Posts

Force Measurement Solutions Support Innovation in Manufacturing

The manufacturing world is enormous, covering multiple industries and applications for force measurement. The manufacturing sector comprises factories and plants that use machines and equipment to build parts and final goods.

With an estimated 21 million manufacturing companies worldwide, the industry is also becoming more advanced and regulated, with technologies such as AI and automation influencing manufacturing processes to drive efficiency and safety.

There are various types of manufacturing, from repetitive, continuous, batch, job shop, and discrete.  All employ tools, machines, and equipment used through multiple processes. Manufacturers use Interface load cells, torque transducers, multi-axis sensors, and instrumentation to improve products and processes, meet performance requirements, automate machines, protect workers, and test designs. Force measurement supports innovation in manufacturing.

With advancements and process improvements, testing and measuring are primary to every manufacturing stage. It begins with product planning through machine building. Moving to assembly and monitoring production lines, sensors are at work through final distribution. Manufacturing engineers use Interface devices to test assembly line equipment, design and operate robotics, improve machinery, and operate tools like presses.

Manufacturing equipment and processes that utilize Interface load cells and torque transducers:

  • Conveyor Belts
  • Robotics and Cobots
  • Torque Wrenches
  • Tension Testing Machines
  • Weighing Systems and Scales
  • Heavy Machinery
  • Transportation and Moving Equipment
  • Mixers
  • Packaging Equipment
  • Sorting and Picking Devices
  • Material and Stress Testing Labs
  • Fatigue and Compression Testing Equip

How Manufacturers Use Interface Products

  • Research and Development: The measurement data from transducers provides a valuable roadmap to improving the design of products and processes.
  • Testing: Every product undergoes rigorous testing before hitting the line. Interface force measurement devices are essential for this manufacturing phase to validate the use, lifecycle, and materials.
  • Machine and Tool Building:  Machine builders use Interface sensor technologies to weigh raw materials, components, and finished products to ensure they meet the required specifications. Force measurement devices are important in measuring applied force by equipment and processes that help control product quality and prevent accidents. Machine builders frequently use load cells to monitor loads over time to detect and prevent potential machine problems. Read more about why Machine Builders Choose Interface.
  • Quality Assurance: Interface products are used to measure the weight of manufactured products to ensure that they meet specifications. This is important for consumer goods, pharmaceuticals, medical devices, and other products where precise weight measurement is critical for safety and effectiveness.
  • Automation: Force measurement products are valuable in automation. As robotics, cobots, tools, and machinery are designed to automate tasks and processes in manufacturing, load cells like our multi-axis sensors provide valuable analysis data through all phases of automation.
  • Retrofitting Existing Equipment with Sensors: Manufacturers require modern tools and equipment to meet growing demands. Interface products are used to retrofit machines and update tools with sensor-based technologies, such as replacing machine pins with load pins that measure loading and lifting in real-time.
  • Safety and Regulation: Sensors prevent accidents by detecting dangerous conditions in the manufacturing industry. Using measurement systems for alarms, alerts, and monitoring of equipment and tools is critical in manufacturing plants.
  • Process Control: Manufacturing operations monitor the force or weight of materials in a facility to control the process and ensure that products are made to the correct specifications.
  • Productivity and Equipment Maintenance: Using Interface products to monitor the condition of equipment and detect potential problems before they cause downtime helps to prevent costly breakdowns and production delays.

Our depth of force measurement expertise and experience enable us to innovate, engineer, and produce the world’s most accurate, reliable, and quality sensor technology for manufacturers worldwide.  This can be seen through some specific application examples in which Interface solutions have been involved. We have included a few of these examples below.

robotic grinder containing 6A40 6-Axis Load Cell and BX8-HD44 BlueDAQ Series Data Acquisition SystemRobotic Grinding and Polishing During Production

Robotic grinding and polishing are commonly used in manufacturing. Robots or cobots are programmed to grind and polish on varied materials and surfaces. A force measurement system must be implemented to monitor and control the force exerted on the grinding workpiece. Interface’s Model 6A40A 6-Axis Load Cell can be installed between the flange and the grinding tool. When connected to the BX8-HD44 Data Acquisition, the customer can receive force and torque measurements when connected to their control system using BlueDAQ software. The 6A40-6 Axis Load Cell measures all forces and torques (Fx, Fʏ, Fz, Mx, Mʏ, Mz), and our BXB-HD44 Data Acquisition logs, displays and graphs these measurements while sending scaled analog output signals for these axes to the robot’s control system. Manufacturing: Robotic Grinding and Polishing application.

Manufacturing Feed Roller System

A customer has a feed roller system that monitors the forces of both ends of the rollers to maintain a constant straight feed. They preferred a wireless system. Interface suggested installing two PBLC Pillow Block Load Cells at both ends of the bottom roller to measure the applied forces. The forces were measured when connected to the WTS-AM-1E Wireless Strain Bridge Transmitter Module. The data was then transmitted wirelessly to the WTS-BS-6 Wireless Telemetry Dongle Base Station and the WTS-BS-1-HA Wireless Handheld Display for multiple transmitters, where data was displayed, graphed, and logged on the customer’s PC or laptop. The PBLC Pillow Block Load Cells installed at the bottom roller were able to measure and monitor the forces to maintain the straight feed by the rollers. Manufacturing: Feed Roller System app note.

Press Load Monitoring for Material Testing

Press forming is a method to deform different materials. For instance, materials such as steel can be bent, stretched, or formed into shapes. A force measurement solution is required to monitor the forces the press-forming machine applies. This ensures quality control and traceability during the production process. Interface recommends installing the 1000 High Capacity Fatigue-Rated LowProfile™ Load Cell for large press forming machines. When the material is placed under the punch plate to form a shape, the force applied is measured by the Interface 1000 Series Load Cell. The captured force results are sent to the INF-USB3 Universal Serial Bus Single Channel PC Interface Module, where results can be graphed and logged on the customer’s PC using the provided software. Interface’s force measurement products and instrumentation accurately monitored and logged the force results of the press force machine, ensuring zero-error production performance.

