Posts

Wireless Telemetry Systems 101

A wireless telemetry system enables the remote measurement and transmission of data from one location to another without the need for physical wired connections.  As technology continues to advance, wireless telemetry systems are becoming increasingly sophisticated, reliable, and secure, enabling them to be applied in a wide range of industries and use cases for test and measurement applications.

Interface offers a wide range of wireless telemetry products. Components in wireless telemetry systems typically include sensors, transducers, instrumentation, communication modules, transmitters, displays and printers.

The sensors are used to measure tension, compression, weight, torque, or any other measurable quantity. Interface utilizes proprietary strain gage sensor technologies. Transducers convert the analog signals from sensors into digital data that can be processed and transmitted to instrumentation.

Load cells are commonly used with wireless telemetry systems to measure and transmit data related to the force or weight applied to an object. The load cell converts the force exerted on it into an electrical signal, which can then be wirelessly transmitted to a remote monitoring system.

The most popular Interface wireless load cells are our WTS 1200 Standard Precision LowProfile® Wireless Load CellWTSTL Wireless Tension Link Load Cell, WTSLP Wireless Stainless Steel Load Pin and WTSSHK-D Wireless Crosby™ Load Shackle. Interface works with our customers to develop engineered-to-order wireless solutions by request.

The analog output from the load cell may require signal conditioning to ensure accuracy and compatibility with the wireless telemetry system. Signal conditioning can also be required for amplification, filtering, and analog-to-digital conversion to convert the analog signal into a digital format.

Wireless communications modules are responsible for transmitting the data over wireless channels. It can use various communication technologies like Wi-Fi and Bluetooth depending on the application’s requirements. The transmitter is responsible for wirelessly communicating the load data to the receiving end of the telemetry system.

There are various options for data collection. Data acquisition instrumentation is preferred in force measurement applications for the purposes of collecting vast amounts of the data from sensors and transducers and preparing it for transmission.

At the receiving end of the telemetry system, another wireless communication module receives the data from the load cell’s transmitter. Once the data is processed, it can be analyzed, logged, and displayed on a user interface, such as a computer dashboard or a mobile app. This allows operators, engineers, or users to monitor the load values in real-time and make informed decisions based on the data

Interface Wireless Telemetry System (WTS) Solutions

The Interface Wireless Telemetry System (WTS) offers flexibility by eliminating physical connections, making it easier to deploy sensors in remote or challenging environments. Wireless telemetry systems offer more flexibility in sensor placement and system configuration.

The absence of physical wires allows for easier repositioning or adding new sensors without significant infrastructure changes. This setup is particularly useful in scenarios where it is challenging or impractical to use wired connections, such as in large-scale industrial applications or when monitoring moving or rotating machinery.

Wireless Telemetry System Components

Wireless Transducers

Wireless Transmitters

Wireless Receivers

Wireless Output Modules

Wireless Displays and Instrumentation

This is a list of what types of products are available. The Interface WTS offering continues to grow with added products to the line. Check out the Wireless Modular System Overview for more system details.

Wireless Telemetry System Benefits

The Interface WTS is a wireless telemetry system that transmits high-quality data to single and multiple devices. It offers a wide variety of benefits, including:

  • High accuracy: The WTS offers measurement accuracy of ±0.02% of full scale, ensuring that you get accurate readings from your sensors.
  • High speed: It is a high-speed system that can transmit data at up to 1000Hz.
  • High resolution: The WTS has a resolution of 10,000 counts, which means that you can measure even slight changes in force.
  • Multiple configuration options: The WTS can be configured to meet a wide variety of needs. You can choose from a variety of transmitters, output modules, receivers, antennas, and displays.
  • Easy to use: It is a modular system that can be easily expanded to meet the needs of your application. It is supported by our powerful WTS Toolkit configuration software that makes it easy to set up and use.
  • IP-rated enclosures: The WTS transmitters and receivers are available in two different sized enclosures that are rated to IP67, making them dustproof and waterproof.

A major benefit of wireless telemetry systems is the ability to adapt and expand by adding additional sensors or devices to system, without the constraints of wireless and cables. They are easy to integrate, and installation is fast for immediate benefits.

Wireless telemetry seamlessly integrates with the Internet of Things (IoT) and cloud-based platforms, enabling centralized data storage, analysis, and easy access from multiple devices.

Read: Interface Wireless Telemetry System Review

Applications Using Interface Wireless Telemetry System Solutions

Aerospace: Wireless options are preferred for large projects like require careful movement and testing of aircraft, components and systems. Providing flexibility in real-time data without the cable is a huge benefit. See these WTS solutions for Aircraft Engine Hoist and Airplane Jacking System

Industrial Automation: Load cells with wireless telemetry are commonly used in industrial environments for weighing large objects, such as in material handling, manufacturing, and logistics. Check out IoT Lifting Heavy Objects.

Medical and Healthcare: Wireless medical telemetry systems are used for patient monitoring, such as in wearable health devices. In medical settings, wireless load cells are used in patient lifts and hospital beds to monitor patient weight and movement. Learn more in our Patient Hoyer Lift application.

Agriculture: The agriculture industry uses WTS for monitoring crop management programs and measuring the weight of produce, animal feed, or livestock. Check out this use case: WTS Equine Bridle Tension System App Note.

Energy: The energy industry utilizes wireless load cells and telemetry products for remote monitoring of oil wells, pipelines, and storage facilities. Check out Tank Weighing and Center of Gravity

Infrastructure: Civil engineers use WTS for assessing the health and integrity of structures like bridges and dams. Monitoring loads on structures like bridges and cranes to ensure safety and structural integrity. Check out Road Bridge Lift Monitoring.

