Posts

Innovative Interface Lifting Solutions

Interface sensors are utilized in lifting applications to accurately measure the weight or force being exerted on the lifting equipment of all sizes. Our lifting solutions include load cells, load pins, tension links and shackles, wireless technologies, and instrumentation. It is common to see our sensors integrated into hoists, cranes, and lifting devices to provide precise load measurements.

Interface lifting solutions apply to a wide range of industries and settings, including construction sites, warehouses, manufacturing facilities, transportation, healthcare facilities, maritime docks, aircraft testing and assembly, and more. Lifting applications can vary, such as loading and unloading goods, positioning heavy equipment or machinery, transferring patients in healthcare settings, or lifting materials for construction purposes.

Our load cells, load pins and shackles assist in monitoring loads for heavy lifting equipment operators to remain within safe working limits and prevent overloading. Interface tension links and tension load cells are used for measuring lifting or pulling heavy loads with chains, cables, or ropes. The sensors measure the tension in the lifting element, providing feedback on the load being lifted and ensuring it remains within safe limits. Check out our Lifting Solutions Overview for complete details.

Top Interface Lifting Solutions

References of lifting equipment include cranes, hoists, forklifts, aerial work platforms, lifts, jacks, and various types of rigging and slings. These equipment types are designed to provide mechanical advantage, leverage, or power to lift, suspend, move, or position loads safely and efficiently. By leveraging sensor technologies, the benefits include increased safety for the operator, enhanced productivity, and efficiency optimization of load management. Additional benefits include predictive maintenance, plus smart and innovative utilization for modernization of projects and equipment.

Rigging engineers, whether working in testing environments from concert venues to rocket testing sites, use high-accuracy sensor technologies to ensure the safe and efficient movement of heavy equipment, machinery, and materials using cranes, hoists, pulleys, and other lifting devices. They are involved in the entire rigging process, from the initial assessment and design of rigging systems to overseeing the actual lifting operations.

Safety is of utmost importance in all lifting applications due to the potential risks associated with heavy loads, heights, and moving parts. The use of load monitoring devices such as load cells, tension links, load pins, or load shackles are critical to ensure the safe execution of lifting operations.

When Interface defines lifting applications, we are referring to the actions of objects, materials, or loads that are raised, lowered, or moved vertically or horizontally using lifting equipment or mechanisms. For use of our measurement solutions, these lifting applications involve the use of specialized equipment designed to safely and efficiently handle various types of loads.

In the construction industry, Interface load cells and load pins are integrated into smart cranes and construction equipment to provide real-time monitoring of the loads being lifted or carried. Lifting beams and spreader bars need high-accuracy measurement on the site. These sensors accurately measure the weight or force exerted on the equipment and provide data on the load’s status, ensuring safe operation within specified limits. This information can be used to prevent overloading, optimize load distribution, and enhance operational safety and prevent failure of any machinery.

Infrastructure demands durability, quality and accuracy of measurement. Interface load cells, tension links, load pins, and load shackles are employed in load testing applications to verify the strength and capacity of various lifting structures and equipment. They are used for a range of applications, including crane verification and safety monitoring, hoist monitoring, winch measurements, elevator suspension systems, lifting cables, overload alarms, and load testing. These tests measure the applied load and assess the structural integrity. Load cells or load shackles are often temporarily attached to lifting points or incorporated into the testing rig to capture accurate load data.

The maritime industry uses Interface measurement devices in crane systems, winches, and lifting equipment onboard ships, on offshore platforms, or vessels. These ruggedized and often submersible sensors ensure that loads are properly managed and controlled, enabling safe and efficient lifting operations in challenging marine environments. Check out this Boat Hoist application note.

Warehouses and logistics use load cells or load pins for shipping container handling, pallet weighing, conveyor systems and freight and cargo monitoring. The sensors can be easily integrated into forklifts to measure the weight of the lifted load, ensuring safe lifting, and preventing overloading.

Interface load cells and sensor technologies are also being used in applications for patient lifting and transfer. Load cells or load shackles can be integrated into patient lifting and transfer equipment, such as hoists or patient slings, hospital beds and therapy equipment. These sensors help monitor the load and ensure safe and comfortable transfers for patients and caregivers.

By integrating Interface solutions into lifting applications, the result is enhanced safety, improved efficiency, and optimization of load management. Real-time data from sensors allows for precise control, early detection of anomalies, and preventive maintenance, ensuring smooth and secure lifting operations, whether that is for a patient in a hospital or a cargo load moving from dock to ship.