Interface began designing and manufacturing load cells and other force measurement equipment in 1968. These precision load cells are commonly found in factories worldwide in testing equipment, scales, machines, and production line devices. Load cells help bring life to older machines with accurate measurements while in use, ultimately improving maintenance and worker safety in manufacturing.

Our force measurement products are versatile and valuable tools for manufacturers. Our sensor solutions improve the quality, safety, and efficiency of products and the equipment and tools used to make them.

Manufacturing Solutions Brochure

 

Examining Machine Builder Applications

Interface solutions test and measure the performance of all types of machines, from heavy-duty extraction equipment to tiny digits on robotic arms. Machine builders turn to Interface for the most precise and high-quality sensors for accurate data and device durability.

Responsibilities of machine builders generally include defining machine requirements and use cases, creating technical specifications and drawings, selecting materials and components, building and testing machines, and installing and maintaining machines.

The specific responsibilities of a machine builder vary depending on the size and complexity of the machines they build and the use case of the machine. Depending on the industry and application, machine builders provide systems and machinery to meet specific production and operational requirements. These machines can be used for tooling, assembly, press operations, automated guides, and even cobots.

Machine Builder Applications Using Interface Products

  • Industrial Automation Systems: This includes machines and systems used in manufacturing processes, such as robotic assembly lines, conveyor systems, and automated packaging machines. See: Snack Weighing and Packaging Machine App Note and Interface Manufacturing and Production Solutions
  • Specialized Production Machinery: Machine builders design and build machinery for specific manufacturing processes, such as injection molding machines, CNC machines, or metal stamping presses. These machines form, stamp, and crush materials.
  • Facilities Equipment: Machines like forklifts, cranes, and conveyor systems fall under this category. They are designed to move and handle materials efficiently within a facility. Read: Cranes and Lifting
  • Universal Testing Machines (UTMs): These valuable machines test the mechanical properties of materials like metals, plastics, and composites.
  • Weighing Systems: Used in various production processes like batching, mixing, and filling, weighing systems and scales are commonplace in most manufacturing facilities. Learn more: Load Cells for Smarter and More Efficient Weighing

As the machine building space becomes more precise with the evolution of automation and focus on efficiency across industrial facilities, force measurement becomes more critical to machine builders.

Interface products are used broadly for a variety of machines. Force measurement products, including our load cells, torque transducers, multi-axis sensors, and instrumentation, aid machine builders by measuring force, weight, tension, compression, and torque.

Machine builders use Interface sensor technologies in applications that weigh raw materials, test component designs, and build finished products to ensure they meet the required specifications. Force measurement devices are essential in measuring the machines or the processes force to control product quality and prevent accidents. Machine builders frequently use load cells to monitor loads over time to detect and prevent potential machine problems.

Automation is one of the most critical requirements driving the need for force measurement and precise Interface solutions. Automated processes require consistency and accuracy in every piece of the process to enable efficiency gains.

Benefits of Interface force measurement devices include:

  • Improved safety
  • Increased productivity
  • Reduced waste and operating costs
  • Quality improvement
  • Reduced downtime

Machine Builder Application Notes

Robotic Sanding and Grinder Machine

robotic grinder containing 6A40 6-Axis Load Cell and BX8-HD44 BlueDAQ Series Data Acquisition System

Robotic grinding and polishing are commonly used in manufacturing for industrial applications. Machine builders design robots or cobots to grind and polish on different materials and surfaces. A force measurement system can monitor and control the force exerted on the grinding product. Interface’s Model 6A40A 6-Axis Load Cell can be installed between the flange and the grinding tool. When connected to the BX8-HD44 Data Acquisition, the customer can receive force and torque measurements when connected to their control system using BlueDAQ software. The customer connects the BX8’s analog outputs to their control system. This enables the customer to monitor, log, display, and graph these measurements. The results are sent to the customer’s control system via analog or digital output.

Press Machine Load Monitoring

Press forming is a method to deform different materials. For instance, materials such as steel can be bent, stretched, or formed into shapes. A force measurement solution is required to monitor the forces being applied by the press-forming machine. This ensures quality control and traceability during the production process. Interface recommends installing the 1000 High Capacity Fatigue-Rated LowProfile™ Load Cell for large press forming machines. When the material is placed under the punch plate to create a shape, the force applied is measured by the 1000. The captured force results are sent to the INF-USB3 Universal Serial Bus Single Channel PC Interface Module, where results can be graphed and logged on the customer’s PC using the provided software. Interface’s force measurement products and instrumentation accurately monitored and logged the force results of the press force machine, ensuring zero-error production performance.

Food and Beverage Conveyor Belt equipped with PBLC Pillow Block Load Bearing Load Cells and 920i Programmable Weight Indicator and ControllerMachine Use for Conveyor Belt

Conveyor belts for the food and beverage industry must be maintained and adequately aligned to transport products. A load cell is needed to prevent misalignment and to reduce the risk of damage or malfunction of the belt while in operation. Interface suggests installing PBLC Pillow Block Load Bearing Load Cells onto the conveyor belt. They are designed for easy maintenance. The PBLCs measure and monitor the force of the conveyor belt while preventing misalignment. The PBLC Pillow Block Load Cells successfully maintain the proper alignment of the conveyor belt for the food and beverages being transported while also monitoring the forces being implemented.

Machine builders turn to Interface for solutions that support Industry 4.0 innovations, enabling more efficiency and machine advancements. These professionals rely on Interface for the accuracy and quality of our solutions, the depth of our product offerings, and our experienced team that can help our customers select the right solution for their next application or develop custom applications to fit unique needs.