Manufacturing: There are many examples of manufacturing WTS use cases. Wireless load cells are being used to monitor the weight of products as they move through the production line. This information can be used to ensure that products are meeting quality standards, and to identify any potential problems early on by fully utilizing the wireless telemetry capabilities.

Construction: In the construction industry, wireless load cells and telemetry systems monitor the load on beams and columns during construction to ensure that structures are safe and stable, and to detect any potential problems before they cause an accident. Check out Jib Crane Tension Monitoring.

Transportation: In the transportation industry, wireless load cells are being used to monitor the weight of cargo on trucks and trains to ensure that loads are not overloaded, and to comply with regulations. Read IoT Waste Management Container Weighing.

Automotive: The industry utilizes a number of machines and systems to test components used in the making of automobiles. Read how WTS is used in this brake testing application: WTS Brake Pedal Force Testing.

Entertainment: Protecting the artists, equipment and attendees is top of mind for all venues. Wireless systems are used to monitor environmental conditions, rigging, display mounts and more. Read Multi Stage Load Monitoring.

Integrating load cells with wireless telemetry systems provides a convenient and efficient way to monitor force or weight data remotely, allowing for real-time data analysis and enhancing the automation and safety of various processes.

If you are looking for a reliable and accurate wireless telemetry system, the Interface WTS is a great option. It is a powerful and versatile system that can be used in a wide variety of applications. and industry use cases.

Interface Solutions Aid Pharmaceutical Industry

Among the many highly regulated and incredibly complex industries, the medical industry is highly dependent on tools and resources that are precise and measure with high accuracy.

The medical industry is a broad, encompassing hospitals, medical professionals, payers, medical devices and pharmaceuticals. In each sector, Interface has a long history of providing precision measurement solutions for R&D, prototyping, testing, manufacturing, packaging and monitoring use.

In every use case, safety of patients and quality of products is predicated on extreme accurateness. Throughout a pharmaceutical product’s life cycle, specialized measurement equipment and sensor technologies are used by scientists, engineers, researchers, lab technicians, regulators, quality groups and manufacturers. These instruments are utilized in design and maintenance to provide unmistakable evidence of process quality and safety.

Medical and healthcare companies, including those specifically in pharmaceuticals, turn to Interface because our high accuracy force measurement solutions are designed for reliable performance test and measurement projects. The science used in the pharmaceutical industry depends on quality measurement of force and weight. Interface load cells are designed for these types of precise requirements. There is also tremendous demand for Interface’s ability to customize solutions that meet the exact measurement requirements of these sensitive applications. Visit our new Interface Pharmaceutical Industry Solutions.

Interface supports a range of pharmaceutical applications including:

  • Weighing and distributing
  • Specimen testing equipment
  • Tablet hardness testing
  • Tablet forming machine optimization
  • Capsule filling machines
  • Quality control and safety
  • Mixing
  • Packaging and filling
  • Bioreactors and fermenters

Interface force measurement solutions are used for a variety of pharma-related products and machines that help biotechnology and pharmaceutical product engineers to design, test, and manufacture their products.  When it comes to equipment used in the manufacturing of medicine, Interface products are used to optimize production and reduce waste. Our miniature load cells are often integrated into machines and equipment to provide precision measurements during operations.

Types of Interface Load Cells Used by Pharmaceutical Companies

Pharmaceutical Tablet Forming Machine Optimization

A pharmaceutical tablet producer wanted to monitor the forces applied by the tablet forming machine to understand the relationship between raw material, die set, forming force, and the motor’s cycle speed. The goal was to improve productivity and efficiency of the tablet forming process, while reducing losses such as cracked tablets or voids, by adding a dimension of feedback that could be used to assign specific press adjustment criterion for given inputs. An Interface WMC Sealed Stainless Steel Mini Load Cell (10K lbf Capacity) was mounted in the section of the downward press bar. The machine was modified to accomplish this. The load cell was then connected to a 9320 Portable Load Cell Indicator to collect the needed data. After analyzing the data, the tablet producer was able to quantify adjustment levels by monitoring which forces produced the most optimal results for a given cycle speed, die set, and raw material. Productivity and efficiency were greatly improved by the enhancement of the data feedback.

Tablet Hardness Testing for Pharmaceuticals

A pharmaceutical producer wanted to test and monitor the hardness of the pills being created in their tablet forming machine. Interface’s SML Low Height S-Type Load Cell was mounted to the hardness device inside the tablet forming machine. The SML Low Height S-Type Load Cell was then connected to the 9870 High-Speed High Performance TEDS Ready Indicator to record the force measurements. The tablet producer was able to verify and test the specific hardness needed for their tablets being produced by their tablet forming machine.

Pharmaceutical Tablet Machine Hardness Calibration

A customer wanted to regularly recalibrate tablet hardness testers. The customer needed a miniature load cell the size of a sugar cube that replaces the tablets and fits horizontally in the tablet test-box. Therefore, a special cable exit was important for the compression only calibration application. In the past, the machines had to be rebuilt for calibrations, or a complex mechanism had to be integrated to enable vertical calibration. However, Interface’s MCC Miniature Compression Load Cell measures forces on its side with a special cable exit on the flat side that attaches to the calibration indicator, such as the Interface handheld indicator and datalogger Model 9330. The MCC load-cell calibration set compared the applied forces with the hardness tester to make sure that the tablet hardness tester uses the correct force for future tablet hardness tests. The BlueDAQ software helped to log and compare the data of the MCC reference load cell. The customer successfully verified and calibrated the tablet hardness tester machine horizontally to conduct accurate hardness testing on tablets in the future. Interface’s MCC Miniature Compression Load Cell was perfect due to its small size, and convenient to measure the forces on its side.

