Posts

Interface Measurement Solutions Support Smart Cities

Various Interface load cell products are used in the development of smart cities. What is a smart city? A smart city is a municipality that uses data and interconnectivity to improve sustainability and quality of life.

According to the Smart City Index of 2023, London is leading the way in the development of its smart city infrastructure. Other top contenders for the lead are Zurich, Oslo, Barcelona, Taiwan, Singapore and New York. There are estimates are there are more than 140 smart cities today in various stages, and the number is growing. They are also showing tremendous potential to transform the way we live, consume, move and work. Most smart city infrastructure is in the early and mid-stages of development.

From research to engineering and building to maintenance, Interface force measurement solutions are being actively used in the design and testing of components used in smart city projects and systems. Force measurement data is valuable for assessing and improving the overall efficiency and sustainability of a city. Learn more by visiting our smart cities solutions here.

Load cells can be used to measure a variety of parameters in smart city design, development of infrastructure and resource management.

  • Interface LowProfile and Mini Load Cells are used to measure the force applied to a structure or object. This information can be used to assess the structural integrity of a building or bridge, or to optimize the design of a new product used in the smart city infrastructure.
  • Interface torque transducers provide data on the rotational equivalent of force. This information can be used to monitor the performance of heavy duty machinery and construction equipment, or to ensure that products are assembled correctly when building.
  • Specialized load cell technologies, like load pins, load shackles and tension links can be used to measure tension, lifting actions and weight, which is the force of gravity acting on an object. This information can be used to weigh products, to monitor the loading of transport vehicles, or to ensure materials or people are not overloading lifting equipment. Go to our Lifting Solutions and Weighing Solutions to learn more about the range of products available for smart city applications.
  • Interface wireless and Bluetooth solutions support the advance ICT (communications) requirements to easily capture accurate data without the cable. Our complete line of wireless telemetry systems and Bluetooth options support the advancements in digital optimization and feedback required for real-time data management.

By using sensors, data, and communications to improve human conditions of our cities, we can create more livable, sustainable, and equitable communities for the future.

SmartInfrastructure_InfographicPoster

How Load Cells and Sensor Devices are Used in Smart Cities

Load cells are versatile and essential tools for a diverse range of smart city applications. They provide accurate and reliable measurements that can be used to improve safety, resource management, and sustainability. Here are some examples of how force measurement solutions are used in smart cities.

  • Improving traffic management: Data acquired from load cells and sensors can be used to monitor the weight of vehicles on bridges and roads. This information can be used to optimize traffic flow and to prevent overloading of infrastructure. Force measurement data can also be used to monitor the movement of people and vehicles. This information can be used to identify potential hazards and to prevent accidents. Read: Interface Powers Smart Transportation Solutions
  • Smart waste management: Force measurement outputs can be used to monitor the weight of waste in bins. This information can be used to optimize waste collection routes and to reduce the amount of waste that is sent to landfills. Learn more in our IoT Waste Management Container Weighing App Note
  • Structural health monitoring: The data from load cells, torque transducers and multi-axis sensors can be used to monitor the structural integrity of buildings and bridges. This information can be used to identify potential problems before they lead to failure. Check out our post Interface Solutions for Structural Testing.
  • Smart farming and agriculture: Data from force measurement solutions can be used to monitor the weight of crops and livestock. This information can be used to optimize irrigation, fertilization, and harvesting. Learn more in our post Solutions to Advance Agriculture Smart Farming and Equipment.
  • Smart transportation: Creating a system of public transportation options, electric vehicles and bicycles, along with autonomous deliveries are part of smart city development projects around the world. Interface force measurement devices are critical in the development, testing and management of smart transportation.
  • Air quality systems: Force measurement data collected in real-time can be used to monitor the emission of pollutants from vehicles and factories. This information can be used to reduce pollution and improve air quality in smart cities.
  • Resource and energy management: Measurement data is important in production and optimization of critical resources like renewable energy and water, as well as for reducing waste and improving efficiency. Force measurement data can be used to monitor the energy consumption of buildings and infrastructure. This information can be used to identify opportunities for energy savings.