ADDITIONAL RESOURCES

Force Measurement Sensors are Essential to Modern Industrial Machinery

Interface Load Cells for Press Machines

Seat Testing Machine

Hydraulic Press Machines and Load Cells

Sanding Machine Force Monitoring

Interface Solutions for Machine Builders

Metal Press Cutting Machine

Robotic Solutions

Collaborative Robots Using Interface Sensors

Fastening Work Bench

 

Interface Sensors Optimize Food Canning and Production

In the food packaging and production industry, consistency and quality are key. Due to this, many food production and packaging facilities are utilizing automation more than ever. The automation process includes monitoring actions and tasks using force measurement sensors. These sensors collect critical data to maximize food production and packaging efficiency.

Interface provides force measurement sensors and systems for equipment, devices, and machines that produce and package consumable products across various use cases. From harvesting and sorting to processing and packing, force measurements improve quality control, efficiency, and safety in food production and packaging. For example, production line engineers use sensors to detect and reject defective products, monitor equipment performance, and identify potential hazards.

The versatility of Interface sensor technologies provides the ability to innovate and solve challenges related to condition, consistency, and productivity for canning and food production. Whether using a small LBM Compression Load Button Load Cell within a production line machine or deploying multi-axis sensors during production to gather feedback in real-time, Interface has a diverse range of transducer and instrumentation options.

How Interface Products Improve Canning and Food Production

  • Monitoring the pressure applied to a mixer to ensure consistent product quality.
  • Regulating the force applied to a canning line to prevent cans from being damaged.
  • Detecting unknown items in food products.
  • Measuring the force in picking fruit or vegetables without damaging them.
  • Capping with precision to prevent crushing the bottles.
  • Sorting by the size, weight, and firmness of produce ensures it meets quality standards.
  • Controlling the force applied to food during cutting, slicing, grinding, and other processing steps.
  • Ensuring food is packaged correctly and safely, with the correct pressure and cushioning.
  • Weighing food products precisely to ensure accurate packaging.
  • Monitoring the force applied to a robotic arm to ensure safe and efficient handling of food products.

Using Interface load cells, food production and packaging companies can gather instant force measurements from their production line. For instance, when a canned goods company is filling its packaging with any food, a load cell can be used to measure the weight of the food in the can and automatically notify the filling machine when it is complete. This will tell the device to move on to the next can. All this can be done without any human intervention.

Alternatively, force sensors can be used to monitor the health of the production line. Force sensors are often installed in industrial machines to collect data on the operations of devices. This data can be analyzed and used to help predict when a machine might need maintenance or a conveyor belt can be outfitted with force sensors to help keep everything aligned. This contributes to greater food packaging and production quality and less downtime for the production line.

Interface force measurement solutions are used in all aspects of food production, including agriculture equipment, weighing scales, industrial automation robotics, and lifting machines used to transport consumer goods. Here are a few customer use cases.

Commercial Food Processing

A food processing plant wants accurate results of their in-motion check weighing equipment when food is weighted and processed down the belt. They want to ensure production line efficiency and food quality. The customer also wants real-time results of their food being weighed and a load cell that can endure the industry’s highly regulated environment. Multiple Interface scale load cells can be installed in the customer’s in-motion check weigher at the specific points where the food is weighed on the belt. The SPI High Capacity Platform Scale Load Cells deliver precise weighing results. When connected to the 920i Programmable Weight Indicator and Controller, it will give the customer real-time results of food weight, which can read up to four scale channels. Read more: WEIGHING: Commercial Food Processing.

Fruit Weighing and Packaging

A customer owns and operates a fruit packaging plant. They want to weigh the bins full of fruit loaded onto conveyor belts that transfer the fruit to other steps of the distribution process to read the hands of the consumer in grocery stores. Interface suggests installing SPI Low Capacity Platform Scale Load Cells and WTS-AM-1E Wireless Strain Bridge Transmitter Modules in the center of the platforms the fruit bins are loaded on. The WTS-AM-1E wirelessly transmits the data collected from the SPI to the WTS-BS-1-HA Wireless Handheld Display for multiple transmitters and the WTS-BS-6 Wireless Telemetry Dongle Base Station when connected to the customer’s computer. Read more: Fruit Weighing App Note.

Food and Beverage Conveyor Belt equipped with PBLC Pillow Block Load Bearing Load Cells and 920i Programmable Weight Indicator and Controller

Food and Beverage Conveyor Belt

Conveyor belts for the food and beverage industry must be maintained and adequately aligned to transport the products. A load cell is necessary to prevent misalignment and to reduce the risk of damage or malfunction of the belt while in operation. PBLC Pillow Block Load Bearing Load Cells can be installed onto the conveyor belt. They are designed for easy maintenance and will measure and monitor the force of the conveyor belt while preventing misalignment. Using the PBLC Pillow Block Load Cells, Interface’s customer successfully maintained the proper alignment of the conveyor belt for the food and beverages being transported while also monitoring the forces being implemented. Read more: Food and Beverage Conveyor Belt.

Snack Weighing and Packaging Machine

A snack manufacturing brand wanted to weigh the amount of their snacks automatically dispersed into the bags during packaging. In this case, they want to weigh their potato chips being packaged. The company also wanted to ensure the potato chips were at the exact weight needed to meet regulatory standards to be distributed to consumers in the public. Interface’s solution was to use multiple SPI Platform Scale Load Cells and install them to the potato multi-head weigher and packaging machine. The SPI Platform Scale Load cells were installed inside the mount that attaches the head weigher to the packaging machine. Force results from the potato chips were read by the load cells and sent to the ISG-isolated, where the customer could control the automated production from their command center. Using this solution, the customer could determine the weight of the potato chips being distributed into their bags with highly accurate results. They also were able to control the automated production process with the provided instrumentation. They will use this same weighing method for other snacks that need to be packaged.

