Posts

Unlocking the Power of DAQ Webinar Recap

Interface hosted a technical seminar on the topic of data acquisition systems. With the demands for more data and faster processing with requirements to connect multiple devices in testing environments, there is an increasing need for high accuracy DAQ systems. Keith Skidmore and Dave Reardon detail the basics of DAQ, trends, products, software options and answer to questions in the webinar, Unlocking the Power of DAQ.

To start, a data acquisition (DAQ) system consists of hardware and software components designed to collect, process, and analyze data from various sources and convert it into digital format for further analysis and storage.

Components of DAQ Systems

  • Input:  Sensors (Ex: Force, Torque), Digital Signals (Ex: DIO, Counters), Timing Signals (Ex: IRIG, GPS) and Serial Streams (Ex: RS-232, RS-422)
  • Signal Conditioning Circuitry: Excitation, Amplifier, Voltage Offsets, and Filters
  • Analog-to-Digital Converters (ADC)
  • Digital-to-Analog Converters (DAC)
  • Hardware and Software for processing, analyzing, display and recording
  • Output Signal: prior to ADC, after DAC, or even after processing

Analog data acquisition systems acquire and process analog signals. Analog signals can include sensors that measure load, force, torque, strain, temperature, pressure, voltage, current, and many other physical or electrical qualities.  Digital data acquisition systems acquire and process digital signals. Digital signals can include on and off states, counters, serial streams, text data, video, GPS signals, and other advanced options.

 Key Considerations for DAQ Systems

  • Features
    • Supported range of inputs mV/V, VDC, mA, partial bridge, encoder, pulse, frequency
    • Included software and related functionality
  • Form factor
    • Bench top, rack mount, portable, ruggedized and others
  • Sample rate
  • Connectivity
  • Power supply
  • Channel count and cost per channel

Interface DAQ Products

Interface offers a range of solutions for DAQ systems. The top products for DAQ include:

During the webinar, Keith and Dave detail a series of product groups for the Interface Data AQ Packs.

Data AQ Pack Brochure

Watch the webinar and learn more about product options, software, applications and best practice tips.

Accurate Force Measurement Data Under Any Conditions

Interface’s Keith Skidmore recently detailed the growing demands for more data in the product development process to create better products in the February 2023 edition of Quality Magazine. In his contributed article, Measuring Force Data in Extreme Conditions, he expertly highlights how this demand comes with the added requirements for measurement and sensor solutions that can perform in any condition.

As makers of products, machines, and components can attest, they need more testing and performance data to make critical design and smart production decisions. The added requirement to secure this data with precision, requires quality measurement solutions that can perform under extreme conditions.

Interface has long been attuned to these demands, with an increasing product line of ruggedized products. These products, including our submersibles, intrinsically safe and stainless steel load cells help to fulfill the requirements. Examples of these products include:

Noted in the article, Keith writes: As technology has progressed, test and measurement systems are becoming more advanced and capable for a wide variety of applications and industries. This is because manufacturers want more data in the product development process to create better products, and they need solutions that can perform in any condition, especially when running field testing. This is increasingly important in force measurement as real-world testing is paramount to a safe and reliable product. And with the need for real-world force testing comes the need for sensors that can work effectively in hazardous environments including rain, wind, underwater, explosive environments, and exposed conditions.

Read the complete article here to learn more about Interface’s popular ruggedized force measurement solutions, sensor materials used to perform in harsh environments, extreme temperature options and various submersible options.

ADDITIONAL RESOURCES

High Temperature Load Cells 101

Hazardous Environment Solutions from Interface

Interface Submersible Load Cells

Stainless Steel Load Cells 101

Coil Tubing Load Cells

Crane Safety Requires Precision Measurements Ship to Shore

VISIT QUALITY MAGAZINE

QM0223 - Keith Skidmore Article 2-23

Weighing Your Options Webinar Recap

Most often the subject of weighing is a reference to scales. Although most of the world knows Interfaced for our expertise in test and measurement, aerospace, automotive, energy, and medical industries, we know our way around all kinds of weighing applications and scales.