Smart cities use various Interface sensors technologies and other data collection instrumentation devices to track the use of resources and transportation. Overall, force measurement solutions are a valuable tool for improving the efficiency, sustainability, and safety of smart cities. As the use of sensors and other data collection devices continues to grow, we can expect to see even more innovative applications for force measurement data in smart city applications.

Keep watch of our smart city applications, as we learn more about how our products are being used in very smart and innovative use cases.

ADDITIONAL RESOURCES

Modernizing Infrastructure with Interface Sensor Technologies

The Rise in Digital Force Measurement Solutions

Why Civil Engineers Prefer Interface Products

Interface Powers Smart Transportation Solutions

Smart Pallet Animated Application Note

Making Products Smarter with Interface OEM Solutions

Solutions to Advance Agriculture Smart Farming and Equipment

Interface Solutions for Heavy Equipment

Vertical Farming for Sustainable Food Production on Earth and Beyond

Innovative Interface Lifting Solutions

 

What are IO-Link Load Cells

Interface continues to see a growing demand for using different communication protocols within our force measurement sensors and instrumentation devices. One of these protocols is IO-Link, which is a standardized communication protocol that enables bidirectional communication between the control system and the connected devices. It is frequently used in the field of industrial automation and IoT.

IO-Link is designed to connect and communicate between sensors, actuators, and other industrial devices with a higher-level control system. It runs over a standard three-wire connection, typically using unshielded industrial cables, and supports point-to-point communication.

Industrial automation and IoT are fundamentally reliant on digital transformation. Industry 4.0 requires the exchange and communication of information between sensor and instrumentation. IO-Link supports this requirement, helping to keep machines and facilities using sensors under control while improving their efficiency and productivity.

IO-Link can be used with load cells in industrial applications to enable enhanced monitoring, control, and diagnostics. Interface now offers customization of our most popular load cells with IO-Link capabilities.

Why Use IO-Link in Test & Measurement

  1. IO-Link is compatible with a wide range of sensors, actuators, and other devices. It provides a standardized interface, allowing easy integration and interchangeability of devices within an automation system.
  2. Real-time monitoring, control, and diagnostics is especially important in test and measurement. IO-Link enables this type of data exchange between devices and the control systems supporting the transmission of measurement data.
  3. IO-Link supports both analog and digital devices, making it versatile for a range of applications.
  4. With IO-Link, devices can be connected using a single cable, reducing the complexity and cost of wiring and simplifying installation and maintenance.
  5. Health and maintenance are important in testing. IO-Link supplies advanced diagnostic capabilities, allowing devices to report their status, health, and detailed diagnostic information. This is valuable for maintenance, troubleshooting, and reducing downtime.

Interface 1200 and 1201 Load Cell IO-Link Features and Benefits

The 1200 and 1201 Series IO-Link Load Cell Universal or Compression-Only are LowProfile load cells that are IO-Link compatible.

  • Proprietary Interface temperature
  • Compensated strain gages
  • Eccentric load compensated
  • Low deflection
  • Shunt calibration
  • Tension and compression
  • Compact size
  • 3-wire internal amp choice of 4-20 mA, ±5V, ±10V, 0-5V, 0-10V
  • Options include Base (recommended), custom calibration, multiple bridge, special threads and dual diaphragm
  • Accessories include mating connector, mating cable, instrumentation and loading hardware

For a complete datasheet of this product, go to the 1200 and 1201 with IO-Link product page.

IO-Link integration with load cells enhances the functionality and flexibility of weight measurement systems by enabling seamless communication, remote evaluations and diagnostic capabilities. It contributes to more efficient and reliable industrial processes where precise monitoring is necessary.

Weight and force monitoring: By connecting load cells to an IO-Link-enabled system, such as a PLC or a weighing controller, real-time weight data can be transmitted and monitored. The load cells measure the weight or force applied to them, and this information can be instantly communicated to the control system via IO-Link. The control system can then perform tasks such as weight-based control, process optimization, or triggering specific actions based on weight thresholds.

