Posts

Outlining Force Solutions for Structural Outrigging

Across a wide variety of industries, heavy machinery, maritime, construction, and other infrastructure often need additional structural support. This includes support that prevents equipment, vessels, and buildings from falling over, capsizing or collapsing.

Typically, the solution to provide this critical structural support comes in the form of an outrigger. For vehicles, both land and maritime, an outrigger is a projecting structure, with specific meaning depending on types of vessels, or the legs on a wheeled vehicle that are folded out when it needs stabilization.

For buildings, outriggers are interior lateral structural systems provided to improve the overturning stiffness and strength of high-rise buildings. It is a lateral load resisting system that is located within the building. The whole system consists of a core structure connected to the perimeter columns of the building.

These types of structural supports became popularized in the 1980s as an addition to high-rise buildings as they are effective up to 150 floors due to its unique combination of architectural flexibility and structural efficiency. Outrigging has been adapted for large vehicles and boats, such as large cranes that are extremely top heavy and can create balance problems, or yachts that need to be stabilized when stored out of water.

With the addition of these supports, various forms of testing need to be done to ensure the outrigger can support the vehicle or structure it is installed upon. This is where Interface’s force measurement testing and monitoring products are utilized in different outrigging applications.

Interface load cells are used by outrigging engineers, civil engineers and heavy equipment manufacturers, oil and gas, construction industry and marine equipment companies. Read more why Rigging Engineers Choose Interface Measurement Solutions.

The role of force measurement sensor technologies in outrigging is to provide high accuracy measurement of the outrigging equipment in test and actual use. The applications range from integration of sensors into outrigger equipment, to load cells for real-time monitoring of the physical structure using outrigger supports.

The most common Interface products used for outrigging include:

For example, Interface load shackle cells are used to measure the forces during outrigger testing as well as on the outrigger equipment that support the structure. The data from the sensor is critical information used to assess the structural integrity of the outrigger or structure and to identify any potential weaknesses.

Interface load cells, such as our load shackles or load pins, are typically placed in strategic locations on the outrigger or structure where the force is expected to be greatest. The load cell is then connected to a data acquisition system (DAQ) or indicator that records the force readings. The data can then be analyzed to determine the maximum force applied to the outrigger or structure, as well as the distribution of force over the structure.

Load cells can also be used to monitor the performance of outriggers or structures over time. This can be helpful in identifying any changes in the structural integrity that may be caused by wear and tear, environmental factors, or other factors. Utilizing instrumentation with alarm capabilities is helpful, as well as a tool for maintenance.

Load cells are an important safety feature in outrigging equipment. They can help to prevent accidents and ensure that the equipment is used safely. A load cell is used to prevent a crane collapse during the construction of a high-rise building in a large congested metropolitan city. The crane is used for lifting a heavy beam. The load cell alerts the operator when the load is too heavy.

Ultimately, force measurement provides several benefits to testing and monitoring different outrigger applications, including:

  • Increased safety: By measuring the force applied to the outrigger, a load cell can help to prevent overloading and damage to the outrigger. It is also valuable for continuous monitoring during lifting use cases, such as with a crane or heavy machinery.
  • Improved efficiency: By monitoring the performance of the outrigger, a load cell can help to identify any potential problems early on, which can help to prevent costly downtime.
  • Reduced risk: By providing accurate data on the force applied to the outrigger, a load cell can help to reduce the risk of accidents and injuries.

Examples of how force measurement is used to test outrigger solutions in a variety of industries:

  • In the oil and gas industry, load cells are used to test the outriggers of offshore drilling rigs. This helps to ensure that the rigs are safe to operate in high-wind and wave conditions.
  • In the construction industry, load cells are used to test the outriggers of cranes and other lifting equipment. This helps to ensure that the equipment is safe to use and that it will not overload the outriggers.
  • In civil engineering, load cells are used to test the structural integrity of bridges and other structures. This helps to ensure that the structures are safe to use and that they will not collapse underload.

Outriggers play a critical role in the safety and support of vehicles, infrastructure projects and massive structures. Interface force measurement products also play a necessary role in safeguarding outriggers and the operators. If you have an outrigging use case and are wondering which products are best suiting for your specific requirements, contact Interface Application Engineers for help.

Construction Brochure

Rod End Load Cells 101

Rod end load cells are designed to measure the tension and compression forces applied to a rod or similar structure. This type of load cell consists of a rod with a threaded connector. The load cell’s strain gage measures the deformation caused by the applied force. As the force is applied to the rod, it deforms slightly, causing a change in the electrical resistance of the strain gage.

To provide a complete analysis of the forces being applied to the structure, rod end load cells are often used in pairs, with one load cell measuring tension and the other measuring compression.

