Posts

Outlining Force Solutions for Structural Outrigging

Across a wide variety of industries, heavy machinery, maritime, construction, and other infrastructure often need additional structural support. This includes support that prevents equipment, vessels, and buildings from falling over, capsizing or collapsing.

Typically, the solution to provide this critical structural support comes in the form of an outrigger. For vehicles, both land and maritime, an outrigger is a projecting structure, with specific meaning depending on types of vessels, or the legs on a wheeled vehicle that are folded out when it needs stabilization.

For buildings, outriggers are interior lateral structural systems provided to improve the overturning stiffness and strength of high-rise buildings. It is a lateral load resisting system that is located within the building. The whole system consists of a core structure connected to the perimeter columns of the building.

These types of structural supports became popularized in the 1980s as an addition to high-rise buildings as they are effective up to 150 floors due to its unique combination of architectural flexibility and structural efficiency. Outrigging has been adapted for large vehicles and boats, such as large cranes that are extremely top heavy and can create balance problems, or yachts that need to be stabilized when stored out of water.

With the addition of these supports, various forms of testing need to be done to ensure the outrigger can support the vehicle or structure it is installed upon. This is where Interface’s force measurement testing and monitoring products are utilized in different outrigging applications.

Interface load cells are used by outrigging engineers, civil engineers and heavy equipment manufacturers, oil and gas, construction industry and marine equipment companies. Read more why Rigging Engineers Choose Interface Measurement Solutions.

The role of force measurement sensor technologies in outrigging is to provide high accuracy measurement of the outrigging equipment in test and actual use. The applications range from integration of sensors into outrigger equipment, to load cells for real-time monitoring of the physical structure using outrigger supports.

The most common Interface products used for outrigging include:

For example, Interface load shackle cells are used to measure the forces during outrigger testing as well as on the outrigger equipment that support the structure. The data from the sensor is critical information used to assess the structural integrity of the outrigger or structure and to identify any potential weaknesses.

Interface load cells, such as our load shackles or load pins, are typically placed in strategic locations on the outrigger or structure where the force is expected to be greatest. The load cell is then connected to a data acquisition system (DAQ) or indicator that records the force readings. The data can then be analyzed to determine the maximum force applied to the outrigger or structure, as well as the distribution of force over the structure.

Load cells can also be used to monitor the performance of outriggers or structures over time. This can be helpful in identifying any changes in the structural integrity that may be caused by wear and tear, environmental factors, or other factors. Utilizing instrumentation with alarm capabilities is helpful, as well as a tool for maintenance.

Load cells are an important safety feature in outrigging equipment. They can help to prevent accidents and ensure that the equipment is used safely. A load cell is used to prevent a crane collapse during the construction of a high-rise building in a large congested metropolitan city. The crane is used for lifting a heavy beam. The load cell alerts the operator when the load is too heavy.

Ultimately, force measurement provides several benefits to testing and monitoring different outrigger applications, including:

  • Increased safety: By measuring the force applied to the outrigger, a load cell can help to prevent overloading and damage to the outrigger. It is also valuable for continuous monitoring during lifting use cases, such as with a crane or heavy machinery.
  • Improved efficiency: By monitoring the performance of the outrigger, a load cell can help to identify any potential problems early on, which can help to prevent costly downtime.
  • Reduced risk: By providing accurate data on the force applied to the outrigger, a load cell can help to reduce the risk of accidents and injuries.

Examples of how force measurement is used to test outrigger solutions in a variety of industries:

  • In the oil and gas industry, load cells are used to test the outriggers of offshore drilling rigs. This helps to ensure that the rigs are safe to operate in high-wind and wave conditions.
  • In the construction industry, load cells are used to test the outriggers of cranes and other lifting equipment. This helps to ensure that the equipment is safe to use and that it will not overload the outriggers.
  • In civil engineering, load cells are used to test the structural integrity of bridges and other structures. This helps to ensure that the structures are safe to use and that they will not collapse underload.

Outriggers play a critical role in the safety and support of vehicles, infrastructure projects and massive structures. Interface force measurement products also play a necessary role in safeguarding outriggers and the operators. If you have an outrigging use case and are wondering which products are best suiting for your specific requirements, contact Interface Application Engineers for help.

Construction Brochure

Innovative Interface Load Pin Applications

A load pin, which often replaces a standard clevis or pivot pin, is a strain gage sensor that measures the force applied across the device. The strain gages are installed within a small bore through the center of the pin. Interface load pins have been used in a wide variety of projects across many industries.

