Posts

Load Cells for Smarter and More Efficient Weighing

Interface load cells are a key part of the advancements in weighing technologies. Breakthrough applications utilizing force sensing for weighing are expanding across industries. No matter the use case, weighing and scales must be trustworthy and always provide accurate information, as outlined in Accuracy Matters for Weighing and Scales.

For decades, load cells have been used for a wide range of weighing use cases. Load cells are electromechanical transducers that convert a force into an electrical signal. This electrical signal can then be amplified and processed to determine the weight of the object being weighed.

In testing or standard weighing practices, the load cell is typically mounted in a frame that supports the object being weighed. The load cell is connected to a signal conditioner, which amplifies the electrical signal from the load cell and converts it into a digital signal. The digital signal is then sent to a weighing controller, which calculates the weight of the object and displays it on a display. The weighing controller may also have additional features, such as data logging, remote monitoring, and programmable functions.

Now, Interface high accuracy load cells are found in advanced weighing applications used to define center of gravity for equipment, control inventory through weighing automation, batching, check weighing, process control and sample testing. Learn more about these applications and products in our Weighing Your Options Webinar.

Smart cities use connected force sensing trash receptacles for optimizing schedules of waste removal based on weight to reduce costs and increase efficiencies.  Innovative smart pallet force sensing helps to track products and goods at the dock to reduce expenses and increase productivity using weight as the measurement. Silo weighing for inventory management uses setpoints that are configured to automatically generate purchase orders when product levels fall below a defined weight.

Weighing sensor technologies today are more than a standard measurement device. Interface load cells can measure across a wide range of force, from 0.02 to 2,000k lbf. As the types of applications mature in capabilities, innovation, and complexity, these requirements also help to define the type of sensors that will provide precision measurement.

Our weighing sensors combined with advanced instrumentation use a variety of communication methods, including analog, digital, wireless and cloud based, to allow users to gather data in-facility or remotely. We can customize sensors to meet specifications for weighing use cases, including the design of complete weighing systems.

Advanced weighing applications often require sealed sensors with submersible features, wireless output and communications capabilities, and ease of use to design into products, machines or equipment.

Digital scales with advanced features such as data logging, connectivity options, and programmable functions have become commonplace. From bench scales to platform scales, there is a diverse way for our load cells to be implemented and available to measure diverse types of weighing applications.

Popular Interface Products Used for Weighing Applications

Load cells are an essential part of many weighing applications. They are used to measure the weight of objects in a variety of industries, including manufacturing, food processing, and logistics. Load cells provide accurate and reliable measurements, which is essential for ensuring the quality and safety of products.

WeighingSolutions_InfographicPoster

Learn more in the application note details below.

Veterinary Weighing Scales

A manufacturer wanted two weighing scales for consumers like veterinarians who want to weigh large and small animals. Interface suggested using two different solutions. For the smaller scale, Interface’s SPI Low Capacity Platform Scale Load Cell was perfect for smaller, and lighter animals. As for the larger scale, the INFRD Platform Scale with pre-installed load beams worked best. Both scales included 480 Bidirectional Weight Indicators to display the total weight of the animals being weighed. Using this solution, the veterinarian was able to weigh both large and small pets easily and accurately with both scales.

Silo Grain Weighing and Dispensing

A customer wanted to measure and record the grain being put in and out of their grain dispensing container, as it dispenses content into a carrier truck for transportation. Interface suggested a wireless solution, installing a WTS 1200 Standard Precision LowProfile™ Wireless Load Cells at the legs of the grain dispensing container. The 1200 measured the distribution correlation of the grain as it inputted and outputted from the container. Results were transmitted and displayed using the WTS-BS-1-HA Handheld Display for multiple transmitters, and logged and graphed using the WTS-BS-4 USB Industrial Base Station. With this solution, the customer was able to log and graph the measurement results of the grain content that the silo dispenses into the grain dispensing container, and when the grain is dispensed into the carrier truck.