In fact, load cells are truly the heart of every scale system and make modern use cases for highly accurate weight data possible. At Interface, we design, manufacture, and guarantee the highest performing load cells in the world.

In our online seminar, Weighing Your Options, Keith Skidmore, and Jeff White detail Interface products used for weighing, along with engineering tips, applications, and frequently asked questions.

How have sensors historically been used for weighing and lifting? The most common uses are in weigh modules, floor, and bench scales, along with truck and rail transport weighcheck systems. Interface’s involvement in providing measurement solutions have traditionally focused on test and measurement applications, sensors for machines and rigs, as well as use in weighing components. Trends are moving to complete weighing solutions.

Sensors are used throughout the product life cycle, from R&D to distribution, including

  • Weighing individual parts or components
  • Equipment and machines that measure weight during assembly and production
  • Weighing ingredients in food and chemical processes
  • Weighing products during distribution
  • Weighing before and during transportation

Interface load cells can measure across a wide range of force, from 0.02 to 2,000k lbf.  Interface products used in weighing applications are diverse in design, including:

Our weighing sensors combined with available instrumentation use a variety of communication methods, including analog, digital, wireless and cloud based, to allow users to gather data in-facility or remotely. Junction boxes such as our JB1100 4-Channel Advanced Signal Conditioning Transmitter Indicator and Junction Box are frequently used for weighing systems. We can also customize sensors to meet specifications for weighing use cases.

Most Common Types of Instrumentation Used for Weighing

  • Analog Signal Conditioners
  • Digital Signal Conditioners
  • Active Junction Boxes
  • Digital Displays
  • Programmable Weight Controllers
  • Data Acquisition Systems
  • Wireless and Specialty Devices

Interface has also introduced several weigh system modules, like the WSSCLC-Mount Weighing Assembly. It is a stainless-steel construction and available in three sizes. It incorporates a safety retainer to prevent accidental vessel lifting or sliding. When used with Model WSSCLC Load Cell, the system is IP68 rated and good for rugged applications.

The place to start with any new weighing application is what do you need to weigh by and what is the smallest increasing increment? Interface application engineers can help you choose the correct equipment, including the load cell, weigh module, instrumentation, and any accessories. They will review the requirements such as live load, dead load, number of supports, washdown, weighing materials, temperature and temperature swings, hazardous environment and exposure, type of vessel, measurements of compression or tension, mixers or shakers attachments, rigid conduit, or piping and even shock loading issues.

Watch the complete online seminar to learn more about weighing systems used for tank and hoppers, conveyor belts, industrial equipment, continuous weighing and automation features for alarms and safety requirements. We detail do’s and don’ts along with frequently asked questions.

ADDITIONAL RESOURCES

Accuracy Matters for Weighing and Scales

Livestock Weighing System Application Note

Fruit Weighing

INF4-EtherCat Two, Three, and Four Sensor Weight Transmitter and Indicator

CPG Water Bottle Dispensing and Weighing

New Interface Case Study Exams Weighing and Scales

CPG Veterinary Weighing Scales

 

 

Weighing Your Options Webinar

Interface force measurement experts detail solutions used for all types of weighing and lifting applications. We discuss sensor models, capabilities, features and tips using various load cells, load pins, shackles, tension links, weighcheck systems and instrumentation. Learn about use cases, FAQs, measurement applications, options for harsh environments and OEM products. If you are exploring quality measurement solutions that provide high accuracy and reliability for scales, cranes, lifting equipment or tools, join us.

Force Sensing Keeps Factories Running Feature in Fierce Electronics

In the recent article, ‘May the force be with you: Force sensing keeps factories running, product quality high’ Dan O’Shea at Fierce Electronics writes about the growing demand for sensors in industrial automation applications.

Following his interview with Interface’s Keith Skidmore, Dan writes:

‘While some sensors are more focused on monitoring equipment or measuring environmental conditions around a manufacturing process, force sensors measure mechanical forces occurring in the equipment and processes, and the products being manufactured. They measure things like load, tension, resistance, weight or total pressure applied. By employing this kind of sensing technology, manufacturers can monitor the health of their equipment and improve quality assurance for their products.’