Like medical devices, pharmaceutical machines and products must undergo a variety of mission-critical tests before they are safe for distribution to uses. Interface products are selected by the pharmaceutical industry is due to our product’s accuracy and reliability, in addition to our deep experience in supplying solutions to those in the medical business.

Pharmaceuticals_InfographicPoster

ADDITIONAL RESOURCES

Spotlighting Medical Device and Healthcare Solutions

Force Solutions for Medical Tablet Forming Machines

Interface Ensures Premium Accuracy and Reliability for Medical Applications

Interface Solutions for Medical Devices and Healthcare

Interface Solutions for Safety and Regulation Testing and Monitoring

Accuracy Matters for Weighing and Scales

 

Why Product Design Houses Choose Interface

When people think of force measurement, they often think that it is a tool for testing products. However, load cells, torque transducers and multi-axis sensors also play a fundamental role throughout the entire product design process. In fact, many products today actually design force sensors directly into products.

Product design houses are companies that fulfill outsourced design work for a variety of industries. These specialized design houses are contracted to develop and bring products to life.

A product design house primarily focuses on designing physical products or tangible goods. The services they offer to product makers, engineers, manufacturers, and innovators typically involve the entire product development lifecycle, from conceptualization and design to prototyping and manufacturing.

Due to our experience and expertise across multiple industries, Interface collaborates with product design houses in identifying the right sensors and systems to use during different stages of the design process. Whether it is for accurately measuring forces for impact and fatigue testing, identifying precise weights for packaging, modeling consumer usability, or testing material strength, Interface products are chosen by design houses based on their range of capabilities, accuracy, versatility and quality.

How Product Design Houses Use Interface Products

  • Concept Development and Prototyping: Product design houses often use Interface product design files when refining their initial product ideas or creating new concepts. When the products move into physical modeling, Interface products are used for testing and validation at this early stage.
  • Industrial Design: Industrial designers use Interface load cells and other sensor products for measuring functionality of the product.
  • Design Validation and Testing: Conducting tests and simulations to validate the product’s performance, durability, and safety are the number one reason why design houses utilize Interface measurement solutions. Design houses put sensor technologies into products to provide force data for user feedback, to optimize performance, safeguard consumers and activate components.
  • Mechanical Engineering: The mechanical engineering team of a design house will connect with Interface when they are working on the technical phases of product design. Our products are used to help ensure the final product can be fabricated efficiently, performs consistently, and meets applicable safety standards.
  • Materials and Manufacturing: Experts at design houses that are versed in materials science and manufacturing processes will consult with Interface in finding measurement solutions that can access and validate material testing and production systems. Within the manufacturing realm, these devices are employed in quality control processes to ensure consistent product standards.
  • Packaging: If a product has packaging that must meet durability, temperature, pressure or fatigue requirements, Interface will provide sensors and instrumentation for design testing.
  • Regulatory Compliance and Certification Support: For products subject to regulatory standards, design houses utilize high accuracy measurement solutions in creating specifications, reporting, and compliance requirements before moving to market.

These services can vary from one product design house to another, and some design houses may specialize in specific industries or types of products.

Product design houses leverage Interface load cells across various industries to measure and monitor forces and weights with precision. For example, in medical device development, Interface miniature load cells are used for patient lifts, ensuring secure and accurate weight measurements.

Whether used in material testing, robotics, or agricultural machinery, load cells enable product design houses to create innovative solutions tailored to specific industry requirements, enhancing overall product performance and reliability. Here are a few examples of house product designers use force measurement solutions during the design phase.

Furniture Fatigue Cycle Testing

To meet safety protocols in relation to the manufacturing of various furniture products, fatigue testing, shock testing, and proof testing must be rigorously performed before diffusion into the marketplace, and into the homes of consumers. Force testing of furniture products is critical in determining the posted max loads to protect manufacturers from liability due to damage that might result from the misuse of those products and overloading. Using Interface’s SSMF Fatigue Rated S-Type Load Cell along with Interface’s 9890 Strain Gage, Load Cell, & mV/V Indicator provided a solution that measures the force being applied in fatigue cycle testing of a furniture product, in this case, testing the rocking mechanism in an office chair. Throughout the testing phase, changes were made to the design to improve the safety and life of the furniture, ensuring product quality and protecting the manufacturer from future liability.

Self-Checkout Kiosk Functional Testing

To assess the design of self-checkout kiosks, part of the development cycle is to ensure the weighing feature is functioning properly with the right amount of sensitivity when customers want to weigh products like fruits or vegetables. The designers also needed a system that measures the force it takes for the self-checkout kiosk to activate a response for consumers. Interface suggested installing SSB Load Beam Load Cells under the plate where items are weighed. When connected to the WTS-AM-1E Wireless Strain Bridge Transmitter Module, force results are wirelessly transmitted to the WTS-BS-6 Wireless Telemetry Dongle Base Station on the customer’s PC. Data can be logged and graphed with included Log100 software. Interface’s wireless force system successfully measured the amount of force it took for the self-checkout kiosk to react and ensure it is functioning properly.

 

Design of a Prosthetic Foot

In the design of this medical device, the product designers need to know how the foot responds as it is loaded during different stances. To measure this, Interface’s 3A120 3-Axis Load Cell was installed between the leg socket and the prosthetic foot. The 3A120 was then connected to the BSC4D Multi-Channel Bridge Amplifier and Computer Interface Module. Using this solution, data was logged for X, Y, and Z axis. The design house was able to review the results and identify premature flat foot and dead spots during foot’s production for consumer use. They utilized this vital information to make improvements to the design.

Interface works with design houses and product design engineers across the continuum of a product’s development through go-to-market. We supply standard measurement sensors like our load cells, along with custom solutions that are uniquely engineered for a particular use case.