As many industries turn to automation to improve productivity and quality while reducing waste, force sensors will play an increasingly critical role in providing accurate and immediate data to optimize equipment and machines. In the food service industry, we are already seeing a significant impact on the quality of production processes using force measurement.

ADDITIONAL RESOURCES

Interface Manufacturing and Production Solutions

Force Measurement for Efficiency in Food Processing and Packaging

Load Cells for Smarter and More Efficient Weighing

Watch how sensors are used in industrial robotics for packaging.

Vertical Farming for Sustainable Food Production on Earth and Beyond

Interface Helps to Move Agriculture Innovation Forward

Chicken Weighing

 

 

 

Interface Load Cells Propel New Torsional Force Measurements for Wind Energy Project

Amongst the wide variety of industries that Interface serves, clean and renewable energy sectors are some of the hottest in pursuit of sensor-based solutions. Between private and public funding, and the overwhelming desire for humans to become more sustainable, new energy technology and investment is multiplying at a rapid pace. 

Interface force measurement solutions are used in all types of energy-related applications for wind, solar, hydro, nuclear, geothermal, and emerging energy sources worldwide. We are recognized as a provider of choice for our reliability and accuracy in designing, engineering, testing, innovating, and manufacturing precision sensor solutions for the energy industry.  In fact, we have designed unique load cells that are embedded into some of the largest test and production equipment for energy production in the world. Read Interface Most Promising Energy Tech Solution Provider

Advance technologies in renewable and sustainable energy sources continues to drive the critical need to monitor, test, and validate concepts, equipment, and tools used in procurement. In the global energy industry, many of the alternative source technologies are inventive, newer, and require unique measurement solutions to take on the challenges found in R&D, testing, and production.  

In addition, alternative energy sources in their infancy can be very cost prohibitive going from exploration to consumption. Therefore, it is important that quality, cost effective testing solutions are provided to help researchers, engineers and manufacturers minimize total costs. Interface force testing solutions help to solve and lessen the burden of these challenges by offering a wide range of test and measurement solutions.

New Interface case study reveals how our load cells were used by the PTB in Germany to calibrate and test the world’s largest machine that measures torsional forces related to wind turbines.

Interface force measurement sensors were requested to help Physikalisch-Technische Bundesanstalt (PTB), the national metrology institute of the Federal Republic of Germany, in the design of an innovative wind energy project. As the second largest metrology institute in the world, the PTB has an acclaimed international reputation in research relating to units and precise measurement. 

PTB is a service provider for science, business, and society, and advises the German federal government on all metrology issues. Organizationally, the PTB is a departmental research facility and senior authority within the portfolio of the Federal Ministry of Economics and Climate Protection. For more than 135 years, PTB’s role has been making important contributions to advancing the energy transition, heat transition and climate protection with quality and speed. 

Interface, working in tandem with our esteemed partner Interfaceforce e. K. in Germany, was asked to provide load cell solutions to use in the design and testing of the world’s first traceable torque measurements of up to 5 MN ∙ m for a wind energy facility. As a first of its kind project, the PTB needed to include high accuracy, quality test equipment to guarantee precise and reliable data. Interface solutions fit the exact requirements.  Read the complete case study here.

Summarizing the engagement, PTB endeavored to construct a system with highly accurate and repeatable results, and one that enable bending moments, axial forces, and dynamic excitations of up to 3 Hz. Thereby, making it possible to realize a metrological characterization of dynamic influences in the (MN ∙ m) torque range, as well as in the MN force range. Working closely with PTB, Interface’s experts in Germany worked with the metrology lab engineers to identify the correct products for this unique calibration system.  

These products are being used to calibrate and test PTB’s torque measurement system, allowing the system to provide accurate and repeatable results over time. The custom load cell products Interface provided PTB for this innovative wind energy system, as detailed in Interface Supports Incredible Wind Energy Innovation, included:

The load cells that were chosen helped PTB to create the system needed for its wind energy facility, which allows multi-component transducers to be calibrated in a traceable and practice-oriented way for force and torque. The system is also now the world’s largest machine starting up at PTB, with which the large torsional forces that occur in wind turbines can be precisely measured for the first time.  Read the article: World’s largest device for measuring torque in wind turbines opens.

As we detailed in Load Cells for Renewable Energy Production and Testing, Interface and our incredible distributor network continues to work with engineers and industry leaders to find viable measurement solutions. Pushing the boundary forward on new and renewable energy is rewarding for our company, especially as we help those achieve energy innovation using sustainable, quality measurement solutions.

ADDITIONAL RESOURCES

Geothermal Well Drilling

Interface and Green Energy Innovation

Interface Solutions for Growing Green Energy

Demands for Quality Energy Measurement Solutions

Interface Supports Renewable Energy Innovation

Interface Supports Incredible Wind Energy Innovation

Force Measurement Testing Improves Products and Consumer Safety

Across every industry, force measurement solutions are utilized to improve product performance, safety and quality. Sensor technologies are used every day to test various consumer products’ weight, torsion, tension, compression, fatigue, impact, and materials.

Force measurement testing is used throughout the product development lifecycle, from concept and R&D, through engineering and testing, to manufacturing and distribution, leading to eventual utilization. Interface load cells are commonly integrated into actual consumer products for activation and to measure performance during use.

Interface force measurement solutions are also used in the testing of equipment, machines, and tools used in the production of all types of products and goods. Our products are used in industrial automation robotic arms as well as within lifting equipment deployed to move materials around a facility.

The key to all force measurement testing is accuracy and reliability of data, as well as selecting the right type of force sensor for the specific product being testing.