Weighing is among the oldest use cases for load cells in the world and Interface has been there nearly every step of the way, growing alongside our customers and developing new innovations to perfect accuracy, reliability and durability. To learn more about our sensor solutions for weighing application, please visit https://www.interfaceforce.com/solutions/weighing-solutions/.

Center of Gravity Testing in Robotics Demands Precision Load Cells

As the use of robotics expands across industries and the types of robotic motions grow in complexity, advanced testing using quality measurement solutions is essential. Contact momentum and gross measurements of indicators are not enough for sophisticated robotics. With the requirements for robots and cobots to have fluid and inertial movement capabilities, control and feedback demand maximized feedback and resolution.

Related to the testing of inertia, load shifting, and interaction, is defining the center of gravity for robots’ actions and applications. The center of gravity (CoG) of a robotic system is a critical factor in its stability and performance.

The CoG is the point at which the entire weight of the system is evenly distributed. If the CoG is not properly located, the system may be unstable and prone to tipping over, which could damage the robot.

For any robotic application that deploys advanced mobility features, the center of gravity can affect the way the system moves. It can also impact the exactness of its movements. Thus, it is essential to use measurement solutions that are highly precise. See: Advancements in Robotics and Cobots Using Interface Sensors.

Why Robotic Engineers Care About CoG Testing

  • Stability: The CoG is a major factor in determining the stability of a robot. If the CoG is not properly located, the robot may be unstable and prone to tipping over. This can be a safety hazard, and it can also damage the robot. It is an expensive mistake to not have stability proven before moving forward with the design.
  • Performance: The CoG can also affect the performance of a robot. If the CoG is located too high, the robot may be less maneuverable. If the CoG is located too low, the robot may be less stable. By optimizing the CoG, robotic engineers can improve the performance of the robot and use for actions that rely on exact movement.
  • Safety: In some industries, such as manufacturing, medical and aerospace, there are safety regulations that require robots to have a certain CoG. For example, in the automotive industry, robots that are used to weld cars must have a CoG that is below a certain point. By testing the CoG of their robots, robotic engineers can ensure that they are meeting safety regulations.

There are different methods for determining the CoG of a robotic system. One common method is to use strain gage load cells. Not all load cells are designed for precision measurement. Interface specializes in precision. Center of gravity testing demands strict measurement. For example, Interface compression load cells are often used in center of gravity testing for robotics because they are very accurate and can measure remarkably small forces.

Interface load cells measure force, and they can be used to determine the weight of a system at different points. By measuring the weight of a system at different points, it is possible to calculate the location of the CoG.

Interface load cells used for center of gravity testing are typically in our miniature load cell line, due to the size of the installation and testing environment. Miniature load cells are easily embedded into robotics, as well as can be used for continuous monitoring.

Surgical Robotic Haptic Force and CoG

Robots used for surgery often utilize haptic force feedback for ensuring that the surgeon does not apply too much force, creating harm or greater impact on the patient. Haptic is the use of force, vibration, or other tactile stimuli to create the sensation of touch. In the context of invasive surgery, haptic force feedback from robotics is used to provide the surgeon with feedback about the forces they are applying to the patient’s tissue. CoG testing can help to prevent the robotic arm from tipping over during surgery.

CoG testing is important for haptic force feedback in invasive surgery because it ensures that the robotic arm is stable and does not tip over during surgery. The CoG is the point at which the entire weight of the robotic arm is evenly distributed. If the CoG is not properly located, the robotic arm may be unstable and prone to tipping over. This can be a safety hazard for the surgeon and the patient.

CoG testing is also used to optimize the design of the robotic arm for haptic force feedback. CoG testing using precision load cells can verify the performance of the robotic arm in haptic force feedback applications. After the robotic arm has been designed and optimized, CoG can ensure that the robotic arm is able to provide the surgeon with the feedback they need to perform surgery safely and accurately.