Interface offers standard products for lifting, as well as custom and OEM lifting solutions.  Contact our application engineers to learn more about what type of lifting solution is best for your requirements.

Lifting Solutions Brochure

ADDITIONAL RESOURCES

Aircraft Engine Hoist

Theater Rigging System

Patient Hoyer Lift

IoT Lifting Heavy Objects App Note

Interface Solutions for Lifting Applications

Cranes and Lifting

Aircraft Lifting Equipment App Note

Aerial Lift Overload Control

Hydraulic Press Machines and Load Cells

A hydraulic press is a machine that uses a hydraulic cylinder to generate a compressive force by applying a fluid, typically oil, to a piston. The hydraulic press works on the principle of Pascal’s Law, which states that when a fluid is subjected to pressure, it transmits that pressure equally in all directions.

Load cells are commonly used in hydraulic presses to measure the force or weight of the load that is being applied to the press. Load cells are essentially transducers that convert a mechanical force into an electrical signal. Load cells play a critical role in ensuring the safety, quality, and efficiency of hydraulic press operations, as they allow operators to monitor and control the force being applied to the workpiece with a high degree of accuracy and precision.

In a hydraulic press, the load cell is typically placed between the ram of the press and the die, where it can measure the force that is being applied to the workpiece as defined in our Press Forming and Load Monitoring use case. The load cell is usually connected to a readout or display that shows the operator the amount of force being applied to the workpiece. This readout may be a simple analog or digital display, depending on the specific hydraulic press and load cell being used in the machine.

Hydraulic presses are widely used in manufacturing industries such as automotive, aerospace, construction, and consumer goods. They are used for applications such as metal forming, punching, stamping, bending, and assembly. The presses are used to produce consistent and high-quality parts in a cost-effective manner.

Popular load cells for hydraulic presses are Interface’s Rod End Load Cells. In a hydraulic press, a load is applied to a piston or ram using hydraulic pressure, and the force generated by the press is used for various forming, shaping, or compression processes. A rod end load cell is typically installed at the end of the piston or ram, where it can measure the tension or compression force being applied during the pressing operation. The data acquired from the rod end load cell can be used for a variety of purposes, such as monitoring the force applied to the press to ensure that it is within the desired range, controlling the press operation, or capturing data for quality control or process optimization purposes. Rod end load cells provide accurate and reliable force measurement in hydraulic presses.

Interface Rod End Load Cell Models:

Load cells used for hydraulic presses typically have a high accuracy and sensitivity, as even small variations in the applied force can have a significant impact on the quality and consistency of the resulting workpiece. They are also designed to withstand the high forces and pressures that are typically involved in hydraulic press operations. There are numerous applications and use cases for hydraulic press testing, including:

Automotive and Aerospace Manufacturing: Hydraulic presses are used extensively in the manufacturing of automotive and aerospace components, where they are used to form and assemble various parts. Testing the press is important to ensure that it can handle the high forces and pressures involved in these applications.

Material Testing: Hydraulic presses are commonly used in material testing applications to test the strength and durability of various materials such as metals, plastics, and composites. The press can apply a controlled and measured amount of force to the material being tested, allowing for accurate and repeatable testing results.

Metal Forming: Hydraulic presses are often used in metal forming applications such as stamping, punching, and bending. It is important to test the press to ensure that it can apply the required force and that the resulting parts meet the necessary specifications. Read more in our Metal Press Cutting Machine application note.

Construction: Hydraulic presses are used in the construction industry for applications such as concrete forming and brick laying. The presses are used to apply a controlled amount of force to the concrete or bricks, ensuring that they are formed to the correct shape and size.

Recycling: Hydraulic presses are used in the recycling industry to compact waste materials such as cardboard, plastic, and metal. The presses are used to create dense bales of these materials that can be more easily transported and recycled.

Rubber and Plastic Molding: Hydraulic presses are also used in rubber and plastic molding applications, where they are used to form complex shapes and designs. Testing the press is necessary to ensure that it can apply the required force and that the resulting parts meet the necessary specifications.

Hydraulic presses are used in a wide range of industries and applications where a controlled and precise amount of force is required. They are used to produce high-quality parts and products in a cost-effective manner, while also ensuring safety and efficiency in the production process.

ADDITIONAL RESOURCES

Metal Bending Force

Press Forming and Load Monitoring

Interface Solutions for Material Testing Engineers

Tensile Testing for 3D Materials

Testing Lab Essentials Webinar Recap

OEM: Tablet Forming Machine Optimization