“Testing things by applying a force to them is super common. Many products in lots of industries get tested this way, from aerospace to automotive, through to consumer goods. Chairs, furniture, mattresses, ladders–basically, anything that’s being manufactured, there can be a desire to figure out how strong the various parts of those products are.” Keith Skidmore, engineer and regional sales director at Interface

Read the entire Fierce Electronics article here.

Interface provides industrial automation and IoT solutions to manufacturers, equipment makers and factories around the world. Sensors play a pivotal role in production and optimization through tools and process improvements.

Industrial Robotic Arm

Robotic arms are frequently used in production facilities throughout the manufacturing process. Suppliers of these devices heavily rely on accurate and quality sensors to provide feedback. In this application, the designer needed to test the force of the arm apparatus to ensure it could safely secure packages on a moving conveyor belt without damaging any materials or products. This automated function helps to improve quality of packaging and increase productivity on the line.

Interface provided the model 6A40A 6-Axis Load Cell with model BX8-HD44 Data Acquisition Amplifier instrumentation. The 6-Axis load cell provides measurement of all forces and torques (Fx, Fʏ, Fz, Mx, Mʏ, Mz) and the BXB-HD44 Data Acquisition Amplifier logs, displays, and graphs these measurements while sending scaled analog output signals for these axes to the robot’s control system. Customer installed 6A40 6-Axis Load Cell between robot flange and robot grabber. The extensive data outputs from the multi-axis sensor provided the exact detailed measurements needed for the industrial robotic application.

Advancements in Instrumentation Webinar Recap

Interface experts recently hosted a conversation about what is changing in the world of instrumentation, as it related to sensor technologies and force measurement.  The new event, Advancements in Instrumentation is a continuation of our ForceLeaders Interface Instructional on Instrumentation Event.

The conversation began with a focus on what has changed in the last five years and why instrumentation is such an important topic in T&M. 

TRENDS IN ADVANCED INSTRUMENTATION

The number one change in test and measurement that we have identified is the omnipresent use of sensors in things that didn’t use to have sensors. This includes consumer products, home healthcare medical devices, EVs, factory equipment, tools, robotics, just to name a few. With the demands for more feedback, more data, and more required performance monitoring, instrumentation requirements are growing in functionality. 

We are getting smarter in our applications and uses cases, which means we need smarter devices to capture all the information to make intelligent decisions in product design, engineering, and manufacturing. We see this with smart factories, smart vehicles, smart agriculture, smart tools, smart medical technologies, these innovations and advancements need more data to make smart decisions, in design, test, build and use.

Other trends we discussed include the infusion of IoT into test and measurement. As we connect more instruments and devices into our networks, it requires advanced instrumentation and changes in what has been used as basic and standard instruments in the past. We also see customization and programmability needs changing and movement towards more digital interfaces.  Specifically, during this hour-long discussion we dive into digital outputs, amplifiers, communication protocols and advancements in software options, including a quick MathScript demo. Watch the video here.

TYPES OF INSTRUMENTATION HIGHLIGHTED IN WEBINAR

  • Signal Conditioners
  • Data Acquisition Systems (DAQ) 
  • Indicators
  • USB Interface Modules
  • Wireless and Bluetooth Telemetry Systems
  • Portable
  • TEDS Ready

Interface highlighted a series of new instrumentation solutions in great detail. This includes recent releases like our BX8 DAQ Series, Wireless Telemetry System Additions, 9850 Torque and Load Cell Indicator and SI-USB4. We also shared what we are bringing to market this year, including new portable indicators, a DAQ systems designed specifically for torque transducers, advanced multi-channel solutions and new USB indicators for wireless sensors. We also talked about custom instrumentation solutions when you need something designed for a unique use case or OEM application.

Throughout the webinar, instrumentation selection criteria were highlighted to help make the right decisions in pairing your measurement devices to the available instrumentation options. We addressed common questions, do’s and don’ts, and tips that are helpful in evaluating what will work with your project, in your lab or at your factory.