Robotic Center of Gravity on Production Line

A company is developing a new robotic arm that will be used to simulate human behavior on a manufacturing product line. The robotic arm will be used to pick and place products, and it is important that the arm is stable and does not tip over. To ensure the stability of the robotic arm, the company needs to determine the CoG of the arm. The load cell is placed on the arm, and the arm will be moved through a range of motions. The data from the load cell will be used to calculate the CoG of the arm.

CoG Testing and Multi-Axis Sensors

Multi-axis load cells are growing in use for robotics testing to provide data across 2, 3 or 6 axes at any given time. These high functioning sensors are ideal for robotic tests where there are simulations of human behaviors. This is detailed in Using Multi-Axis Sensors to Bring Robotics to Life.

To perform CoG testing using precision load cells, a robotic system can be placed on a platform that is supported by the load cells. We call these force plates. The load cells measure the weight of the system at different points, and the data is then used to calculate the location of the CoG. Visit our 6-Axis Force Plate Robotic Arm application note to learn more about force plates and multi-axis sensors.


Benefits Of Using Precision Load Cells for CoG Testing:

  • Interface precision load cells provide advanced sensors functional beyond contact and simple indicator measurement, to maximize robotic feedback and optimize performance.
  • Interface precision load cells can provide accurate measurements of the weight of a robotic system at different points.
  • Interface precision load cells are repeatable and dependable, which means that the results of CoG testing are consistent when testing robots and cobots.
  • Interface precision load cells are easy to use, which makes them a practical option for CoG testing and integration into the actual robot.

There are several benefits to using an Interface Mini Load Cells, like our ConvexBT Load Button Load Cell or MBI Overload Protected Miniature Beam Load Cell for high accuracy CoG testing.

First, the miniature load cell is small and lightweight, which makes it easy to attach to the robotic arm. Second, the load cell is designed for precision measurement, which ensures that the CoG of the arm is accurately determined. Third, the quality of Interface precision load cells provides repeatable and dependable measurement, which means that the results of CoG testing are consistent.

Using a miniature load cell of high accuracy is a valuable way to test the CoG of a robot used to simulate human behavior on a product line. This ensures that the robot is stable and does not tip over, which is critical for safety and efficiency.

In addition to testing the CoG of a robotic arm, other tests for these types of robotics include the weight of the arm, the distribution of the weight of the arm, and the friction between the arm and the surface it is moving on. By considering these factors, it is possible to accurately determine the CoG of a robotic arm and ensure that it is stable and safe to operate.

There are many factors that can affect the accuracy of CoG testing using load cells, including the design, capacity and range of measurement of the load cells, the stability of the platform, and the distribution of the weight of the system.

CoG testing is an important part of the design and development of robotic systems. By determining the CoG of a system, it is possible to improve its stability and performance. If you are interested in learning more about CoG testing using Interface precision load cells, please contact us.

ADDITIONAL RESOURCES

Types of Robots Using Interface Sensors

Robotic Grinding and Polishing

Collaborative Robots Using Interface Sensors

Advancements in Robotics and Cobots Using Interface Sensors

Using Multi-Axis Sensors to Bring Robotics to Life

Robotic Surgery Force Feedback

IoT Industrial Robotic Arm App Note

Force Measurement Solutions for Advanced Manufacturing Robotics

Reduced Gravity Simulation

Tank Weighing and Center of Gravity App Note

 

Automation-and-Robotics-Case-Study

New Technical White Paper Analyzes SuperSC S-Type Miniature Load Cells

Interface recently introduced a revolutionary new miniature load cell, the SuperSC. The extremely compact design makes it an ideal all-purpose load cell with high accuracy measurement in an exceedingly small form factor.

The SuperSC (SSC) models are part of the Interface product line of shear s-cells. They are specifically designed as environmentally sealed and insensitive to off axis loading. This product is available in capacities ranging from 25 to 1000 lbf (100 N to 5 kN). The new SuperSC force transducer easily fits requirements for a high accuracy sensor that can be designed into components, equipment, and end products.