ADDITIONAL RESOURCES

Why Product Design Engineers Choose Interface

Interface Solutions for Consumer Products

Introducing the Interface Consumer Product Testing Case Study

Interface Mini Load Cells Growing in Product Use and Testing

Center of Gravity Testing in Robotics Demands Precision Load Cells

As the use of robotics expands across industries and the types of robotic motions grow in complexity, advanced testing using quality measurement solutions is essential. Contact momentum and gross measurements of indicators are not enough for sophisticated robotics. With the requirements for robots and cobots to have fluid and inertial movement capabilities, control and feedback demand maximized feedback and resolution.

Related to the testing of inertia, load shifting, and interaction, is defining the center of gravity for robots’ actions and applications. The center of gravity (CoG) of a robotic system is a critical factor in its stability and performance.

The CoG is the point at which the entire weight of the system is evenly distributed. If the CoG is not properly located, the system may be unstable and prone to tipping over, which could damage the robot.

For any robotic application that deploys advanced mobility features, the center of gravity can affect the way the system moves. It can also impact the exactness of its movements. Thus, it is essential to use measurement solutions that are highly precise. See: Advancements in Robotics and Cobots Using Interface Sensors.

Why Robotic Engineers Care About CoG Testing

  • Stability: The CoG is a major factor in determining the stability of a robot. If the CoG is not properly located, the robot may be unstable and prone to tipping over. This can be a safety hazard, and it can also damage the robot. It is an expensive mistake to not have stability proven before moving forward with the design.
  • Performance: The CoG can also affect the performance of a robot. If the CoG is located too high, the robot may be less maneuverable. If the CoG is located too low, the robot may be less stable. By optimizing the CoG, robotic engineers can improve the performance of the robot and use for actions that rely on exact movement.
  • Safety: In some industries, such as manufacturing, medical and aerospace, there are safety regulations that require robots to have a certain CoG. For example, in the automotive industry, robots that are used to weld cars must have a CoG that is below a certain point. By testing the CoG of their robots, robotic engineers can ensure that they are meeting safety regulations.

There are different methods for determining the CoG of a robotic system. One common method is to use strain gage load cells. Not all load cells are designed for precision measurement. Interface specializes in precision. Center of gravity testing demands strict measurement. For example, Interface compression load cells are often used in center of gravity testing for robotics because they are very accurate and can measure remarkably small forces.

Interface load cells measure force, and they can be used to determine the weight of a system at different points. By measuring the weight of a system at different points, it is possible to calculate the location of the CoG.

Interface load cells used for center of gravity testing are typically in our miniature load cell line, due to the size of the installation and testing environment. Miniature load cells are easily embedded into robotics, as well as can be used for continuous monitoring.

Surgical Robotic Haptic Force and CoG

Robots used for surgery often utilize haptic force feedback for ensuring that the surgeon does not apply too much force, creating harm or greater impact on the patient. Haptic is the use of force, vibration, or other tactile stimuli to create the sensation of touch. In the context of invasive surgery, haptic force feedback from robotics is used to provide the surgeon with feedback about the forces they are applying to the patient’s tissue. CoG testing can help to prevent the robotic arm from tipping over during surgery.

CoG testing is important for haptic force feedback in invasive surgery because it ensures that the robotic arm is stable and does not tip over during surgery. The CoG is the point at which the entire weight of the robotic arm is evenly distributed. If the CoG is not properly located, the robotic arm may be unstable and prone to tipping over. This can be a safety hazard for the surgeon and the patient.

CoG testing is also used to optimize the design of the robotic arm for haptic force feedback. CoG testing using precision load cells can verify the performance of the robotic arm in haptic force feedback applications. After the robotic arm has been designed and optimized, CoG can ensure that the robotic arm is able to provide the surgeon with the feedback they need to perform surgery safely and accurately.

Robotic Center of Gravity on Production Line

A company is developing a new robotic arm that will be used to simulate human behavior on a manufacturing product line. The robotic arm will be used to pick and place products, and it is important that the arm is stable and does not tip over. To ensure the stability of the robotic arm, the company needs to determine the CoG of the arm. The load cell is placed on the arm, and the arm will be moved through a range of motions. The data from the load cell will be used to calculate the CoG of the arm.

CoG Testing and Multi-Axis Sensors

Multi-axis load cells are growing in use for robotics testing to provide data across 2, 3 or 6 axes at any given time. These high functioning sensors are ideal for robotic tests where there are simulations of human behaviors. This is detailed in Using Multi-Axis Sensors to Bring Robotics to Life.

To perform CoG testing using precision load cells, a robotic system can be placed on a platform that is supported by the load cells. We call these force plates. The load cells measure the weight of the system at different points, and the data is then used to calculate the location of the CoG. Visit our 6-Axis Force Plate Robotic Arm application note to learn more about force plates and multi-axis sensors.


Benefits Of Using Precision Load Cells for CoG Testing:

  • Interface precision load cells provide advanced sensors functional beyond contact and simple indicator measurement, to maximize robotic feedback and optimize performance.
  • Interface precision load cells can provide accurate measurements of the weight of a robotic system at different points.
  • Interface precision load cells are repeatable and dependable, which means that the results of CoG testing are consistent when testing robots and cobots.
  • Interface precision load cells are easy to use, which makes them a practical option for CoG testing and integration into the actual robot.

There are several benefits to using an Interface Mini Load Cells, like our ConvexBT Load Button Load Cell or MBI Overload Protected Miniature Beam Load Cell for high accuracy CoG testing.

First, the miniature load cell is small and lightweight, which makes it easy to attach to the robotic arm. Second, the load cell is designed for precision measurement, which ensures that the CoG of the arm is accurately determined. Third, the quality of Interface precision load cells provides repeatable and dependable measurement, which means that the results of CoG testing are consistent.