ADVANCEMENTS IN INSTRUMENTATION WEBINAR TOPICS

  • Types of Advanced Instrumentation
  • Selection Criteria for Advanced Instrumentation
  • Recap Digital Versus Analog Options
  • What’s New in Wireless + Bluetooth Telemetry Systems 
  • New Instrumentation Solutions from Interface
  • Trends in Test Data Management + Systems
  • Applications + Uses Cases
  • FAQs

You can watch the entire conversation to learn more.

WHY INTERFACE FOR INSTRUMENTATION

With so many options available, we want to make it easier in choosing the right instrumentation. Here are a few reasons why Interface is a provider of choice when it comes to instrumentation for force measurement.

  • Interface is a single point of contact for measurement device and instrumentation
  • Interface offers a range of solutions from USB Interface Modules to Multi-Channel and Wireless DAQ Systems
  • Interface can partner to design and build complete systems
  • Interface has expertise for technical support
  • Interface has deep use case experience across all the sensors we offer, from load cells to wireless load pin technologies
  • Interface instructional videos, literature, software demonstrations and manuals available online in your Support area of the website
  • Interface provides software with our instrumentation

Additional Resources

Interface Instructional on Instrumentation Event

Recap of Inventive Multi-Axis and Instrumentation Webinar

Instrumentation Analog Versus Digital Outputs

Instrumentation Options in Test and Measurement

Force Measurement Instrumentation 101

Advancements in Instrumentation

Listen and watch as we explore innovative new instrumentation solutions that are designed for all types of force measurement applications. We detail options for load cells, torque transducers and multi-axis sensors. Keith Skidmore and Ken Bishop highlight system-ready instrumentation options, along with features and benefits, types of software, trends and tips. What pairs best with each type of measurement device? Our experts will answer your questions in this recorded ForceLeaders event.

Load Cell Basics Technical Q&A Part Two

Interface hosted a series of ForceLeaders webinars this past year covering topics that included multi-axis sensors, instrumentation, torque transducers, custom solutions and more.  We plan to continue this popular series into the new year, based on the feedback we have received about topics of interest and support requirements.

One of the features that we like to include in our events is answering a list of top questions, as well as questions we get from the participants.  In our event, Load Cell Basics, we covered a lot of interesting inquiries as well as the top questions we get about our precision load cell products.

We highlighted the first group of questions in our recent post, Load Cell Basics Technical Q&A Part One. And there is more, below highlights additional questions we addressed during the live event.   A recap of the webinar is also online, reviewing key topics we discussed during the one-hour learning event with force measurement experts Keith Skidmore and Brian Peters.

Is There a Better Way to Tare a Load Cell?

Tare is defined as a deduction from the gross weight of a substance and its container made in allowance for the weight of the container, which is sometimes also called the vessel.  For purposes of this reference, we are noting the container is the actual body of the load cell.

Whether you tare a load cell by electronics or mechanical, preload taring of the system is typically done through instrumentation.  You want to ensure that whatever mechanical tare load you have on the sensor isn’t going to impede on your usable capacity range. As far as the load cell is concerned, there really is no need to accommodate any sort of mechanical tare. These are linear devices if you stay within the range.  On the mechanical preload side, it is important how you preload some of attachments especially for the LowProfile load cells. We recommend to preload if you can. It is what we do for best results so that the load path doesn’t change through the threads, which can affect very small amounts of linearity hysteresis

Does Frequency Measurement Limit Impact How Fast the Load Cell Responds?

This is a function of the mechanical flexure design for that sensor. It is important to note that each sensor is a mechanical spring. Depending on the stiffness or the deflection characteristics of a load cell, you will have different natural frequency characteristics. This information is typically documented on our product data sheets by model and configuration.  Generally, the stiffer the sensor the better it’s going to perform in cyclic applications.

Adding to this, Keith notes that load cells are great at hundreds of hertz. If you are asking about tens of thousands of hertz, they are not. There is a spot where very high frequencies of these standard load cells aren’t as effective. Most of our typical testing customers who are applying cyclical loads to a test specimen will confirm that low profile or strain gage-based load cells are great for their frequency requirements.  Work with our application engineers if you have a frequency requirement that is extremely high.