Remote parameterization and calibration: IO-Link allows load cells to be remotely parameterized and calibrated from the control system. Instead of manually adjusting the load cell settings at the device level, the control system can send the necessary configuration commands through the IO-Link interface. This feature simplifies the setup process, saves time, and reduces the risk of errors during calibration.

Performance evaluation and detection: IO-Link provides diagnostic capabilities for load cells, enabling the detection of potential issues or abnormalities. The load cells can send diagnostic information, such as temperature, supply voltage, or fault codes, to the control system through IO-Link. This data can be utilized for predictive maintenance, troubleshooting, or alarming in case of malfunctions.

IO-Link enhances the functionality, flexibility, and efficiency of industrial automation systems by enabling intelligent communication between devices and the control system.

ADDITIONAL RESOURCES

Interface New Product Releases Summer 2023

Force Sensors Advance Industrial Automation

Interface Weighing Solutions and Complete Systems

Instrumentation Analog Versus Digital Outputs

 

Interface Powers Smart Transportation Solutions

Smart transportation refers to the integration of advanced technologies and intelligent systems in the transportation sector, including infrastructure and vehicles, which improve efficiency, safety, and sustainability.

The transportation industry is getting smarter with advancements in autonomous driving and electric vehicles, unmanned aerial vehicles, and electric airborne vehicles, high-speed trains and light rails, and transporation ways. Behind these innovations are critical test and monitoring solutions helping engineers ensure absolute safety and quality during development and in use for real-time monitoring.

Interface transducers are used to measure force, torque, or weight for both testing and integration into smart transportation systems. Our load cells, torque transducers, scales, load pins, tension links, and multi-axis sensors provide vital measurement data for design, development, test, and performance monitoring in various smart transportation applications.

A few examples of smart transportation inventions and use cases that utilize Interface advanced sensor technologies include:

  • Smart Cargo Monitoring: Load cells are installed in trucks, trailers, or shipping containers to monitor the weight and distribution of cargo. These load cells provide real-time data on the load’s weight, ensuring compliance with weight limits and preventing overloading, which can lead to safety hazards and increased fuel consumption.
  • Structural Testing of Vehicles: Load cells and torque transducers are used to measure forces and loads applied to vehicle structures during physical testing. This includes crash tests, structural integrity evaluations, and load capacity assessments. The data obtained helps engineers analyze the structural performance and safety characteristics of vehicles, enabling improvements in design and manufacturing processes for smart transport.
  • Infrastructure Load Data Acquisition: Load cells can be employed in roads, bridges and other transport infrastructure as part of the load data acquisition systems. These systems measure the dynamic forces and loads experienced by vehicles. By attaching load cells to strategic points on the vehicle, such as suspension components or the chassis, engineers can capture data related to acceleration, braking, cornering forces, and road-induced vibrations. This information aids in vehicle development, durability testing, and optimization of suspension and chassis designs. They also help design durable civil engineering projects and infrastructure.
  • Intelligent Weighing Systems: Load cells can be incorporated into weighing systems at weigh stations or toll booths. By measuring the weight of vehicles passing through, these systems can accurately determine toll fees, enforce weight restrictions, and gather data for traffic management and planning purposes.
  • Smart Suspension Systems: Load cells are integrated into suspension systems of vehicles, such as trucks and buses, to monitor load distribution and adjust suspension settings accordingly. This helps optimize vehicle performance, enhance stability, and improve ride comfort.
  • Load Sensing Axles: Load cells can be installed in axles to measure the weight carried by individual wheels or sets of wheels. This information is crucial for load balancing, tire pressure monitoring, and detecting potential axle overload situations.

Since the beginning of “Smart Mobility,” Interface has been supplying force sensing solutions used for electric or self-driving vehicles. Specifically in automotive, Interface has developed and supplied precision force and torque test and measurement systems that meet the demands for superior testing requirements of all components. The automotive market is subjected to extremely strict regulations. Therefore, test and measurement are critical for safety, reliability, durability, and overall smart vehicle performance.