Types of Product Testing Applications Using Interface Measurement Solutions

  • Weighing Applications: Interface miniature load cells are often for product testing to measure the exact weight of consumer products, such as food, beverages, and electronics. This information is critical R&D, as well on the production line and to meet the exact product specifications. Our load cells help to ensure that the products are not underweight or overweight, and comply with regulations. Read more about Load Cells for Smarter and More Efficient Weighing
  • Material Applications: Interface LowProfile load cells are often found in product testing labs to assess the strength of materials used in consumer products such as plastics, metals, and mixtures of composites. The measurements gathered during the product testing safeguards consumers and confirms the product’s durability. Read Interface Solutions for Material Testing Engineers
  • Force Applications: Interface load cells, torque transducers, and instrumentation are used in complete test systems that examine the usability of products such as exercise equipment, appliances and electronics. The data acquired in shear, tensile and force testing is important to understand if the product meets design specifications, is easy to use and does not require excessive force to work.
  • Safety Applications: One of the most important product use cases for Interface measurement solutions is to test the safety of products such as furniture, toys and automobile features. It is a requirement for every maker of products that are not hazardous and will not cause injury to consumers. Read Interface Solutions for Safety and Regulation Testing and Monitoring

To give you a better idea of how our load cells and instrumentation are utilized in distinct types of product tests, we have included a few application notes below outlining real-world examples of force testing projects.

Bicycle Helmet Safety and Impact Product Testing

A high production bicycle manufacturing facility set up a product testing lab to measure the impact of the safety of their helmets when dropped from different heights onto a flat surface such as an anvil. This test is necessary to ensure consumer safety and that the products are made with the highest quality materials to protect the rider. Interface suggests installing the 1101 Compression-Only Ultra Precision LowProfile® Load Cellat the bottom of an anvil. The bike helmet is then dropped from multiple heights and at multiple angles onto the anvil. The measurements from impact are then recorded and logged throughout the product testing using Interface’s INF-USB3 Universal Serial Bus Single Channel PC Interface Module with supplied software. Every design or material change runs through the same rigorous testing protocols using these high accuracy measurement solutions.  Read CPG Bike Helmet Impact Test

Product Weighing of Consumer Water Bottles

A manufacturer of glass bottled water needs to dispense the exact amount of fluid into each bottle and then weigh the water bottle to ensure it is at the labeled weight on the product packaging. The product testing of the manufacturing equipment is used to minimize waste and to meet the weight requirements to ensure consumer satisfaction. Interface suggests using the MBP Miniature Beam Load Cell and attaching it under a plate or platform where the water bottle is placed on while it is being filled with fluids. The force weight is measured by the MBP Miniature Beam Load Cell and connected to the 9870 High Speed High Performance TEDS Ready Indicator where results are captured, displayed, and logged for quality control. Read CPG Water Bottle Dispensing and Weighing

Product Test Lab Conducts High Volume Tensile Force Testing

A product test lab is constantly requested to conduct a series of tensile force tests on different samples and materials until failure. These materials include plastic, steel, or woven fabric, and are utilized in the design and manufacturing of several consumer products. The lab professionals want to measure tensile strength, yield strength, and yield stress for every submitted product material sample. For the tensile test stand, we recommend using Interface’s 1200 Standard Precision LowProfile™ Load Cell be installed into the test frame. As the tensile test is conducted, force results captured by the load cell and extensometer are synchronized through the SI-USB4 4 Channel USB Interface Module. The results are displayed on the customer’s computer with supplied software. Learn more by reading Material Tensile Testing.

Interface’s high precision force sensor technologies used in robotics have revolutionized the manufacturing of consumer products. With automated assembly lines and robotic arms taking charge, these machines work efficiently to mass-produce consumer goods. Quality control of all the products we provide you for testing is one of the main focuses of Interface, as we want to keep your customers happy and safe.

Interface’s experienced team are renowned specialists in force, torque and weight measurement manufacturing and technology. Our depth of knowledge and wide range of capabilities create custom solutions of all types, whether special transducers made to your exact specifications or complete customized sensor, instrumentation, and software systems. We collaborate with you to ensure the product specifications you need are designed to match your precise requirements.

ADDITIONAL RESOURCES

Introducing the Interface Consumer Product Testing Case Study

Interface Solutions for Consumer Products

Force Measurement is Reducing Waste and Automating the Consumer Packaging Industry

Applications for Consumer Products and Packaging

Load Cells for Consumer Product Applications

Why Product Design Houses Choose Interface

Testing Labs Choose Interface High Accuracy Products

Interface Solutions for Material Testing Engineers

Center of Gravity Testing in Robotics Demands Precision Load Cells

As the use of robotics expands across industries and the types of robotic motions grow in complexity, advanced testing using quality measurement solutions is essential. Contact momentum and gross measurements of indicators are not enough for sophisticated robotics. With the requirements for robots and cobots to have fluid and inertial movement capabilities, control and feedback demand maximized feedback and resolution.

Related to the testing of inertia, load shifting, and interaction, is defining the center of gravity for robots’ actions and applications. The center of gravity (CoG) of a robotic system is a critical factor in its stability and performance.

The CoG is the point at which the entire weight of the system is evenly distributed. If the CoG is not properly located, the system may be unstable and prone to tipping over, which could damage the robot.

For any robotic application that deploys advanced mobility features, the center of gravity can affect the way the system moves. It can also impact the exactness of its movements. Thus, it is essential to use measurement solutions that are highly precise. See: Advancements in Robotics and Cobots Using Interface Sensors.

