the production line. Our products test the quality, durability and accuracy in performance of machines and other equipment used for various functions across the line. This includes cases of using miniature load cells in equipment that rely on exact force to press a design on a fragile consumable, to verifying accuracy of intricately machined parts using multi-axis sensors for production lines. We have provided sensors for industrial automation solutions to thousands of customers using standard and custom application-specific sensors.

Industry 5.0 Applications Using Interface Solutions

Included below are a few Industry 5.0 applications in which Interface solutions have been used to test or monitor equipment.

Cobot Safety Programming

Collaborative robots, what are termed as cobots, are an Industry 5.0 advancement used in many manufacturing operations. With product testing and design enhancements based on sensor data, protective cages or fences are no longer needed for safety purposes. However, safety testing is required to ensure humans and robots can work alongside each other. For this application, Interface suggests using four 3A40 3-Axis Load Cells (creating one 6-Axis Force Plate) installed between two metal plates at the base of the cobot. In addition to installing the multi-axis force plate under the cobot, we also suggest using two ConvexBT Load Button Load Cells in the pinchers of the cobot. If a human were to knock into the cobot, or have a limb stuck in the pincher, the cobot would sense the amount of force measured from the load cells and be programmed to stop immediately. Our BX8-HD44 BlueDAQ Series Data Acquisition System for Multi-Axis Sensors with Lab Enclosure is used to gather measurements and report back in real-time for monitoring.

 

6-Axis Force Plate Robotic Arm for Worker Safety

A customer wanted to measure the reaction forces of their robotic arm for safety purposes. The reaction loads occurred at the robotic arm’s base; therefore, they needed a force measurement system at the base of the robotic arm. Interface suggested using their force plate option to install at the base of the robotic arm. Four 3-Axis Force Load Cells are installed between two force plates, then installed at the bottom of the arm. This creates one large 6-Axis Force Plate. The sensors force data is recorded and displayed through the two BX8 Multi-Channel Bridge Amplifier and Data Acquisition Systems onto the customer’s computer. Interface’s 6-Axis Force Plate was able to successfully measure the reaction forces of the customer’s robotic arm while in action next to collaborating workers.

Commercial Food Processing for Efficiency

A food processing plant wanted accurate results of their in-motion check weigher when food is weighted and processed down the belt. They wanted to ensure production line efficiency and food quality. The customer also wanted real-time results of their food being weighed, and a load cell that could endure the food industry’s grubby environment. Multiple of Interface’s SPI High Capacity Platform Scale Load Cells were installed in the customer’s in-motion check weigher at the specific points where the food is weighed on the belt. The SPI High Capacity Platform Scale Load Cells delivered precise weighing results. When connected to the 920i Programmable Weight Indicator and Controller, it gave the customer real time results of the weight of the food being processed. Using this solution, the customer got precise weighing results in real-time of the food being processed on their in-motion check weigher. They were also able to view all the load cells in use simultaneously with Interface’s instrumentation.

Robotics_InfographicPoster

There are many projected benefits of the next industrial revolution, Industry 5.0. Staying at the forefront in providing useable and sustainable sensor solutions is a key focus of Interface. We look forward to supporting those that are driving the changes and adoptions for numerous benefits, primarily those targeting:

  • Increased productivity by automating tasks and optimizing production processes.
  • Improved quality of products by using advanced technologies to monitor and control production processes.
  • New products and services by using advanced technologies to create more personalized and customized products that work in collaboration, like cobots.
  • Utilizing collaborative machines and tools to reduce reliance of humans for repetitive and dangerous tasks.

Each of these  benefits can be accelerated in design, testing, and implementation with the use of high-accuracy force measurement solutions. Industry 5.0 is upon us and Interface has the expertise and experience to help in adoption and utiliziation. To learn more about our work in automation, robotics and more, go to Industrial Automation

Advancement in Robotics and Cobots Using Interface Sensors Case Study

Vertical Farming for Sustainable Food Production on Earth and Beyond

Vertical farming is a method of producing crops in vertically stacked layers, typically in indoor environments such as warehouses or greenhouses. This innovative agricultural approach offers a number of advantages over traditional farming methods, including higher crop yields per unit of land, more efficient use of resources such as water and energy, and the ability to grow crops in urban areas where space is limited. While vertical farming is currently being explored to increase food production on Earth, it also has applications in space R&D and for food sustainability projects.

In space, where resources such as water, energy, and land are limited, vertical farming can offer a viable solution for producing food. By using vertical stacking of crops, indoor environments, and controlled conditions, vertical farming can potentially overcome challenges such as gravity, atmospheric conditions, and limited space. This could enable sustainable food production for future space missions, space settlements, and colonization efforts.

As the global population continues to grow, and urbanization increases, vertical farming is a promising approach for addressing food scarcity and production challenges on Earth. With most the world’s population projected to live in urban areas by 2050, the need for localized food production close to urban centers becomes more critical. Vertical farming can provide fresh produce year-round, reduce the need for transportation, minimize the use of pesticides, and optimize resource utilization, making it a sustainable and efficient method for urban food production.

Interface sensor technologies and instrumentation are being utilized to expand the capabilities and possibilities in agriculture on Earth and in space. In our new case study, Vertical Farming on Earth and in Space, we explore products and solutions for challenges related to farming on earth and beyond. These solutions utilize load cells, multi-axis sensors, wireless instrumentation and devices for irrigation and growth monitoring systems, robotics, and farming equipment. The case study highlights innovation from a collaboration of industries including agriculture, space, and automation.

 

Vertical Farming Robotic Monitoring

In vertical farming applications, automated mechanics pick up and move the products, thus using less human involvement and contamination. To keep an eye on these automated systems, a wireless force measurement system monitors the robotics that pick up and move the produce to their next destination of the packaging process. Interface suggests installing SPI Low Capacity Platform Scale Load Cells, along with WTS-AM-1E Wireless Strain Bridge Transmitter Modules in the center of the platforms of the robotic lifting system that move around the produce. The WTS-AM-1E’s wirelessly transmit the data collected from the SPI’s to the WTS-BS-1-HA Wireless Handheld Displays for multiple transmitters, and the WTS-BS-6 Wireless Telemetry Dongle Base Station when connected to a computer. Read more here.

Vertical farming has the potential to revolutionize food production in space and on Earth, addressing the challenges of feeding a growing global population, particularly in urban areas. The intersection of various industries and the use of innovative technologies, including interface force measurement solutions, can play a crucial role in advancing vertical farming as a sustainable solution for future food production in space and on our home planet.

The collaboration between education, space, agriculture, and manufacturing sectors, including the use of interface force measurement solutions, can accelerate the development and deployment of vertical farming technologies for space and Earth. These solutions can provide data on factors such as plant growth, resource usage, and environmental conditions, which can be used to optimize the design and operation of vertical farming systems for maximum sustainability and productivity. Read the case study here.

ADDITIONAL RESOURCES

Inventive Agriculture Monitoring and Weighing Solutions

Aerospace Brochure

Force Sensors Advance Industrial Automation

Solutions to Advance Agriculture Smart Farming and Equipment

Using Multi-Axis Sensors to Bring Robotics to Life

Vertical Farming on Earth and in Space