In the context of smart rail transport and railways, force measurement is crucial in the testing and evaluation of rail vehicles, including locomotives, passenger trains, and freight wagons. Load cells and force sensors are utilized in numerous ways. Load cells are used in braking systems to measure the forces exerted during braking maneuvers. This allows design engineers to assess the effectiveness of automated braking system and ensure compliance with safety standards. The same types of sensors can be used to measure the vertical, lateral, and longitudinal forces acting on the bogies (wheelsets) of rail vehicles enable smart operating conditional adjustments.

Smart Transportation Sensors for Stopping Train Derailment

Force measurement systems can be employed to measure the contact forces between the wheels and the track. This enables the assessment of wheel-rail interaction, including wheel-rail forces, lateral forces, and rolling resistance. Such data helps optimize track design, wheel profile selection, and maintenance practices to ensure safe and efficient railway operations. Using our Pillow Block Load Bearing Load Cell is a great solution for monitoring trains on a track, in-motion. When our PBLC1 is installed on a track, and the train runs across it, the sensor can provide a signal to a station elsewhere in the world. If any force indicators suggest that there could be a problem with the weight the train is holding or the train itself, the sensor can also trigger an automatic shutdown of the train. These sensors could prevent major damage from train derailments and other train related incidents by detecting errors before the inflict damage. This is a critically important application as innovators begin to release high speed trains for cross country travel.

Smart Trucking Weighing Solution

In this use case, a smart transportation trucking company truck company needs to precisely record the weight or loads being always carried. They would like a wireless weighbridge that is able to transmit, log, and display the results in real time. Interface suggests installing multiple WTS 1200 LowProfile™ Load Cells under a weighing bridge. When a truck drives over it, the load cells will transmit the force results wirelessly to the WTS-BS-4 Industrial Base Station connected to the customer’s PC with provided Log100 software. The WTS-LD2 Wireless Large LED Display can also display the weight inside for the driver monitor at all times.

Smart Vehicle Crash Walls

Improving vehicle safety is smart. For this use case, Interface suggests using multiple 3A400 3-Axis Force Load Cells, and attach it to the back of a cement crash wall. When connected to the BX8-HD44 Interface BlueDAQ Series Data Acquisition System, force result measurements will be recorded and displayed on a computer. The sensors measure the force of impact for all their different vehicle crash testing demonstrations, providing high accuracy data to make the vehicles safer.

Electric Vehicle Structural Battery Testing

As electric vehicles push advancements in efficiency gains, structural battery packaging is at the forefront for optimization in smart transportation. This drives the need to validate structural battery pack design, both in terms of life expectancy against design targets as well as crash test compliance and survivability.  Interface’s solution to this challenge included the 1100 Ultra-Precision LowProfile Load Cells in-line with hydraulic or electromechanical actuators in customer’s test stand. Also utilized were 6A 6-Axis Load Cells to capture reactive forces transmitting through pack structure. Multi-axis measurement brought greater system level insight and improved product success. Using this solution, the structural tests performed validated the battery packs strong structural design.

Interface solutions for smart transportation are growing alongside the pace of innovation as we work with industry demands to provide solutions for what comes next.

Read more in our case study Interface’s Crucial Role in Vehicle and Urban Mobility Markets

ADDITIONAL RESOURCES

Making Products Smarter with Interface OEM Solutions

Testing Labs Choose Interface High Accuracy Products

Modernizing Infrastructure with Interface Sensor Technologies

Interface’s Steering Role in All Types of Transportation

Interface Weighing Solutions and Complete Systems

EV Battery Testing Solutions Utilize Interface Mini Load Cells

Bridge Seismic Force Monitoring Solution App Note

IoT Drone Parcel Delivery

Testing for Commercial Drones and Parcel Delivery

 

Why Mechanical Engineers Choose Interface Solutions

Mechanical engineers play a crucial role in the design, development, and maintenance of mechanical systems that are integral to modern society and industries. They apply tenets of physics, materials science, and engineering to design, test and analyze, fabricate, and maintain mechanical systems in various industries, including automotive, aerospace, energy, robotics, and manufacturing.

Frequently, mechanical engineers use Interface force measurement devices to gather data, analyze performance, and ensure the safety and reliability of mechanical systems. Force measurement technologies help them to quantify the magnitude and direction of forces acting on objects or structures.