Why Robotic Engineers Care About CoG Testing

  • Stability: The CoG is a major factor in determining the stability of a robot. If the CoG is not properly located, the robot may be unstable and prone to tipping over. This can be a safety hazard, and it can also damage the robot. It is an expensive mistake to not have stability proven before moving forward with the design.
  • Performance: The CoG can also affect the performance of a robot. If the CoG is located too high, the robot may be less maneuverable. If the CoG is located too low, the robot may be less stable. By optimizing the CoG, robotic engineers can improve the performance of the robot and use for actions that rely on exact movement.
  • Safety: In some industries, such as manufacturing, medical and aerospace, there are safety regulations that require robots to have a certain CoG. For example, in the automotive industry, robots that are used to weld cars must have a CoG that is below a certain point. By testing the CoG of their robots, robotic engineers can ensure that they are meeting safety regulations.

There are different methods for determining the CoG of a robotic system. One common method is to use strain gage load cells. Not all load cells are designed for precision measurement. Interface specializes in precision. Center of gravity testing demands strict measurement. For example, Interface compression load cells are often used in center of gravity testing for robotics because they are very accurate and can measure remarkably small forces.

Interface load cells measure force, and they can be used to determine the weight of a system at different points. By measuring the weight of a system at different points, it is possible to calculate the location of the CoG.

Interface load cells used for center of gravity testing are typically in our miniature load cell line, due to the size of the installation and testing environment. Miniature load cells are easily embedded into robotics, as well as can be used for continuous monitoring.

Surgical Robotic Haptic Force and CoG

Robots used for surgery often utilize haptic force feedback for ensuring that the surgeon does not apply too much force, creating harm or greater impact on the patient. Haptic is the use of force, vibration, or other tactile stimuli to create the sensation of touch. In the context of invasive surgery, haptic force feedback from robotics is used to provide the surgeon with feedback about the forces they are applying to the patient’s tissue. CoG testing can help to prevent the robotic arm from tipping over during surgery.

CoG testing is important for haptic force feedback in invasive surgery because it ensures that the robotic arm is stable and does not tip over during surgery. The CoG is the point at which the entire weight of the robotic arm is evenly distributed. If the CoG is not properly located, the robotic arm may be unstable and prone to tipping over. This can be a safety hazard for the surgeon and the patient.

CoG testing is also used to optimize the design of the robotic arm for haptic force feedback. CoG testing using precision load cells can verify the performance of the robotic arm in haptic force feedback applications. After the robotic arm has been designed and optimized, CoG can ensure that the robotic arm is able to provide the surgeon with the feedback they need to perform surgery safely and accurately.

Robotic Center of Gravity on Production Line

A company is developing a new robotic arm that will be used to simulate human behavior on a manufacturing product line. The robotic arm will be used to pick and place products, and it is important that the arm is stable and does not tip over. To ensure the stability of the robotic arm, the company needs to determine the CoG of the arm. The load cell is placed on the arm, and the arm will be moved through a range of motions. The data from the load cell will be used to calculate the CoG of the arm.

CoG Testing and Multi-Axis Sensors

Multi-axis load cells are growing in use for robotics testing to provide data across 2, 3 or 6 axes at any given time. These high functioning sensors are ideal for robotic tests where there are simulations of human behaviors. This is detailed in Using Multi-Axis Sensors to Bring Robotics to Life.

To perform CoG testing using precision load cells, a robotic system can be placed on a platform that is supported by the load cells. We call these force plates. The load cells measure the weight of the system at different points, and the data is then used to calculate the location of the CoG. Visit our 6-Axis Force Plate Robotic Arm application note to learn more about force plates and multi-axis sensors.


Benefits Of Using Precision Load Cells for CoG Testing:

  • Interface precision load cells provide advanced sensors functional beyond contact and simple indicator measurement, to maximize robotic feedback and optimize performance.
  • Interface precision load cells can provide accurate measurements of the weight of a robotic system at different points.
  • Interface precision load cells are repeatable and dependable, which means that the results of CoG testing are consistent when testing robots and cobots.
  • Interface precision load cells are easy to use, which makes them a practical option for CoG testing and integration into the actual robot.

There are several benefits to using an Interface Mini Load Cells, like our ConvexBT Load Button Load Cell or MBI Overload Protected Miniature Beam Load Cell for high accuracy CoG testing.

First, the miniature load cell is small and lightweight, which makes it easy to attach to the robotic arm. Second, the load cell is designed for precision measurement, which ensures that the CoG of the arm is accurately determined. Third, the quality of Interface precision load cells provides repeatable and dependable measurement, which means that the results of CoG testing are consistent.

Using a miniature load cell of high accuracy is a valuable way to test the CoG of a robot used to simulate human behavior on a product line. This ensures that the robot is stable and does not tip over, which is critical for safety and efficiency.

In addition to testing the CoG of a robotic arm, other tests for these types of robotics include the weight of the arm, the distribution of the weight of the arm, and the friction between the arm and the surface it is moving on. By considering these factors, it is possible to accurately determine the CoG of a robotic arm and ensure that it is stable and safe to operate.

There are many factors that can affect the accuracy of CoG testing using load cells, including the design, capacity and range of measurement of the load cells, the stability of the platform, and the distribution of the weight of the system.

CoG testing is an important part of the design and development of robotic systems. By determining the CoG of a system, it is possible to improve its stability and performance. If you are interested in learning more about CoG testing using Interface precision load cells, please contact us.

ADDITIONAL RESOURCES

Types of Robots Using Interface Sensors

Robotic Grinding and Polishing

Collaborative Robots Using Interface Sensors

Advancements in Robotics and Cobots Using Interface Sensors

Using Multi-Axis Sensors to Bring Robotics to Life

Robotic Surgery Force Feedback

IoT Industrial Robotic Arm App Note

Force Measurement Solutions for Advanced Manufacturing Robotics

Reduced Gravity Simulation

Tank Weighing and Center of Gravity App Note

 

Automation-and-Robotics-Case-Study

Interface Manufacturing and Production Solutions

Force measurement is integral to advanced manufacturing systems, especially when it comes to how this technology is used in production lines. Force sensors are utilized in both testing and monitoring of a wide variety of machines to ensure accuracy and repeatability throughout the production line. These sensors are also used by production line engineers in the design and development of systems used to ensure accuracy in measurements of force, weight, compression, and torque as products and components move throughout the line, including distribution.