In our new technical white paper, Eccentric Loading Analysis for SuperSC S-Type Miniature Load Cell, Interface’s Raymunn Machado-Prisbrey, Design Engineer for OEM Solutions, provides an extensive review of the performance and capabilities of the new SuperSC.

The paper details FEA analysis performed on spring elements of equivalent capacity, in this case 250 lbs. Two eccentric load scenarios were considered: a full scale axially applied load with three degrees of misalignment and a full scale load applied to the edge of the element loading surface. Results of this analysis are available in the new white paper, available for download here.

Additionally, the new technical review highlights SuperSC data, misalignment analysis and edge loading, providing results and images of each test.

The Eccentric Loading Analysis for SuperSC S-Type Miniature Load Cell conclusion sums it up clearly. The Interface SuperSC S-Type Load Cell outperforms traditional s-type bending cells in output consistency and safety factor stability when loaded at three degrees of axial misalignment.

The SuperSC has a higher output change under edge loading conditions than the s-type design; however, linearity is much better and safety factor remains acceptable. S-bending cells are not capable of withstanding this level of edge loading from a mechanical standpoint.

You can also watch the recorded online seminar below to get the inside scoop on this revolutionary new product.

ADDITIONAL RESOURCES

Interface Introduces SuperSC S-Type Miniature Load Cell

Superior S-Types Webinar Recap and New SuperSC

 S-Type Load Cells 101

Interface OEM Solutions Process

 

Strain Gage Design Under Eccentric Load WRSGC Presentation

By Ashlesa Mohapatra, product design engineer, Interface

In the global marketplace, Interface is well known as providing the force measurement industry’s most reliable and accurate products. One of the key reasons that Interface consistently earns this recognition is because we manufacture our own strain gages. Products engineered and manufactured at Interface use our proprietary strain gages, and each designed for the specific transducer model based on the application type and environment for use.

As an example of our dedication to quality and excellence in performance as it pertains to strain gages, I recently shared a technical presentation on the negative effects of eccentric load and how strain gage design can reduce these challenges.

Below is a brief recap of this presentation made to the attendees of the Western Regional Strain Gage Committee meeting that took place in Tempe, Arizona in October 2022. The summary explains why strain gage design can make all the difference in quality versus poor performance with load cells.

Interface redesigned the strain gages on one of our mini load cells, the LBSU Miniature Load Cell Load Button, also known as our ConvexBT – The Most Innovative Load Button Load Cell. Our goal in the redesign was to create more controlled and repeatable loading, in turn creating a more predictable output. Our research focused on strain gage designs for load cells where mechanical moment compensation is not feasible.

The main challenge with this initiative was overcoming the errors associated with eccentric loading by making the installation process smoother through a redesign.  This is difficult because strain gages are very small in size and therefore more difficult to work with, in addition they are extremely sensitive to the environment with factors like temperature, humidity, cleanliness and electric interference all potentially effecting performance.

Before diving into the redesign, I would like to touch on eccentric loading and the errors it will cause, as well as the varied factors in strain gage manufacturing that can lead to errors causing eccentric load. There are two types of eccentricity: loading and mounting. Eccentric load results from improper loading or mounting of the strain gage, which leads to off-axis loads and bending. This causes several problems including distorted measurement results, decreased load cell accuracy, and diminishing life of the load cell.

When a strain gage is mounted on the load cell incorrectly or gages are badly bonded, it will almost always be an error source and contribute to mounting errors. Also, when strain gages are not bonded to the load cell at appropriate temperature and humidity, it leads to bubbles under the gage. Chemical composition of the strain gage is critical, such as the adhesive between the foil and backing, based on the application in which load cell will be used in a lab, machine, or testing program.