Tare and Working Up an Error Budget

This question comes in from an engineer that is working up a calculated error budget that has a mechanical tare load on that system already. Before you start your test, if you tare it how does that factor into your initial preload in the system? Will it impact your error budget? The answer is that yes, it can have some impact. You can zero out your temperature effect on zero; however, if you have a lot of preloads, you can’t. You must go back to zero to zero it out. This can impact your error budget. Basically, if you zero out, it eliminates the temperature effect. You cannot make the same assumption in your budget if you have considerable preloads.

Does Interface Recommend Particular Amplifier Instrumentation Products?

We do have a wide variety of amplifier solutions. They range from small embeddable amplifiers up to inline options that are DIN rail mounted.  We also have various digital output instrumentation productions available for ethernet, ether cat, Modbus, and USB.

It is important in your consideration to understand that there are errors that can impact instrumentation performance. Selecting the right instrumentation should be a function of the application and what are the changes in testing environment. Resolution is critical in your decision if you are doing a digital type conversion. There’s a lot of parameters to consider. Our recommendation would be to look at what is available from Interface and contact our application engineers to review your specific requirements.

What is the Most Frequent Problem When Installing a Load Cell?

One of the issues are asked about is usually related to the mechanical installation. It’s not as simple as just a nut, bolt, and threaded connection. There is a lot more to it and it’s often and discounted how important it is to ensure things are aligned properly so that you don’t have any parallel load paths. All the load must go through the load cell to make a proper measurement. For example, if you have a mounting plate and the plates are riding on the heads of the screws of the load cell, it is going to shunt the load. Mechanical installation is often missed in the test set-up design. It is often not given enough weight in importance of your test.

We also often see that users have either inadequate torque in an assembly or perhaps too much torque for the lower capacity load cells.  It’s advised to be careful of the installation torque. We recommend that if you aren’t familiar with mechanical installation, ask us for our detailed installation instructions. We provide guidance in terms of recommended torque values and proper methods of where to attach the sensor. It’s easy to over torque a load cell, as they are designed to see axial loads. We have seen users people crank on things and transmitting too much torsional load through creating performance issues that might not show up right away.

Do Cables and Amplifiers Affect Results of Load Cell Calibration?

The answer is absolutely it can impact your results. It doesn’t mean it will, but it can affect performance and measurement accuracy. For example, if you change the cable length or have an instrument that is a different temperature with cable running out of an oven into cooler temperature room, these things can influence the measurement. Even if the load cell is at a constant temperature but the cable is changing temperature, it will cause a signal to change. That’s not something you want in your measurement.

You may mitigate temperature by shielding the cable or you could have a fatter cable which could have less of an effect. Some of these things can be calibrated out. If you add a long cable and then apply loads to your load cell, it considers that there is a longer cable, and you can completely calibrate out the effect of the cable length on the signal dropping due to the resistance. Some instruments use sense to measure the voltage at the load cell. In that case, it is insensitive to any cable effect. You can change cable lengths and it doesn’t make any difference.

Is a 10kn (2,250) lb. Force Application Too Much for a 2,000 lb. Load Cell?

Yes, it’s above the calibrated range and thus you can’t guarantee performance. Load cells will typically stay linear over capacity but there’s no guarantee on the accuracy. This is especially true if you overload with frequency. You’re starting to exercise the load cell in areas where we’d recommend you stay away from to keep the results accurate. Oftentimes, you’re better off going with a larger sensor. Pay attention to the actual output. That’s one advantage of most of our products, especially in the LowProfile range.

Is There Maximum Sampling Frequency for Strain Gage Load Cells?

It is going to depend somewhat on the model of the load cell. Hundreds of hundreds of hertz are certainly adequate. If you start getting close to the natural frequency posted on our product data sheet, we recommend you review the application with our application engineers.

We know engineers who use load cells for safety impact testing. For example, you might need to sample 10 kilohertz. The load cell doesn’t make a difference for how fast you sample the signal, but those cells can only respond in typically a millisecond response time. There are no moving parts or active circuitry; however, typically testing is going to test something until it fails. It is suggested to sample it at a couple thousand hertz to make sure you capture that exact point where the system fails or spikes. If you do have some concern over creep error that’s introduced, record what that non-zero value is as soon as you release that load. That is an accurate measurement of how much creep error was introduced being symmetric.