Watch how Interface provided an industrial automation solution for small pallets used in the distribution of manufactured products. In the video, we highlight a request for a pallet weighing solution to use in their warehouse to monitor their products and goods 24/7. They need to use sensor technologies to verify if any products are missing based on the weight, and able to determine pricing for their goods based on the weight.

Interface works with a large range of manufacturers and equipment makers to improve quality and productivity by supplying high-performance measurement solutions. From using miniature load cells to apply the exact force needed to press a brand identity onto fragile consumable, to using multi-axis sensors for verifying performance data when making intricately machined parts, Interface products are commonplace in manufacturing and production.

In fact, Interface offers manufacturing and production standard off-the-shelf, engineered to order and complete OEM solutions including load cells, instrumentation and weighing devices. Our products provide the quality and durability necessary within industrial environments. In addition, we can customize the majority of our products to fit unique and evolving needs as sensor technologies like robotics and advanced manufacturing devices are integrated into production lines.

Load cells are frequently used in monitoring equipment. Interface can custom design force sensors to be installed directly into product for monitoring certain forces in real-time, including for use in industrial automation robotics. This is particularly popular in manufacturing because you can monitor equipment to understand when it may be out of alignment and needs to come down for repair, rather than risking a disruption in production. This is particularly important in automated production lines because it gives engineers and extra set of eyes on machines and improves efficiency overall by reducing downtime.

One of the unique use cases for load cells used for monitoring is in weighing materials held on pillow blocks bearings. Pillow block bearings, or similarly constructed bearing, are used to carry rolled materials or conveyor belt. Interface’s new PBLC1 Pillow Block Load Bearing Load Cell can be placed underneath the bearing to measure the weight of whatever material is being held up. These types of bearing are often found in machines with similar type of bearing are used on conveyor belts moving products down a production line.

Manufacturing Feed Roller System

A customer has a feed roller system and needs to monitor the forces of both ends of the rollers, in order to maintain a constant straight feed. They would also prefer a wireless system. Interface came to the rescue with our Pillow Block Load Cells and WTS Wireless Telemetry Systems. Interface suggests installing two PBLC Pillow Block Load Cells at both ends of the bottom roller to measure the forces being applied. The forces are measured when connected to WTS-AM-1E Wireless Strain Bridge Transmitter Module. The data is then transmitted wirelessly to the WTS-BS-6 Wireless Telemetry Dongle Base Station and the WTS-BS-1-HA Wireless Handheld Display for multiple transmitters, where data can be displayed, graphed, and logged on the customer’s computer.

Production Line Conveyor Belt Adhesion Test

A customer wants to test the adhesion strength in between the many layers and textiles of a conveyor belt. They want to conduct a separation test from the rubber of the conveyor belt from the other layers. They would also like a wireless solution. Interface’s SMA Miniature S-Type Load Cell is installed in the customer’s tensile test load frame, where it measures the forces applied as the test is conducted and the layers are pulled and separated. When connected to the WTS-AM-1F Wireless Strain Bridge Transmitter Module, the data is wirelessly transmitted to WTS-BS-5 Wireless Analog Output Receiver Module with nV output. The WTS-BS-5 can then connect to the 9330 Battery Powered High Speed Data Logging Indicator to display, graph, and log the data with supplied BlueDAQ software.

Industrial Automation Robotic Arm for Production

A manufacturer of a robot arm needs to measure force and torque when the arm picks up and places objects. The manufacturer needs a wireless system to accomplish this in order to log the measurement results. Interface supplied Model 6A40A 6-Axis Load Cell with Model BX8-HD44 Data Acquisition/Amplifier.

Interface force sensors can be used in a number of ways within the manufacturing industry across a variety of applications for the test and monitoring of machines and production lines.

ADDITIONAL RESOURCES

Force Measurement Solutions for Advanced Manufacturing Robotics

Robotics and Automation are Changing Modern Manufacturing at Interface

Vision Sensor Technology Increases Production Reliability

Industrial Automation Brochure

Weighing Solutions Brochure

Smart Pallet Solution

Interface Solutions for Safety and Regulation Testing and Monitoring

Accurate Force Measurement Data Under Any Conditions

Interface’s Keith Skidmore recently detailed the growing demands for more data in the product development process to create better products in the February 2023 edition of Quality Magazine. In his contributed article, Measuring Force Data in Extreme Conditions, he expertly highlights how this demand comes with the added requirements for measurement and sensor solutions that can perform in any condition.

As makers of products, machines, and components can attest, they need more testing and performance data to make critical design and smart production decisions. The added requirement to secure this data with precision, requires quality measurement solutions that can perform under extreme conditions.

Interface has long been attuned to these demands, with an increasing product line of ruggedized products. These products, including our submersibles, intrinsically safe and stainless steel load cells help to fulfill the requirements. Examples of these products include:

Noted in the article, Keith writes: As technology has progressed, test and measurement systems are becoming more advanced and capable for a wide variety of applications and industries. This is because manufacturers want more data in the product development process to create better products, and they need solutions that can perform in any condition, especially when running field testing. This is increasingly important in force measurement as real-world testing is paramount to a safe and reliable product. And with the need for real-world force testing comes the need for sensors that can work effectively in hazardous environments including rain, wind, underwater, explosive environments, and exposed conditions.

Read the complete article here to learn more about Interface’s popular ruggedized force measurement solutions, sensor materials used to perform in harsh environments, extreme temperature options and various submersible options.