Load pins are a simple, but highly powerful sensor that provides data collection for accurate and frequent measurement. The load pin can replace a bolt, clevis, sheave, and an equalizer pin, as well as other load-bearing components to measure tensile and compression forces.

Machined from high tensile stainless steel, Interface load pins are suitable for exposed situations including seawater. We offer standard sizes of load pins between 1.1K lbf to 3.3M lbf (500kgs to 1500 MT). We also offer wireless load pins. Interface load pins are custom manufactured to meet specific dimensional requirements for each application, as detailed in our Use Cases for Load Pins webinar.

The most commonly referenced applications for load pins are for overhead equipment like cranes and lifts. Through ingenuity of engineers and our customers, load pins are rapidly expanding in popularity for infrastructure, aerospace, maritime, agriculture, and industrial use cases. The load pins of today are used to test and measure force, load, and weight in a much larger variety of applications. They are also growing in demands due to their wireless capabilities for both short and long distances. This includes uses not only for cranes and lifting devices, as well as construction equipment, industrial machines, nautical craft and equipment, aerospace structural environments, and civil engineering applications.

Infrastructure investment and projects around the world are on the rise. Investments in transportation ways like highways, waterways, bridges, mass transit, water supplies and power generation are frequently in demand of load pin solutions for use in all phases of the projects, from construction to maintenance and real-time monitoring.  Some of these examples are highlighted in Infrastructure Projects Rely on Interface.

Interface has a great deal of experience supplying ruggedized and standard use load pins for testing. Our load pins are highly demanded in the infrastructure industry not only due to the accuracy and reliability of our sensors, but also due to the fact that we offer a myriad of communication channels to offer both wired and wireless solutions. As requirements are made to repair and rebuild public infrastructure resilience, equity, and safety for all users are key criteria in design and build stages.  This is where Interface load pins are key to the solution, for durability, accuracy, quality, and ease-of-use.

Interface captured a few application examples of how our load pins are used for different types of projects, from maritime submersibles to monitoring new bridges during earth’s constant shifting.

AEROPSPACE:  Landing Gear Joint Testing

A global manufacturer in aerospace needs to test their new assembly and design by testing its landing gear joints. They want to ensure there are no flaws in the gear shock absorber design and can handle the applied forces when the craft lands from a flight. Interface’s WTSLP Wireless Stainless Steel Load Pins can be installed and replace the normal pin joints. The aircraft undergoes multiple drop tests at different heights, where the forces are applied on the load pins which then transmits the measurement data. The force results are transmitted wirelessly to the WTS-BS-4 USB Industrial Base Station and the WTS-BS-1-HA Handheld Digital Display for multiple transmitters. Read more about this load pin use case here.

MARITIME: Quick Release Hooks (QRH)

A customer wanted to test their quick release hook (QRH) system when their vessels are docked. They wanted to ensure the mooring lines are secured, but also, the quick release hooks were able to be easily and safely released. Interface’s WTSLP Stainless Steel Load Pin was installed into the quick release hook, where forces from the mooring lines can be measured and displayed when paired with the WTS-BS-4 USB Industrial Base Station. The load tension forces were displayed in real-time on the customer’s PC or laptop. The WTS-RM1 Wireless Relay Output Receiver Module alarm could also be triggered for the customer when maximum safety work load capacities have been reached or are overloaded. Using this solution, the customer was able to determine if their quick release hooks worked effectively within the safe working limit specifications, and was aware of any potential overload situations. Read more here.

INFRASTRUCTURE: Bridge Seismic Force Monitoring

A customer wanted to monitor seismic activity that occurs to a bridge by using force sensors and then continuously monitoring bridge forces before, during and after earthquakes occur. The customer preferred a wireless solution so they would not need to run long cables on the bridge. Interface helped to develop its LP Load Pin, which were custom made to fit their needs along Interface Inc. WTS Wireless Telemetry System continuous force monitoring was able to take place without long cables. Using this solution, the customer was able to monitor continuous loads, log information to the cloud and review information. Read about this solution here.

AGRICULTURE: Tractor Linkage Draft Control

A farming operation needs to measure the forces applied on their tractor’s draft control, between the tractor and any linked on attachments. Measuring the force helps the farmer sense any strains on the hitch of the tractor, and will be needed in order to apply any specific settings to the draft control when the tractor encounters rough terrain.  Interface’s WTSLP Wireless Stainless Steel Load Pin is a wireless load pin that can be installed directly in the hitch, replacing the normal shear pin of the tractor. Force results are transmitted wirelessly to the WTS-BS-4 USB Industrial Base Station, where they can view the results on a computer using Interface’s WTS toolkit. The customer can also view results on the WTS-BS-1-HS Handheld Display for Single Transmitters in real-time. Read more about this IoT Agriculture solution here.

