Posts

Mounting Tips for Multi-Axis Sensors

Understanding best practices for mounting is critical to collecting accurate data, especially when it comes to multi-axis load cell solutions. As more testing engineers choose multi-axis sensors for the benefits of additional data, it is important to note that  improper mounting can cause multiple axis to be unaligned and skew the data across the various axis you are measuring.

In follow-up to our webinar, Inventive Multi-Axis and Instrumentation Webinar, here are some valuable reminders on how to properly mount both 3-Axis and 6-Axis load cells to gather the most accurate and reliable data for any test and measurement application.

The first thing to understand is there are certain mounting considerations that are important across every type of multi-axis sensors. These considerations begin with understanding the relationship between the sensor and mounting hardware. The sensor is made up of the electronic internals of a load cell, while the mounting hardware is comprised of plating that needs to align with the test system.

The next thing to understand is that deflections in the system introduce errors and apparent crosstalk. To avoid deflections, plates and fixtures used in mounting must be stiff enough to avoid deflections. The best way to understand this is to try and emulate how stiff the plating was when the sensor was calibrated, this will help you understand how stiff you need the plate to be in the testing application.

Finally, every single multi-axis sensor model also comes with unique mounting instructions, so be sure to consult the written instructions if you have questions. When it comes to mounting instructions for our products, Interface publishes all mounting instructions online.

Mounting instructions provide information on the class of hardware for mounting, as well as important data such as the torque on the dowel pins, for cases that include dowel pins.

For 3-axis mounting, we provide assembly instructions for each type of load cell available. For example, the assembly instructions pictured on the far left shows a 3-Axis sensor with four threaded mounting holes on the top surface and two dowels that should be used to avoid the plate slipping. The dowel pins are crucial to aligning the axis. The instructions also show mating services which are identified with arrows or hash marks.

The 6-axis mounting hardware is a bit different in that there are more holes in the mounting plates and fixtures for dowel pins, which stop the mounting plate from deforming or bending because this can cause inaccuracies in data. Additional mounting locations are necessary to securing the plates and fixtures.

Considerations for 6-axis mounting include the potential need to use a double-plate mounting arrangement, the plates must be suitably thick, the plates must have the same material as sensor for thermal matching, and flat and smooth mounting plate surfaces are preferred. The example here shows some of the features mentioned above.

We hope this simple guide will provide you with the information you need to get the most out of your multi-axis sensors. If you are ever unsure about any details within the mounting process for multi-axis sensors, feel free to contact Interface for support or questions about any multi-axis products.

ADDITIONAL RESOURCES

Interface Multi-Axis Sensor Market Research

Dimensions of Multi-Axis Sensors; An Interface Hosted Forum

Interface Sensor Mounting and Force Plates

Mounting Plates

3Axis-Mounting-Instructions

Interface Sensor Mounting and Force Plates

Test and measurement systems are defined by the sensor, instrumentation, and mounting hardware. Mounting considerations are crucial when designing your system. Utilizing best practices in mounting is also extremely important, especially if you are utilizing multi-axis sensors. Deflections in the system can introduce errors and apparent crosstalk into the sensor measurement.

Mounting plates are used to secure sensors during use. The plates should emulate how the sensor was calibrated, so if it was calibrated on stiff plates these characteristics should be duplicated when using the sensor. Plates should be stiff in design, as a flimsy plate secured on corners can introduce errors, such as off-axis loading, due to bending.

Interface mounting plates are made from the best grade alloy and stainless-steel, machined to the tightest specifications, and are designed exclusively to maintain the performance of the sensor in your application.

Interface Mounting Plates Features and Benefits

  • Designed to work with Interface products
  • Made with the highest quality components and processes
  • Created to maintain the specification of the sensors
  • Distributes the load over the foundation of the supporting structure
  • Provides a prepared surface for the load cell
  • Eliminates the requirement for expansion assemblies in most installations
  • Available in standard and custom options

Mounting instructions are specific to each sensor model. Interface offers complete product datasheets and drawings to locate the features for mounting. We also publish mounting instructions for our torque transducer models, as highlighted in our recent Inventive Multi-Axis and Instrumentation Solutions webinar. The instructions we offer include model, material, capacity, mounting holes, threads and dowel pins and pilot specifications, for both live and dead-end use.

Plates must deflect uniformly to minimize local deformation at the mating surfaces. You may need to use a double plate mounting arrangement, also known as a sandwich mount. In this case, they need to be suitably thick. They must be flat and smooth and the same material as the sensor for thermal matching.

Interface offers top plates and bottom plates for load cells. Mounting Plates for Low Profile™ Load Cells are used in the installation of a compression load cell under a weigh bridge, tank, or other structure normally requires that mounting plates be used. The bottom plate is designed to mate with the load cell and is fabricated of mild steel. It distributes the load over the foundation or supporting structure and provides a prepared surface for the load cell.

The top plate distributes the load to the weighing structure and provides a hard surface for the load button. The top plate will move on the button due to thermal expansion, load shifting, wind loading, and other side loads. The high side load capacity of the Interface load cell eliminates the requirement for expansion assemblies in most installations. Mounting plates are suitable for compression loads only; they will not properly support a universal load cell used in tension.

Interface has recently introduced force plates. Interface Force Plates are a system of multiple multi-axis sensors mounted between two plates. They are ideal for larger capacities than single 6-Axis sensors and can react high moments. Results dependent on characteristics of the plates and other system components and for load introduction and bigger sensors, you should consider in-situ calibration.  Force plates are used for applications such as robotic arms. When secured at the base of the arm, the four sensors are providing feedback during use.

You can learn more about force plates and mounting plates for multi-axis sensors in our latest webinar. Learn more by watching the multi-axis webinar here.

Interface offers mounting plates in our accessories product line. For custom applications, such as our force plates or multi-axis mounting plates and systems, contact our Application Engineers today.

Additional Resources

3A Mounting Instructions