Using a miniature load cell of high accuracy is a valuable way to test the CoG of a robot used to simulate human behavior on a product line. This ensures that the robot is stable and does not tip over, which is critical for safety and efficiency.

In addition to testing the CoG of a robotic arm, other tests for these types of robotics include the weight of the arm, the distribution of the weight of the arm, and the friction between the arm and the surface it is moving on. By considering these factors, it is possible to accurately determine the CoG of a robotic arm and ensure that it is stable and safe to operate.

There are many factors that can affect the accuracy of CoG testing using load cells, including the design, capacity and range of measurement of the load cells, the stability of the platform, and the distribution of the weight of the system.

CoG testing is an important part of the design and development of robotic systems. By determining the CoG of a system, it is possible to improve its stability and performance. If you are interested in learning more about CoG testing using Interface precision load cells, please contact us.

ADDITIONAL RESOURCES

Types of Robots Using Interface Sensors

Robotic Grinding and Polishing

Collaborative Robots Using Interface Sensors

Advancements in Robotics and Cobots Using Interface Sensors

Using Multi-Axis Sensors to Bring Robotics to Life

Robotic Surgery Force Feedback

IoT Industrial Robotic Arm App Note

Force Measurement Solutions for Advanced Manufacturing Robotics

Reduced Gravity Simulation

Tank Weighing and Center of Gravity App Note

 

Automation-and-Robotics-Case-Study

Are Load Cells Used in Vacuum Environments?

Vacuum testing labs are essential for ensuring that products and materials are safe and dependable in vacuum environments. A vacuum environment is an area where there is little or no matter. This means that there are very few gas molecules present, and the pressure is incredibly low. Vacuum environments are often created using vacuum pumps, which remove gas molecules from an enclosed space.

Vacuum environments are used to simulate the conditions that products and materials will experience in space or other high-altitude environments. These types of testing labs typically have a vacuum chamber that can be evacuated to an incredibly low pressure. The vacuum chamber is then used to evaluate products and materials for a variety of properties. Engineers use vacuum environments in testing for reduced contamination, improving heat transfer, and to reduce the weight of products.

Tests performed in vacuum labs are used to determine the rate at which gases are released from a product or material and the ability of a product or material to withstand a vacuum without leaking. Thermal cycling tests are done to assess the ability of a product or material to withstand changes in temperature in a vacuum environment. Other tests are done to understand how the test article withstands exposure to radiation.

Vacuum testing labs are used by a variety of industries, including aerospace, medical, and defense. These labs are common for material process testing and used in R&D. Vacuum testing helps to identify potential problems with products and materials before they are used in a real vacuum environment. Engineers use this type of testing to improve the performance of products and materials and ensure they meet the required standards. Contact Interfaced to explore your options.

Can load cells be used in a vacuum environment?

Load cells can be used in a vacuum environment. However, not all load cells are created equal or suited for this specialized use case. Some load cells are designed that make them appropriate for vacuum environments, while others are not. Load cells that are not engineered to perform in vacuum environments may not be able to withstand the low pressures and outgassing that can occur in a vacuum. Using quality load cells that are manufactured by force measurement experts in sensor technologies is important in any consideration. It is critical to review the specifications and requirements with a qualified applications engineer.

Key considerations when choosing a load cell for a vacuum environment:

  • Outgassing: Load cells that are used in vacuum environments will have low outgassing rates. This means that they will not release gases into the vacuum chamber, which can contaminate the environment and interfere with measurements.
  • Mechanical strength: Load cells must be able to withstand the low pressures that can occur in a vacuum. They will also be able to withstand the conditions that can be generated by vacuum processes, such as outgassing and condensation. Form factor and model material of the load cell are important in choosing a load cell for this use case.
  • Temperature range: Load cells will need to operate in a wide range of temperatures. This is important because vacuum chambers can be very cold, especially when they are first evacuated, or when they are used to simulate high altitudes or space.

If you are looking for a load cell that can be used in a vacuum environment, please review with Interface application engineers to determine if the model fits your test requirements. We also can offer custom solutions to ensure that the load cell maintains the accuracy and performance specifications based on your exact test plan.

Can a load cell be vented for use in a vacuum testing lab?

Technically yes, you can vent a load cell to be used in vacuum. This allows the internal cavity of the load cell to equalize with external vacuum. However, this does not prevent outgassing and can cause the gages and wiring to be subject to humidity and condensation.

Cabling is extremely important when using any sensor in this environment. There are options to make the load cells wireless using Bluetooth technology.

Caution: Interface recommends that all our products used in this type of environment are designed, built, and calibrated for use in this environment. Venting an existing load cell can alter the performance and damage the cell.  By designing the load cell with venting for use, we can ensure that it will meet the vacuum test range.

Interface also can install thermocouples to work with the sensor to detect temperature in this type of testing environment. In fact, our engineers have designed load cells to package the thermocouples inside the form factor for convenience and performance benefits.

Interface engineers have worked with testing labs for decades. We are available to assist with any use case requirements to determine the best measurement solution.

Types of Robots Using Interface Sensors

Robots are increasingly being used in a wide range of applications, from manufacturing and healthcare to entertainment and defense. As robots become more sophisticated, the need for accurate and reliable force measurement becomes even more critical.

Interface load cells and torque transducers are commonly used in the design and testing of new robots. Our sensor technologies are used to measure and monitor forces and loads experienced by various robot components. Load cells are used to measure the forces exerted by robotic arms and grippers, while torque transducers are used to measure the torque generated by motors. Multi-axis load cells are growing in use with robotic engineers throughout the R&D phases for more measurement data to make smarter decisions in design and use of the robot.