With these factors in mind, we set out on a redesign continuous improvement project. The previous design of this products strain gages was rectangular in shape. So, when the load cell was loaded, eccentrically or not, the strain field would not pass through because of shape. Therefore, we began to look at other shapes for our strain gage design, ultimately landing on a circular “diaphragm” style strain gage that allow strain fields to pass through.

One of the features of this newly designed strain gage is the proprietary adhesive foil we used to adhere the foil to the backing. This adhesive provided a great deal of benefit including a lower modulus of elasticity making it resilient to adhesive failure, and the elasticity also allows for better flow.

Another feature is the full bridge gage pattern we used that provides three key advantages. This includes fewer solder joints and reduced risk for electrical shorts due to simplified wiring, reduced symmetry error, and consistent thermal performance.

One process improvement we wanted to point out was that in our calibration process we only used 5V excitation voltage. Most manufacturers use 10V to calibrate their load cells. Due to lack of thermal mass in the thin diaphragm design of our strain gage, the zero will shift due to high voltage and low poor heat dissipation with 10V. We use a 5V excitation voltage to calibrate these miniature load cells instead of the alternative to prevent overheating of the cell.

To further improve the design, we enhanced the inspection process. Our diaphragm gages are quality inspected for accurate mounting with visual and electrical testing. Visual testing includes checking for air bubbles under the gage, badly bonded edges, unreliable solder connections and flux residues. Electrical tests include checking for electrical continuity and insulation resistance.

We then moved our attention to the circuit board. Some manufacturers use a circuit board in the cable due to the limited space within the cell to improve zero balance zero balance and to better compensate for temperature. However, bending or moving this cable would put pressure on the board and shift the zero. Therefore, we elected to install an abradable compensation resistors inside the flexure instead of the cable. This keeps the compensation resistor close to the gages and is intimately bonded to the body of the sensor to improve the reaction time of the cell to temperature.

To evaluate and confirm that our design was superior, we assessed three different strain gage styles: the rectangular gages (discreet gages), patch gages, and our diaphragm gage. Each of the gage styles were placed on three different load cells and loaded at one degree centricity. This test was run at 45 degree increments eight times. The results showed diaphragm style provided more reproducible result under eccentric load compared to other gages.

This was an interesting undertaking that taught the project team a lot about strain gage design and eccentric load. What I took away from this experience, other than a superior design for our ConvexBT Load Button Load Cells, is that any commercially successful product has a strong process behind it. You also need to have a clearly defined process that includes a continuous improvement plan. Interface Minis are a popular product line that has been around for many years. As soon as a product like this hits a point of stagnation, it will lose its hold on the market. I am proud of our team’s ability to avoid stagnation by taking critical steps to improving the Mini product line, maintaining our reputation for having the best quality, accurate and reliable products no matter the capacity available for precision force measurement.

Western Regional Strain Gage Committee (WRSGC), a technical division of the national Society for Experimental Mechanics (SEM), was established to promote a free interchange of information about strain measurement techniques using strain gages.

Interface is a proud member and sponsor of WRSGC. Our engineers participate in the technical conferences, in both presentation and attendance. Interface’s Product Design Engineer Ashlesa Mohapatra presented at the event held in Arizona, October 17-19, 2022.

Interface Introduces SuperSC S-Type Miniature Load Cell

Interface has released its latest load cell invention, the SuperSC S-Type Miniature Load Cell. Interface’s new product is an s-type miniature load cell that offers capacities in a form factor 80% smaller and 50% lighter than other models of s-type load cells. It’s ideal for industry 4.0 applications.

The Interface SuperSC is an economical general purpose load cell with a compact design. It is perfect for all types of test and measurement applications in confined spaces and for OEM use cases with smaller product dimensions. The miniature sensor is also environmentally sealed and insensitive to off axis loading.