Interface Rod End Load Cells utilize proprietary temperature compensated strain gages for high-accuracy measurement. For example, our popular REC Rod End Load Cell is fatigue rated and designed to go up to 100,000,000+ fully reversed cycles which makes them ideal for test article failure tests. Our REC models are resistant to off-axis and impact loading with performance to .04%. They are environmentally sealed and made of stainless steel. They are easy to integrate in actuators.

Rod end load cells are commonly found in test labs and used in industrial environments, mechanical systems, and testing machines. They are adaptable and reliable force measurement devices utilized for applications in various industries.

Common Rod End Load Cell Use Cases

  • Material Testing: Rod end load cells are widely used in material testing applications, such as tensile testing, compression testing, and fatigue testing. They help measure the applied forces accurately and provide data for analyzing material properties, structural integrity, and performance.
  • Machine Force Monitoring: Rod end load cells are used in industrial machinery to monitor and control forces applied to rods, shafts, or other structural components. They help ensure that the machinery operates within safe load limits, preventing overloading and potential failures.
  • Hydraulic and Pneumatic Systems: Rod end load cells are employed in hydraulic and pneumatic systems to measure the tension or compression forces experienced by cylinders, pistons, or actuators. This enables accurate force control and monitoring for proper system use.
  • Robotics and Industrial Automation: Rod end load cells are integrated into robotic systems to measure the forces exerted by robotic arms or grippers. This allows for precise force control, feedback, and safety features in tasks such as assembly, material handling, and force-sensitive operations.
  • Calibration and Test Lab Equipment: Rod end load cells are utilized in calibration and testing equipment, such as force testers and dynamometers. They provide reliable and traceable force measurements, ensuring the accuracy and calibration of the testing instruments.
  • Aerospace and Automotive Industries: Rod end load cells find application in both aerospace and automotive industries for various purposes, including component testing, structural analysis, quality control, and safety testing. There are many use cases to rod end load cells for multiple industries, as found in our application solutions.
  • Research and Development: Rod end load cells are used in research and development activities across different fields, enabling precise force measurements for studying material behavior, product development, and prototype testing.

Drone Fireworks Rod End Load Cell Application

Drone fireworks have become increasingly popular in recent years. During drone firework and light shows, drones are equipped with LED lights, flying in synchronized patterns to create displays in the night sky.  Four rod end styled Interface WMC Sealed Stainless Steel Miniature Load Cells  are installed to the necessary propeller motors measure the attached LED lights. Each are connected to a WTS-AM-1E Wireless Strain Bridge Transmitter Modules. The WMC’s measure the weight of the LED lights to monitor weight shifting or any uneven weight distributions. Data results are wirelessly transmitted through the WTS-BS-4 Wireless Base Station.

Interface offers a wide range of rod end load cells. The following highlights our standard models for this type of load cell. Customization is an option if a rod end load cell is needed to be designed into machines or used as a component within a specific product.

Interface Standard Rod End Load Cells

REC Rod End Load Cell stainless steel mini with capacities from 1K to 50K lbf (5 kN to 220 kN).

WMC Rod End Load Cell industrial grade rod end type has capacities 15K to 200K lbf (65 kN to 900 kN).

WMC Sealed Stainless Steel Miniature Load Cell environmentally sealed in capacities from 5 to 500 lbf (22 to 2200 N). Submersible versions also available.

WMC Sealed High Capacity Stainless Steel Miniature Load Cell ranging from 1K lbf to 10K lbf (5 kN to 45 kN). Submersible versions also available.

WMCP Overload Protected Stainless Steel Miniature Load Cell With Male Threads is an excellent safeguard in rugged applications with capacities 1.1 to 2.2 lbf (500 to 1000 gmf).

WMCFP Overload Protected Sealed Stainless Steel Miniature Load Cell With Female Threads in 1.1 to 2.2 lbf (500 to 1000 gmf) capacities are stainless steel, sealed, and environmentally protected.

WMCF Miniature Sealed Stainless Steel Load Cell is an industrial design with capacities from 5 to 10 lbf with female threads.

MTFS Miniature Tension Force Load Cell is a small sized tension load cell available in capacity ranges from 1 kN to 100 kN (224.8 to 22.5K lbf).

NEW! ITCA Tension And Compression Load Cell is ideal for measuring both tensile and compressive forces 2.2K lbf to 330.6K lbf (1 MT to 150 MT). The standard metric threads at each end of the load cell are designed to accept standard spherical seating rod-end bearings. Customization is available.

Benefits of Interface Rod End Load Cells

#1 High accuracy: Our rod end load cells provide high accuracy in measuring the tension or compression force applied to a rod or similar structure. They are capable of measuring very small changes in force, making them suitable for precise measurement requirements and applications.