The use of Interface load cells and torque transducers in robotics offers several benefits. First, they can help to improve safety by detecting excessive forces or overloads. Second, they can help to optimize performance by providing feedback about the forces being applied by the robot. Third, they can enable more sophisticated control of robotic systems by providing real-time data about the forces and torques being generated. Our miniature load cells are commonly used by robotic OEMs to provide control and feedback during use.

Types of Robotics Using Sensor Technologies

Autonomous robots are engineered to operate independently without human intervention. They are often used in applications such as space exploration, agriculture, and transportation. Cobots work in collaboration with humans, enhancing skills, providing safety, or replacing tedious tasks to increase productivity. Read more in our Advancements in Robotics and Cobots Using Interface Sensors case study. The following highlights robot types that utilize Interface measurement solutions.

Industrial Robots: These robots are used in manufacturing and assembly processes to automate tasks that are repetitive, dangerous or require precision. They are used in a variety of industries such as automotive and aerospace. Robotic arms are frequently used in industrial automation. Check out our Industrial Robotic Arm App Note.

Medical Robots: These robots are used in healthcare applications, such as surgical procedures, diagnosis, and rehabilitation. They are often designed to be highly precise and can perform tasks that are difficult for human surgeons to perform. Learn more: Robotic Surgery Force Feedback

Military and Defense Robots: These highly skilled robots are used in military applications, such as bomb disposal, reconnaissance, and search and rescue missions. They are often designed to operate in dangerous environments where it is not safe for humans.

Educational Robots: These robots are used to teach students about robotics, programming, and technology. They are often designed to be easy to use and intuitive, allowing students to experiment and learn through hands-on experience.

Entertainment Robots: These robots including animatronic robots are designed for amusement purposes, such as robotic toys or theme park attractions. They interactive and engaging, incorporating features like voice and facial recognition. Read about this type of use case here: Animatronics

Consumer Product and Service Robots: These robots are designed to interact with humans and perform tasks such as assisting in healthcare, cleaning, or entertainment.

Why Interface Supplies Robotic Manufacturers with Load Cells

Measurement solutions, including load cells, play a vital role in the design, testing, and operation of robots by providing valuable information about forces, loads, and weights. They contribute to enhancing safety, optimizing performance, and enabling more sophisticated control of robotic systems.

Load cells are used to measure the forces exerted by robotic arms and grippers. By integrating load cells at key points in the robot’s structure, engineers can monitor the forces and torques experienced during operation. This helps in optimizing the robot’s performance, ensuring it operates within safe limits, and improving its control algorithms.

To determine the weight of the robot itself or the payload it carries, sensors are vital. The measurement data is crucial for stability analysis, power calculations, and designing the mechanical structure of the robot to ensure it can handle the intended loads. This is extremely important when utilizing robots in industrial applications for lifting and weighing.

Utilizing robots in production lines requires integrated sensors into robots to protect everyone and the equipment. Integrating load cells into robotic safety systems helps to detect excessive forces or overloads. If a load cell detects a force beyond the specified limit, it can trigger emergency shutdown procedures to prevent damage to the robot or injury to nearby humans.

Calibrating robotic systems in the design phase by using transducers ensures accurate measurement of forces and torques is very important. They are used during testing to validate the performance of the robot under different operating conditions and loads. This data helps engineers fine-tune the control algorithms, improve the robot’s efficiency, and identify potential weaknesses or areas for improvement.

A quality force measurement solution is ideal for real-time feedback about the forces being applied by the robot. This feedback can be used in closed-loop control systems to regulate and adjust the robot’s movements, gripping force, or interaction with the environment. Load cell data can also be integrated into the robot’s control system to ensure accurate and precise force control.

Robotics_InfographicPoster

ADDITIONAL RESOURCES

Interface Sensors Used for Development and Testing of Surgical Robotics

6-Axis Force Plate Robotic Arm

Automation and Robotics Demands Absolute Precision

Robotic Arm Animated Application Note

Industrial Robotic Arm App Note

 

Interface Solutions for Lifting Applications

Lifting is the action of raising an object to a higher level or moving an object to a different position. Tension load cells accurately measure forms of lifting, as they measure pulling by design. Choosing the right sensor for this type of measurement requires consideration of the size of object that is lifted, and mechanism used in the act to create the lift. Read more in our latest case study Cranes and Lifting.

Often large capacity load cells are used in industrial equipment, cranes, forklifts, rigging, and even aircraft testing equipment to measure forces applied in heavy lifting and for load monitoring, as well as to maintain accuracy in movement. Larger capacity load cells can range from 10,000 to million lbf, or even larger. Rugged load cells are frequently selected for this type of equipment to sustain harsh environmental conditions for both testing and during real-time use.

Smaller capacity load cells, such as s-types and miniature beams, measure the lift action in machines, medical equipment, packaging, robotics, drones and moving equipment. In all circumstances, force measurement sensors help product engineers and manufacturers improve safety and the quality of products they build. They are versatile and easily integrated into machines and components.

Beyond the measurement specifications, other top feature considerations when selecting the right sensor include weight of the sensor, requirements for overload protection, enclosures and ruggedized material used to construct the device, signal outputs for data, cabling, or wireless functionality, mounting or clamping, and instrumentation for data acquisition.

For measurement in lifting applications, Interface products provide the industry’s most accurate and reliable data available through force measurement sensors. Products we provide for lifting include multi-axis sensors, load washer load cells, low profiles, miniature load cells, load shackles, load pins, tensions links, instrumentation, and torque transducers.

The following are examples of products we supply for lifting equipment and use cases.