Designed by Interface’s engineer Raymunn Machado-Prisbrey, SuperSC comes in 12 capacities ranging from 25 to 1K lbf and 100 N to 5 kN. Six designs for international standards of measurement (metric) and six are imperial standards. They are environmentally sealed with an IP66 rating and offer high stiffness with low detection.

“S-type load cells have grown in popularity every year since their introduction in 1974 by Interface’s founder, primarily due to their design features and performance for use in diverse force measurement applications.” Mark Weathers, VP of Advanced Manufacturing and OEM Products

Due to its high capacity and compact housing, it is an ideal sensor for weighing and test machines, as well as in OEM product designs for ongoing performance measurement and monitoring. S-type load cells are some of Interface’s most popular products. The new product release of the SuperSC represents the next generation of the versatile Interface Mini product offerings.

“The SuperSC is the next generation of s-type load cells with the Interface’s distinguishable high quality, accuracy, reliability, and range of capacities, while also offering a more compact design and options for customization and embedding into products and machines,” said Mark Weathers, VP of Advanced Manufacturing and OEM Products

The Interface SuperSC is manufactured at Interface’s headquarters in Arizona. It has accessories and different build options, including a high-temperature rated version, fatigue rated, special calibrations, and it also can be pre-installed with rod end bearings. Interface also plans to introduce a submersible, IP68 rated version and a model specialized for load compensation.

The new Interface SuperSC S-Type Miniature Load Cell and review specification sheets and pricing are here.

Interface highlighted the product in the recent Superior S-Type Load Cells webinar recording.

PRESS RELEASE

ADDITIONAL RESOURCES

Superior S-Types Webinar Recap and New SuperSC

SuperSC S-Type Miniature Load Cell

Superior S-Type Load Cells Webinar

S-Type Load Cells 101

Superior S-Types Webinar Recap and New SuperSC

Interface hosted a new online seminar, Superior S-Type Load Cells, to highlight the different models, capabilities, and features of this popular type of force measurement transducer. It also provided a terrific opportunity to showcase one of Interface’s latest inventions, the new SuperSC S-Type Load Cell.

Interface’s Raymunn Machado-Prisbrey, Randy White and Mark Weathers detail important topics during this essential force sensors event. The presentation focuses on various S-type products, an engineering perspective, use cases and applications, along with the news of the SuperSC product release.

S-type load cells, sometimes called s-beams, get its nomenclature from the “S” looking model of the load cell. The classification of this type of load cell is considered a miniature sensor. They are part of Interface’s extensive line of Mini Load Cells.

One of the clear advantages of this load cell, that Interface brought to market in 1974 through an invention by our founder Richard F. Caris, is that it can be used to measure tension and compression.

Common Standard S-Types Use Cases

  • Controlled tension and compression measurement applications
  • Proof loading
  • Fatigue and high cycle count tests
  • Material testing
  • Suspended weighing and platform scales
  • Rigs, cranes, and hoists
  • OEM systems
  • Test machine integrations

The “S” shaped load cell has mechanical attachments on the top and bottom. The strain gage bridge is located at center. Interface uses a Wheatstone bridge with proprietary strain gages in a bending configuration. This offers a more efficient inline package versus standard bending bridge sensors for improved off axis insensitivity.

Watch our latest webinar to learn more about the versatile miniature S-Type Load Cells and the news about our SuperSC.


As detailed in the webinar, one of the biggest benefits is the scalable design that can accommodate a wide range of capacities through material and dimensional changes. S-types gained their popularity with requirements for small form factors and precision. They are now some of Interface’s top 10 products.

Engineers and testing labs prefer Interface’s s-type sensors for:

  • Proven load cell form with Interface’s strain gages
  • High accuracy
  • Size and much smaller than typical load cells
  • Value and cost-effective solution
  • Flexibility to fit in limited spaces
  • Easy to integrate
  • Universal for tension and compression testing

S-types are used inline during loading. They feature threaded mounting holes, providing stability and accuracy in measurement. They are not designed to be used for moving or rotating test objects. S-types are used in individual use cases for testing rigs and machines, as well as OEM solutions embedded into a product for continuous measurement and feedback.