#2 Range of measurement and dimensions: Interface rod end load cells are available in a wide range of measurement capacities and compact size making them suitable for use in a variety of industrial and mechanical applications.

#3 Durability: Rod end load cells are designed to withstand harsh environments, high loads, and repetitive use. They are made from ruggedized materials, stainless steel or aluminum, so that can withstand exposure to moisture, dust, and other environmental factors.

#4 Versatility: Rod end load cells can be used in a variety of applications including material testing and manufacturing processes. They can be easily integrated into existing actuation systems and are compatible with a variety of instrumentation and control systems.

Rod end load cells, as highlighted in our recent Testing Lab Essentials Webinar, are used in applications that involve the measurement of tension or compression force on a rod or similar structure, such as in material testing or in the calibration of testing machines.

Load Pins 101

A load pin is a type of load cell that can replace bolts, clevis, sheave, and equalizer pins, as well as other load-bearing components to measure tensile and compression forces. Load pins are internally gauged with a bored center containing strain gauges, allowing them to convert force into an electrical signal for engineers to accurately collect data.

Most applications for load pins in the past have been for overhead equipment like cranes and lifts. Load pins have expanded in popularity and are now often used to test and measure force, load, and limitations in a much larger variety of applications. This includes uses not only for cranes and lifting devices, but also construction equipment, industrial machines, nautical craft and equipment, aerospace, and civil engineering applications. A primary system approach with structural applications is for safety and to prevent excesses in loading and lifting.

New model types with wireless and Bluetooth technology are also resulting in more use cases for these specialized force measurement solutions. This applies to both test and measurement as well as for installed OEM components within a larger structure or apparatus.

Top Load Pin Benefits

  • Easy to install new or retrofit
  • Robust construction
  • Replaces existing load bearing pins without any system modifications
  • Engineered to order designs available
  • Can be supplied with integral connector
  • Custom sizes and higher capacities available

Load pins come in many standard shapes and sizes, as well customization options to meet a specific design or use requirement. Interface provides these measuring devices, which often replace a bolt or pin, for safety and application monitoring. Some of our load pins are exclusively designed to meet the needs of applications in hazardous environments like the oil and gas industry, or marine industry where they’ll be submerged in water during testing and for continuous use.

The Interface Load Pins are machined from high tensile stainless steel and are suitable for exposed situations including seawater. We offer standard load pins with ratings between 1.1K lbf to 3.3M lbf (500kgs to 1500 MT). We also offer custom manufactured load pins suit applications from 100 kgs to 1500+ MT.

LP Stainless-Steel Load Pin – Great for lifting applications for both short and long distances. This product can be amplified with 5VDC, 10VDC or 4-20mA Outputs. It can also be made to meet ATEX requirements. Model LP Load pin is available in capacities up to 3,000,000 lbf (13.3 kN).

WTSLP Wireless Stainless-Steel Load Pin This advanced load can transmit wirelessly up to 600 (1,969 feet) meters in distance (clear line of sight) to a handheld display or USB base station.  The capacities range goes all the way up to 3,000,000 lbf (13.3 kN). The wireless option utilizes low power consumption for long battery life. It is configured and calibrated via PC using a base station and telemetry toolkit and compatible with Interface WTS Wireless products. The load pin is robust and uses a lightweight housing. It is environmentally sealed to IP67.

Load Pin Application

One of the largest scale applications of load pins we provided were used to measure force on a large bridge infrastructure project in the western U.S. The goal was to continuously monitor the standard force created by regular traffic, as well as the seismic force before, during, and after earthquakes. The monitoring sensors needed to be integrated into a dampener that would be attached to the structural tower.

The solution allows the company to monitor force from emitted data to cross-reference the standard traffic force with the seismic force to understand its effect on the bridge. Its purpose is to help with predictive maintenance and influence future bridge designs to better compensate for the forces of an earthquake or other natural disasters, which are common in this part of the world.

READ THE SEISMIC BRIDGE MONITORING APPLICATION NOTE HERE

READ THE INFRASTRUCTURE CASE STUDY HERE

The project required a custom product that could handle the inimitable and considerable force of a bridge under every scenario of distress. Engineers developed a custom load pin to handle the force of movement in the bridge in the event of an earthquake. This load pin was much larger than our standard version and is rated at 900,000 lbf. The large load pins were designed to be integrated into the dampener with wireless data acquisition modules connected to the load pins to allow for remote access to the data. With the integration of Interface’s custom load pins and data acquisition module, the customer was always able to continuously collect data for real-time evaluation. The sturdy construction of our load pins and 900,000 lbf rating allowed for readings during all degrees of seismic activity.

To learn more about our wide variety of load pins and there many applications, please contact our application specialists today.