 

INDUSTRIAL AUTOMATION: Crane Block Safety Check

A customer wanted a system to detect if their crane block can lift heavy loads securely, in order to keep working conditions and personnel safe. If lifting capacities are exceeded, the customer wanted a system to alarm them in real-time. Interface’s WTSLP Wireless Stainless Steel Load Pin replaced the existing load bearing pin in the crane block in order to measure the force being applied by the heavy load. The data was transmitted and displayed through both the WTS-BS-4 USB Base Station (when paired with the customer’s supplied PC computer/Laptop) and the WTS-BS-1-HA Wireless Handheld for real-time results. The WTS-RM1 Wireless Relay Output Receiver Module could also trigger an alarm when maximum capacity has been reached. The WTSLP Wireless Stainless Steel Load Pin, combined with the WTS products, was able to measure and determine force applied the moment a heavy load is lifted. The results were transmitted wirelessly, and ensured the customer whether or not the crane block was safely operational during production.

Are load pins the right solution for your project? Contact our load pin application engineers to learn more.

ADDITIONAL RESOURCES

Load Pins, Tension Links, and Shackles

Uses Cases for Load Pins

Recap of Use Cases for Load Pins Webinar

Applications Catalog

Load Pins 101

LP-TL-Shackles-Brochure

Interface Crane Use Cases and Application Notes

Manufacturers and engineers of heavy equipment are rigorous about the design quality, performance and most importantly preserving safety. Having tools to test and monitor this type of equipment allows equipment producers and users to review performance at all stages, ultimately maintaining a safe working environment which is critical to any construction, transportation, or infrastructure project job site. That’s why Interface provides quality force measurement products for a host of industrial equipment machines to accurately measure force, load capacity, weight, tension and more.

Interface has been a long-time supplier of force and torque sensors along with instrumentation products for projects involving all types of cranes and lifting machines. We are frequently asked to provide crane force measurement solutions for applications used in hoisting, lifting, moving, and transporting heavy objects. These use cases range across all types of environments, from constructing high rises in metropolitan centers around the world to maritime industry users loading docks and lifting watercraft.

To outline how force measurement is used to monitor cranes, we developed a series of application notes explaining the components Interface provided to allow our customer to measure safety, reliability, and efficiency of their equipment.

Crane Capacity Verification

The first application note outlines a project in which the customer wanted to verify that their crane was strong enough to safely lift a heavy load at its rated maximum load capacity. It was determined that because of the size of the crane, a wireless solution was needed to avoid long wires and burdensome installation. Interface provided a WTSTL Lightweight Wireless Tension Link Load Cell to measure the load’s maximum capacity. WTS-RM1 Wireless Relay Output Receiver Modules were also used to trigger an alarm that can be set when the maximum capacity of weight/force has been reached. To review the data the customer could transmit the data to a PC or laptop with a WTS-BS-4 USB base station. The data can also be reviewed through a WTS-BS-1-HS Wireless Handheld Display. With this solution, the customer was able to verify if the crane is safe and functional enough to lift it’s working load limit (WLL), or safe working load (SWL) capacity.

Read the full Crane Capacity Verification Application Note here.

Crane Block Safety Check

The next example features a crane application in which the customer wanted to detect whether a crane block could lift a heavy load securely to keep working conditions safe for personnel. The customer specifically wanted the solution to include an alarm feature that notified them if lifting capacity was exceeded in real-time. Using a WTSLP Wireless Stainless Steel Load Pin in place of a load bearing pin in the crane block, they could measure the force being applied by the heavy load. Data will be transmitted and displayed through both the WTS-BS-4 USB Base Station. It can also be paired with the WTS-BS-1-HA Wireless Handheld for real-time safety monitoring. The WTS-RM1 Wireless Relay Output Receiver Module triggers an alarm when maximum capacity has been reached. The customer was able to verify if the crane was operating safely and was always functional enough to lift it’s working load limit (WLL) or safe working load (SWL) capacity. The added alarm feature is critical for notifying users when the crane reaches unsafe limits during operations.

Read the entire Crane Block Safety Check Application note here.

Crane Force Regulation 

In the final application note, a customer wanted to regulate the maximum number of heavy loads being lifted, so that production time was both safe for workers and efficient. The goal was to complete lifting duties faster and with little or no expense. A wireless solution was also preferred, so that there would be no long cable interference during production. Interface supplied a WTSLP Wireless Stainless Steel Load Pin, which can be custom made to be used for any and all types of cranes. It is also great for lifting both short and long distances. The load pin was paired with the WTS Wireless Telemetry System, where force could be measured and logged. The customer was able to monitor the continuous force from the crane, and gather information on loads being lifted for continuous safety and production reporting requirements.