AERIAL BOOM LIFT OPERATION


A manufacturer aerial lifts wants to test its self-propelled boom platform to ensure it can operate at heavy capacities when in use, and at different angles. This testing is vital for safety and protecting operators as well as those at the site of where equipment is in use. The sensors help to prevent any accidents in case of a lifting overload. The Interface application engineers recommends the multi-axis 3AXX 3-Axis Force Load Cell model 3A160 to capture the required data for monitoring in real-time. Paired with the 920i Programmable Weight Indicator and Controller, the operator had accurate information when using the equipment.

AIRCRAFT LIFTING TEST RIG

 

An aerospace manufacturer is looking to accurately measure the valves in their aircraft lifting test equipment. Interface’s solution is to install a 1200 High Capacity Standard Precision LowProfile™ Load Cell in between the aircraft testing rig and the lifting jack. The load cell will measure the load’s force safety valve when the lifting equipment opens. Results will be sent to the 9890 Strain Gage, Load Cell, & mV/V Indicator, where the customer can see it displayed in real-time. 

LIFTING HEAVY OBJECTS


In this common use case, a customer needs to measure the load when using a crane to move heavy construction materials around the work site. This includes monitoring the weight of these objects as they are lifted in the air. It was critical that the device offer high accuracy readings and also work within the equipment already in place. Key is the instrumentation capabilities to provide wireless outputs. Interface recommends using our WTSSHK-B Wireless Load Shackle connected in crane load string to measure forces. Model WTS-BS-1-HA Battery Powered Handheld Display is used to wirelessly receive load information and display results.

Read more about these types of lifting applications in our new case study.  If you need help in deciding which product works best for your lifting application, contact us.

Cranes and Lifting Case Study

Making Products Smarter with Interface OEM Solutions

Products need to be smart in today’s world. Whether it is consumer or commercial, people expect added functionality in everything. From coffeemakers and exercise equipment to large industrial machinery used in massive infrastructure projects, sensors play a crucial part in making these products smarter.

Sensor technologies allow smart products to collect and manage important user data, monitor products usage for durability and safety, enable automation, and personalize user applications and experiences. Original equipment manufacturers of these smart products and their components are eager to find quality sensors that provide robust features ideal for modern day user requirements.

Force sensors are key to making products smarter, performing with greater accuracy, and enhancing overall quality. Force sensors have the unique ability to perform multiple tasks at a time, including real-time monitoring and executing automation features with precision.

Interface partners with engineers and product designers to offer OEM solutions intended to be directly implanted into a product, or retroactively installed to make products smarter. With our unique assortment of custom and off-the-shelf load cells, torque transducers and instrumentation options, including wireless components, our force sensors are created to help enhance the smart products of today and tomorrow.

Interface’s white paper Turning an Active Component Into a Sensor details of how Interface works with OEMs to design sensors into products or retrofit them into existing products. To further illustrate the range of options available with Interface’s sensors and instrumentation, we have detailed additional application notes to give you a broader perspective of utilizing force sensors for OEM solutions.

Robotic Surgery Arm

A biomechanical medical company wanted to gather force, torque, and tactile feedback from their robotic arm during invasive surgery. The surgeon’s movements are mirrored by the robotic arm during surgery, and it is essential all haptic force feedback is measured to ensure safety during invasive surgery. Several of Interface’s force and torque measurement products were used in this OEM robotic arm. These include the ConvexBT Load Button Load Cell, SMTM Micro S-Type Load Cell, and the MRTP Miniature Overload Protected Flange Style Reaction Torque Transducer. Force results were collected when connected to the 9330 Battery Powered High Speed Data Logging Indicator and viewed via a laptop. Each one of Interface’s load cells and torque transducers played a part in the ensuring the safety and functionality of robotic arms during invasive surgery. The force feedback that was measured from the robotic arm ensured that the robot used the perfect amount of force when using surgical tools that create incisions during surgeries. It also measured the torque being produced, ensuring the robot arm was moving smoothly and at the right speeds.

PRV (Pressure Relief Valve) System

A manufacturer wanted to conduct a PRV test (pressure relief valve test) on their valve installation and monitory equipment when under a full pressure load. The purpose was to ensure safety and reliability for customers while the product was in use. They also wanted to be able to record and graph the results. As part of an OEM system that is used by their customers, Interface suggested installing the 1200 Standard Precision LowProfile™ Load Cell to a test frame on top of the pressure relief valve. As pressure is increased onto the spring in the valve, it pushes forces onto the load cell. Results can be recorded using the 9330 Battery Powered High Speed Data Logging Indicator. Using this solution, the manufacturer’s customers are able to successfully determine the exact amount of force it requires for their valve to release when under a pressure load, increasing longevity and safety of the product overall.

Bolt Tension Monitoring

A customer wanted to monitor the tension of the bolts used in installation of industrial pipes. Interface suggested installing multiple LWCF Clamping Force Load Cells, each connected to WTS-AM-1E Wireless Strain Bridge Transmitter Modules. The load cells are installed under the tightened bolts on the pipes as part of the technology solution to measure forces. The load cells measure the compression forces from the bolts, and the real-time results are transmitted wirelessly from the WTS-AM-1E’s to the WTS-BS-6 Wireless Telemetry Dongle Base Station. Real-time results from the LWCF’s are displayed using provided Log100 Software. Interface’s load cell monitoring system successfully monitors the compression forces of the bolts in real-time, which is an important installation solution for the OEM.

Smarter products, connected factories, and higher efficiency are all made possible through sensors. Interface force sensors are the leading solutions for enabling automation, real-time monitoring and accurate data collection for OEM applications.

Interface force sensors make consumer and commercial products smarter. Learn why OEMs choose Interface to activate products with sensor technologies and more about Interface’s capabilities and solutions for OEMs here.