Interface has a wide range of specialized miniature s-type load cells including:

  • Sealed
  • Micro-size
  • Fatigue-rated
  • High-temperature ratings
  • Low height
  • Overload protected
  • Intrinsically safe

You can watch the entire online event here. You will be the first to preview the official launch of the SuperSC and how it is modern design, superior performance, and low cost are ideal for OEM solutions. Randy, Ray and Mark detail tips, FAQs and some innovative applications for s-type load cells.

We record all Interface webinars for your convenience. Be sure to subscribe to our Interface YouTube Channel so that you do not miss an event.

EV Battery Testing Solutions Utilize Interface Mini Load Cells

Automotive components undergo rigorous testing to meet regulatory standards, guarantee performance, and ensure consumer safety. These components continually require investment in innovation to meet the expressed governmental, consumer and commercial use requirements.

One of the vehicle components that is undergoing intense change is the battery. The market is heavily focused on increasing mileage use and life, which includes the shift from single-use lithium batteries to lithium-ion batteries which are rechargeable.

These customer sentiments are noticeable in the growing global electric vehicle (EV) and hybrid electric vehicle (HEV) demands for sustainable and longer-lasting battery solutions. Customer satisfaction and commercial applications are closely intertwined with a vehicle’s ability to travel longer distances without refueling or charging. The demands and changes drive robust test and measurement programs to bring new battery models and designs to market.

In 2021, it is estimated the EV battery market exceeded 38% of total battery sales. As technology continues to improve the lifecycle and reducing battery costs, Precedence Research estimates 32% CAGR through 2030. This translated to $46B in the US alone of market share, while Asia Pacific is leading the production of EVs and overall demand for the EV batteries. Based on global adoption of electric vehicles, supported by government initiatives and an intense focus on reduced carbon emissions, the EV battery market is expected to continue expanding around the world.

The testing of batteries is growing in complexity with the increase in number of cells, modern designs, materials, cycles, installation, vehicle models, certifications and charging equipment to name a few. Battery simulation and real battery integration testing are two examples of commonly used T&M programs used to validate battery adaptability and use requirements. In battery testing, accuracy and quality of the measurement devices are vital. The following are the most common battery types today:

  • Lithium-ion Battery
  • Lead-Acid Battery
  • Sodium-ion Battery
  • Nickel-Metal Hydride Battery
  • Others

Due to the market shift to EVs, the lithium-ion battery is the number one battery type today. The domination of the lithium-ion battery exceeded all other battery types in 2021. Manufacturers of EVs prefer partnering with OEMs of newer model Li-ion batteries because they are lighter in weight and have higher energy density. The following details one of many Interface solutions offered to automotive component and battery manufacturers.

Electric Vehicle Battery Monitoring

The EV battery manufacturer required a system to monitor their lithium-ion batteries. Normally, lithium-ion batteries are measured through voltage and current measurements or (ICV) to analyze and monitor the battery life. In consultation with the design and testing engineers, Interface recommended a solution that required installing the LBM Compression Load Button Load Cell in between two garolite end plates, and measuring the force due to cell swelling or expansion. Instead of monitoring through voltage (ICV), this method is based on measured force (ICF). To monitor the testing, the load cell was paired with the 9330 Battery Powered High Speed Data Logging Indicator. This instrumentation solution provides the ability to display, record and log the force measurement results with supplied software.  To review the results and complete application note, go here.

Interface has long partnered with auto manufacturers and suppliers of various parts and components to provide a large range of automotive industry test and measurement solutions.  This includes sensors and instrumentation solutions for the development, testing and performance monitoring of all types of batteries, with growing interest for lithium-ion battery testing.

Interface will be discussing this and other force measurement solutions at the upcoming Auto Test Expo in Europe. Join us in Stuttgart or contact our application engineers to collaborate on a testing solution that works for your next project.