Read the complete Crane Force Regulation Application Note here.

You can read more about heavy equipment testing and use cases in our post, Force Measurement Solutions for the Construction Industry.

Faces of Interface Featuring James Richardson

Born in Arizona but growing up in the rural area of Cotton City, New Mexico, James Richardson was only exposed to the opportunity of a career in engineering after moving back to Arizona. After graduating as his high school class Salutatorian in 1995, he started college in Eastern Arizona.

He later moved to Mesa in 1999 where he took a job working for his uncle at Dewitt Equipment fixing restaurant and cooking equipment like ovens, fryers and microwaves, and along with refrigeration equipment including air conditioning units, freezers, and ice machines. It was also during this time he learned to braze, solder and TIG weld.

At Dewitt, his on the job training for fixing equipment built up his foundation for engineering. The spark that really kicked it off came on a sweltering Arizona summer day when James was repairing an A/C unit on a restaurant’s loose gravel rooftop. The temperature was so high that the gravel began to sink, melting the soles of his shoes. At this point, James realized he enjoyed working with his hands and on advanced equipment; however, it was time to finish his formal education in engineering and pursue a job that included more time inside where there was ample air conditioning.

By this time James had already completed an Associate Degree at Maricopa Community College and he was about 18 months from completing a Bachelor of Science in Mechanical Engineering degree at Arizona State University. Completing this degree, he later earned a Master’s in Engineering Management from Ohio University. Towards the end of his bachelor’s degree, he got an internship at Honeywell Aerospace. His first job after earning his degree was with Enertron Inc., a leading provider of thermal management solutions for the aerospace, military, medical, telecommunications, and IC fab equipment industries. In this role, he designed heat sinks for circuit boards used for lasers, lighting and computers.

After three years with Enertron, he moved to Cleveland Electric Laboratories where he served as an applications engineer working on turbine engine instrumentation. This is where James got his first hands on experience with force measurement equipment. His job was to design instrumentation for strain, temperature, and pressure measurements. At one point he even designed a load pin for a customer.

In his role, he was also introduced to Interface. The company he was working for owned several Interface products and he became familiar with their high-quality and premium accuracy. Then in 2015, a headhunter called him out of the blue to offer him a chance to work for Interface. James was excited about the prospect of working for a company that put quality first. In fact, the thing that hooked him about Interface was the declared focus of “Quality is Our Driving Force,” and the fact that each of the four interviewers reiterated the importance of this statement in their interview.

James joined Interface as a production engineer. He remained in this role for about four years before being promoted to Senior Engineer, and then to his current role as Mechanical Engineering Manager where he leads a team of five other engineers. In this leadership position, James is responsible for overseeing development efforts for some of Interface’s most important product lines including the specialized 1923 and 1925 wireless custom solutions and our downhole products for the energy markets. James was instrumental in the latest new product release, the new ConvexBT Load Button Load Cell.

In addition to this critical role, James also loves to learn about the many ways that Interface products directly affect him and people close to him. This includes how measuring systems ensure the proper weight of food in nutritional planning and packaging, measurement of things like blood donations, and safety test systems for airplanes. The work done at Interface is incredibly important to everyday life and many people don’t even realize it.

In his free time, James can be found spending time with his wife of 21 years and their four children, two sons and two daughters. The family enjoys the outdoors together, partaking in activities like bike rides and hikes. He also brings some of his passion for engineering home. He’s intrigued by the possibilities of 3D printing and owns a printer himself. He’s designed and printed things like bowties, wallets, wall-mounts for various gadgets, and even toys for the kids. In case you missed it, the photo of James is his own 3-D printed bowtie. It was a big hit at the Interface holiday party.

Another interesting fact about James is that throughout his career he’s tried to connect with co-workers from different countries by learning their language. Throughout his life he’s learned a little bit of Polish and German, and is fluent in Spanish, which he learned while spending two years as a missionary in South America.

We asked James to describe his thoughts on his career in engineering in another language. He responded, “Un dicho o una frase que a mí me gusta pensar, cuando algo no sale buenisimo, es: “Siempre hay una manera mejor.” This translates to a saying or phrase that I like to think of when something doesn’t turn out great, “There is always a better way.”

To learn more about the ConvexBT, check out the datasheet here:

ConvexBT