ADDITIONAL RESOURCES

Interface OEM Solutions Process

OEM: Candy Stamp Force Testing

OEM: Medical Bag Weighing

OEM: Prosthetic Foot Performance

OEM: Snack Weighing and Packaging Machine

OEM: Tablet Forming Machine Optimization

OEM: Industrial Robotic Arm

OEM: Chemical Reaction-Mixing

Contact our OEM specialists and let us help you to make your products smarter and more equipped to meet the demands of tech-savvy users.

Fitness Equipment Makers Require Extreme Accuracy

Interface’s specialty is building solutions for the testing and monitoring of parts and total systems that move and create force. One of the industries where this is critical is the fitness industry. Equipment and fitness machines, whether designed for in-home use or in professional athlete training facilities, needs to perform safely and accurately.

Utilizing Interface sensors and instrumentation, the performance of different fitness apparatus is measured in various testing protocols throughout the product’s lifecycle. Rigorous tests are performed during each phase: R&D, design, manufacturing, and after-market use. These tests look at performance data, as well as measure reliability, durability, fatigue, and safety of the equipment. Manufacturers of fitness devices also utilize feedback from sensors to monitor user experiences in real-time. This means they need accurate data for all types of user profiles, strength variability, weights, and experience levels.

The global fitness market also needs a testing solutions partner as the industry is looking at solid growth over the next few years. In fact, Allied Market Research predicts that the fitness market will reach $14.8 billion by 2028, registering a CAGR of 3.3% year-over-year during this assessment period.

Interface recently captured a series of use cases for how our test and measurement products are used in the fitness industry for testing and in OEM applications. You can read the entire case study here: Interface Measures Fitness Equipment with Extreme Accuracy.

Addressing Challenges in Making Fitness Equipment

In the development of fitness equipment, a lot goes into the manufacturing and engineering process to ensure equipment is safe and reliable for users. Taking a treadmill as an example, the wheels that move the running surfaces must withstand varying speeds and levels of force over extended periods of time. This requires torque and stress testing. Additionally, the sensors on the handrails that send out a pulse to measure the user’s heart rate needs to provide accurate data in health and wellness uses. Manufacturers are looking to install sensors into their equipment that measure various forces and provide fitness data to the user, or data that doctors can use to monitor patients while working out. These makers and product designers for fitness equipment need sensors that can be easily designed into the product or customized to fit into existing products to enable smart functionality and IoT capabilities.

Interface Fitness Equipment Test & Measurement Solutions

Interface provides a variety of measurement solutions used by manufacturers and testing engineers in the fitness equipment sector. This includes our load cells, torque transducers, multi-axis sensors and miniature load cells, along with the popular wireless products and instrumentation. Our products have been used across a wide variety of fitness applications, including elliptical, leg press, rowing machines, bicycles both mobile and stationary, and physical training and therapy equipment. Interface sensor technologies are preferred by product design engineers in this field because of the precision, accuracy, range of options, and quality.

The following application notes examples provide an overview of how Interface serves the fitness industry:

Designing Fitness Equipment and Machines

A fitness machine manufacturer wanted multiple load measurement systems for their different fitness machines such as the elliptical, leg press, rowing machine, and the cable machines used in gyms of all types. The goal of designing sensors into the equipment is to ensure the machines are functioning properly to prevent injuries. The sensors can also be used for trainers who want to conduct strength and endurance tests. Interface provided a combination of products including the WMCFP Overload Protected Sealed Stainless Steel Miniature Load CellSSB Sealed Beam Load Cells, and AT103 Axial Torsion Force and Torque Transducers. Paired with Interface’s proper instrumentation, the forces can be measured, graphed, and displayed during the testing stage. Interface’s products all effectively measured forces needed for those working out or undergoing athletic training regiments. Not only did it ensure the designed machines were working properly, but it also helped those using them to track their endurance performance and consider future design enhancements based on consumer use. Read more about this use case.

 

 

Treadmill Rehabilitation

A medical device maker wanted a force measurement system for their experimental rehabilitation treadmill for patients that have pelvic mobility difficulties. For example, patients who have had strokes tend to have difficulty walking. Their goal was to measure the forces applied on the pelvis when the patient is walking on the treadmill and catch any pelvic deviations. The treadmill had a special harness with two actuators on either side of the patient when in use. Interface suggested installing two WMC Sealed Stainless Steel Miniature Load Cells to the actuators, which will measure the forces applied on the pelvis of the patient. Force results would be measured using the SI-USB4 4-Channel USB Interface Module, which could also be graphed and logged on the customer’s computer with supplied VS3 software. Using this solution, the medical company was able to catch different pelvic deviations in their experimental rehabilitation treadmill using Interface’s products. Learn more here.

Bike Power Pedals

A bike manufacturer wanted to evaluate the functionality of their power pedals. They needed a reliable system to measure how much force the cyclist pushes down onto the bike pedals, and they preferred a wireless system that can be paired with their computer to review data results. Interface suggested four Model SML Low Height S-Type Load Cells installed within the bike’s pedals. The four SMLs are paired with two WTS-AM-4 Wireless Strain Bridge Transmitter Modules, which will transmit the force data from the cyclist to the WTS-BS-6 Wireless Telemetry Dongle Base Station Dongle connected to the customer’s computer. The products Interface provided allowed the bike manufacturer to measure the pedal power applied by the cyclist. Read more here.

Interface load cells, torque transducers, and data acquisition systems are ideal for many fitness applications, especially those designed for IoT connectivity. Interface offers products that measure all types of force across the necessary fitness applications. Additionally, if we don’t have a product that works for your exact challenge, our custom solutions team will work alongside your design and test engineers to create the most effective and efficient solution based on the unique specifications.

ADDITIONAL RESOURCES

Bike Frame Fatigue Testing Application Note

E-Bike Torque Measurement

Why Product Design Engineers Choose Interface

Golf Club Swing Accuracy

Golf Ball Tee