We exercise our load cells before calibration. It’s relatively quick and typically done in hydraulic frames which are automated to test where they cycle the load in short cycle intervals, like 30 seconds. It’s really the magnitude of the exercising, not how long it lasts. If load is being tested at 120% for an hour, that’s no better than 10 seconds, other than it introduced a lot of creep for an hour. Exercising means you must wait longer for the creep to return, so if the load is a fast cycle, you can check the zero quickly.

If you have additional questions for our experts, we recommend that you visit our technical support resources. We have commonly asked questions, installation guides and manuals and more.  We are also here to support you. Contact our technical support team if you need assistance.

Additional Resources

 

Load Cell Field Guide

Load Cell Basics Sensor Specifications

Load Cell Basics Technical Q&A Part One

Interface 1200 Precision LowProfile Load Cell Series Product Highlight

Insights in Torque Testing Featured in Quality Magazine

With the explosive growth in industrial automation and advanced manufacturing, torque measurement is a hot topic for test and measurement applications across a multitude of industries. We see demand rising due to the use in electric and autonomous vehicle testing, as well as in building components used in robotics and for spacecraft. Demand for torque transducers is so popular, Quality Magazine asked Interface’s product and custom solutions expert Keith Skidmore to contribute an article all about torque testing and how to get the most out of the transducer’s testing data.

Interface has a deep line of innovative torque transducers used where torque measurement is critical to the success of engineering and manufacturing products and components. We provide both an extensive array of standard transducers and custom torque solutions to be used in applications as large as rocket ships, to as small as measuring the torque on a bolt wrench.

Included below is a brief overview of Keith Skidmore’s contributed article in Quality Magazine outlining the basics of torque testing and providing examples of real-world applications of Interface products used to test and measure torque.

Getting The Most Out of Torque Testing

Torque is defined as the rotational equivalent of linear force. It’s a measure of how much a force acting on an object causes that object to rotate. This is one of the key measurements for engineers doing design, test, and manufacturing across a wide variety of industries where machines, vehicles, components and parts include a spinning or rotating motion. It’s critical to understand how to measure torque if you’re doing product development with these types of systems such as engines, crankshafts, gearboxes, transmissions, and rotors.

The incredibly wide variety of torque transducers, different types of devices and tests and the accompanying accessories necessary for different projects can make it difficult to determine what is needed for each individual application. For instance, torque tests are often used in the automotive industry to assess engine torque and speed, but the products used can differ between a typical gas vehicle and newly introduced electric vehicles. Torque is also frequently used to test the tightness of a variety of lug nuts and screws, which is an entirely different measurement solution.

This article provides a brief overview of the key considerations when planning for a torque test. It includes the different types of torque testing, the different torque sensor styles, accessories, mounts, and other tips and tricks. It also provides a brief overview of the potential applications of torque tests with pictures.

The article goes on to provide the basics of torque testing, as well as providing real world applications of torque test and measurement. Here is a preview of one of the applications included in Keith’s contribution to Quality Magazine. To read the article in its entirety, please click the link here.

Engine Dynamometer Testing

In this application example, a rotary torque transducer is used to measure the speed and torque of an engine. This rotary transducer can sense the torque of the engine with high precision and provide an electrical output that is converted from an analog to a digital signal. A rotary transducer is necessary due to the spinning element involved in the engine. It’s paired with a very high-quality coupling and is mounted in a fixed position. Both are necessary to account for the high speeds used in the test. This application would allow the user to measure both torque and speed of the engine simultaneously, which will provide valuable data in confirming the design of the engine or determining if it needs to be adjusted for the vehicle it will drive.

To see the range of torque products offered by Interface, download our Interface Torque Transducers brochure.

Additional Resources

New Twist on Torque Webinar

Torque Measurement for Electric Vehicles

Dental Handpiece Torque Check

OEM: Torque Verification

AxialTQ™ Wireless Rotary Torque Transducer