Additional Automotive Industry Resources

Interface Automotive Force Measurement Solutions

Driving Force in Automotive Applications

Test and Measurement for Electric Vehicles

The Future of Automotive is Electric

AxialTQ Technical White Paper Details Comparative Testing

WTS Brake Pedal Force Testing

Automotive + Vehicle Brochure

Automotive Window Pinch Force Testing App Note

Automotive Head Rest Testing App Note

Advancing Auto Testing with Interface Measurement Solutions

Force Measurement Solutions for Mobility Markets

One of the tenets in addressing urban mobility is innovation.  As populations grow around the world, addressing how people get from here to there is part of a challenge and opportunity.  Investments are growing in this sector, as experts and designers look to how to increase efficiency and performance in vehicle markets.

Interface has long been a supplier of test and measurement solutions to industries that play a critical role in mobility, from vehicle manufacturers to infrastructure planners and builders. In our latest case study, we look at some of the innovative ways our solutions are being used to advance technologies and capabilities in transportation.

If something moves, it likely needs force and torque testing for reliability, safety and performance. With the evolving trends in urban mobility, Interface is working with makers and builders of all types of transportation solutions for unmanned vehicles like drones and autonomous vehicles, as well as alternatively fueled and electric vehicles.

READ OUR NEW CASE STUDY: INTERFACE’S CRUCIAL ROLE IN VEHICLE AND URBAN MOBILITY MARKETS

Interface customers utilize our standard and custom products in the vehicle and mobility markets to:

  1. Test the force and torque of components for validation or for design improvements
  2. Integration of sensor technology into a component or product for functional real-time performance data

These products include Interface load cells, mini load cells and subminiature load button load cells, rotary and reaction torque transducers, instrumentation, and accessories. For the growing trends for digital requirements in testing and OEM solutions, our wireless and Bluetooth solutions are commonly used in these markets.  Interface is also frequently engaged on specific customer requests for engineer-to-order products and customized solutions.

Here are four use case scenarios of Interface solutions used in the vehicle and mobility markets:

Brake Pedal Testing

Interface’s Brake Pedal Load Cell BPL-300-C was installed on a brake pedal and then connected to a BTS-AM-1 Bluetooth Low Energy Strain Bridge Transmitter Module, which collects and transmits data to our BTS Toolkit Mobile App. This solution allowed the customer to record and review data from a mobile device while out on a test track. READ MORE HERE.

Drone Delivery Systems

Interface supplied four WMC Sealed Stainless Miniature Load Cells to measure the payload weight and  for the detection of in-motion shifting and uneven distribution of the package weight. As the load cells detect this data, it provides a signal to the propeller to increase RPMs on the propellers and adjust balance and weight distribution inflight. WATCH HERE.

Electric Vehicle (EV) Battery Testing

Compression testing performed on EV batteries is critical for performance and safety. As an EV battery is charged and stores more electrons, it swells. If the packaging housing the batteries does not compensate for this swelling in the design, failure is likely. Interface can supply a WMC miniature load cell. The load cell will measure compression force as a battery goes through charge cycles on a test stand to determine the force given off as the battery swells. This allows our customers to design the proper packaging for the batteries. Read more about the future of EV markets and testing here.

Engine Performance Testing

Force and torque sensors are used with a dynamometer, which isolates the engine’s power output to help quantify its overall performance.  In this application, a  precision SSMF Fatigue Rated S-Type Load Cell is attached to a torque arm to “feels” the torque from an engine loading system. The fatigue rating on the load cell allows it to accurately measure performance for extended cycles. A signal conditioner is used to connect out from the load cell to a computer to ensure clear transmission of data to accurately measure torque being produced by the engine. Engineers analyze power transfer through the data output to tune the engine performance. Check out this engine dynamometer application note here.

Contact our experts to learn more about these types of testing applications, use cases and products used in urban mobility projects.