ADDITIONAL RESOURCES

High Temperature Load Cells 101

Hazardous Environment Solutions from Interface

Interface Submersible Load Cells

Stainless Steel Load Cells 101

Coil Tubing Load Cells

Crane Safety Requires Precision Measurements Ship to Shore

VISIT QUALITY MAGAZINE

QM0223 - Keith Skidmore Article 2-23

Interface Solutions for Production Line Engineers

Due to the influence of IoT, AI and big data, the role of production line engineer has become far more critical as manufacturers demand peak efficiency. These engineers need to stay current in automation technologies used to design, build, and monitor a production line for the benefits of decreasing speed to market, lowering costs, and improving outputs at the highest quality standards.

Among the many software and hardware solutions these individuals must also understand connected sensors are among the most important. Sensors are the nervous system of an automated production line, telling which machines must perform certain tasks, when, and how. They are a source for smart factories and smart manufacturing.

Sensors modernize manufacturing, assembly, and production lines by enabling real-time monitoring and control of the production process.

Measurement solutions provide accurate data on production parameters such as temperature, speed, pressure, force, and other relevant variables, which can then be used to optimize the production process, detect, and resolve problems in real-time, and prevent downtime. Additionally, sensors can be integrated into industrial IoT systems to provide valuable insights and analytics that can help manufacturers make data-driven decisions.

One of the sensor types that play a key role in these automated production lines are force sensors. Force sensors can be used by production line engineers across several different facets of an automated line. When designing a manufacturing line, there are quite a few factors that go into the full system. This includes process monitoring, quality control, predictive maintenance, energy management and inventory management. Force sensors play a role in each of these types of data points and processes.

For instance, a production line engineer can install sensors onto a machine that outputs a great deal of torque and monitor that torque to ensure the components creating that force are running smoothly, or if there are certain indicators that say it needs to be pulled off the line briefly for maintenance. When products on the line trigger certain force parameters such as weight, this can also tell the automated production line it is ready for the next stop in the process. Production line engineers design these lines around the sensing capabilities available and connected force sensing products have made a major difference in helping things become more efficient.

There is another automated process that also requires force sensors that is used as part of a manufacturing line, or as a standalone system – robotics. Production line engineers are doing a great deal of research and development into robotics to automate process that are repetitive, or far too delicate for human hands. Force sensors, in this use case, are used in both the testing of robotics to ensure accuracy or developed into the robotics to monitor certain functions over time.

Robotics can improve assembly and production processes, leading to higher efficiency, improved quality, and reduced costs. As technology continues to advance, the use of robotics by production line engineers in assembly and production is likely to become even more widespread.

Here at Interface, we have a great deal of experience in developing solutions for industrial automation and manufacturing lines. We have developed a few application notes to outline how production line engineers use our sensor solutions and force measurement products.

6-Axis Force Plate Robotic Arm

A customer wanted to measure the reaction forces of their robotic arm for safety purposes. The reaction loads occur at the robotic arm’s base; therefore, they needed a force measurement system at the base of the robotic arm. Interface suggested using their force plate option to install at the base of the robotic arm. Four 3-Axis Force Load Cells were installed between two force plates, then installed at the bottom of the arm. This creates one large 6-Axis Force Plate. The sensors force data is recorded and displayed through the two BX8 Multi-Channel Bridge Amplifier and Data Acquisition Systems onto the customer’s PC or laptop. Interface’s 6-Axis Force Plate was able to successfully measure the reaction forces of the customer’s robotic arm. Read more here.

Press Load Monitoring

Press forming is a method to deform varied materials. For instance, materials such as steel can be bent, stretched, or formed into shapes. A force measurement solution is required to monitor the forces being applied by the press forming machine. This ensures quality control and traceability during the production process. For large press forming machines, Interface recommends installing the 1000 High-Capacity Fatigue-Rated LowProfile™ Load Cell. When the material is placed under the punch plate to form a shape, the force applied is measured by the 1000 Series Load Cell. The force results captured is sent to the INF-USB3 Universal Serial Bus Single Channel PC Interface Module, where results can be graphed and logged on the customer’s PC with provided software. Interface’s force measurement products and instrumentation accurately monitored and logged the force results of the press force machine, ensuring zero-error production performance. Learn more about this application here.

Snack Weighing and Packaging Machine

A snack manufacturing brand wanted to weigh the amount of their snacks that is automatically dispersed into the bags during the packaging process. In this case, they wanted to weigh their potato chips being packaged. The company also wanted to ensure the potato chips are at the exact weight needed due to regulatory standards to be distributed out to consumers in the public. Interface’s solution was to use multiple SPI Platform Scale Load Cells, and install it to the potato multi-head weigher and packaging machine. The SPI Platform Scale Load cells were installed inside of the mount that attaches the head weigher to the packaging machine. Force results from the potato chips were read by the load cells and sent to the ISG Isolated DIN Rail Mount Signal Conditioner, where the customer is able to control the automated production from their command center. Using this solution, the customer was able to determine the weight of the potato chips being distributed into their bags with highly accurate results. They also were able to control the automated production process with the provided instrumentation. They will use this same weighing method for other snacks that need to be packaged. Read about the solution here.

Production line engineers turn to Interface due to our quality, accuracy, and reliability. Our products are used to test, monitor in real time, and created automated processes within a manufacturing line. As automation and robotics grow, you will continue to see new applications for sensors in this sector.

ADDITIONAL RESOURCES

IoT Industrial Robotic Arm App Note

Quality Engineers Require Accurate Force Measurement Solutions

Vision Sensor Technology Increases Production Reliability

Force Measurement Solutions for Advanced Manufacturing Robotics

Robotics and Automation are Changing Modern Manufacturing at Interface

Industrial-Automation-Brochure-1