Mechanical engineers are active in the research and development of modern technologies and innovations, from small components to large industrial machines. This vital role is typically involved in the selection of materials, manufacturing processes, and quality control to ensure that mechanical systems are safe, dependable, efficient, and cost-effective.

Interface’s quality and accuracy of load cells make them a preferred engineering solution for various use cases. The range of products are used for multiple testing and design applications. The most common products selected by mechanical engineers include:

Engineers use sensors to determine the forces acting on different components or subsystems within a larger system, such as an engine, gearbox, or suspension system, during operation. This information can be used to verify that components are operating within their design limits, identify potential failure points, and optimize performance.

Force measurement devices are used by mechanical engineers in quality control processes to ensure that mechanical systems meet design specifications and performance requirements by performing tests during the manufacturing process, such as checking the tension in bolts, verifying the strength of welds, or measuring the force required for assembly or disassembly of components.

Mechanical engineers use impact force sensors to measure the forces experienced by a vehicle during crash testing, or fatigue testing machines to apply cyclic loads to components or structures to simulate real-world conditions. They participate in the design, development, and optimization of renewable energy systems such as solar power, wind power, hydropower, and geothermal power. Read Interface Solutions for Growing Green Energy.

Mechanical engineers are at the forefront of advancements in robotics and automation, including designing and developing autonomous vehicles, drones, robotic manufacturing systems, and automated processes for industries such as automotive, aerospace, and manufacturing. Advancements in materials science is a key role for many mechanical engineers. As well, these types of engineers play a crucial role in advancing the field of biomechanics and developing medical devices.

IoT and smart systems that integrate mechanical components with sensors, actuators, and control systems to create intelligent and connected systems are a result of the work of mechanical engineers. This includes developing smart buildings, smart appliances, smart transportation systems, and other IoT-enabled devices. Read Interface Sensor Technologies Enables IoT Capabilities

Mechanical engineers use force measurement devices to perform tests and experiments to determine the forces experienced by mechanical systems. Load cells help them to quantify the loads on structural components, such as beams, columns, or joints, to understand their performance under different conditions.

ADDITIONAL RESOURCES

Electrical Engineers Choose Interface Sensor Technologies

Interface Celebrates Engineers

Interface Solutions for Production Line Engineers

Interface Solutions for Material Testing Engineers

Quality Engineers Require Accurate Force Measurement Solutions

Why Product Design Engineers Choose Interface

Why Civil Engineers Prefer Interface Products

Use Cases for Load Pins

Performance Structural Loading App Note

Interface OEM Solutions Process

 

 

Introducing the Interface Consumer Product Testing Case Study

The global consumer products market is a multi-billion dollar industry that thrives on innovation and new product development. There are numerous opportunities to utilize sensor-based technologies to test for safe use and monitor product performance.

Interface is a source of quality precision force sensor technologies used throughout the product lifecycle from concept and R&D, through engineering and testing, to manufacturing and eventually consumption. We supply force measurement solutions for use in equipment, machines, tools, and integration into actual products like our miniature load cells to measure performance and use. We even provide products to accurately measure and monitor hardware used in consumer product distribution. Interface load cells and instrumentation help consumer product designers and fabricators drive usability, adoption, production efficiencies, and ensure safety to satisfy the needs of all types of consumers.

In our latest case study, Interface Delivers for Consumer Products, we highlight specific use cases and products that are used by the consumer products industry. Interface offers multitudes of products, from sensors used to measure weight on the production line of a consumer good to regulating how the consumer can use the product by using embedded load cells into the actual product.

Here are a few examples of how our force sensors are used in the consumer products industry:

  • Keyboards and buttons: Force sensors can be used to measure the force applied to keys on a keyboard or buttons on electronic devices, such as smartphones or game controllers, to ensure that they have a consistent and satisfying feel for the user.
  • Package testing: Force sensors can be used to measure the force applied to packaged consumer goods, such as food and beverage containers, during transportation and handling to ensure that they are not damaged and that their contents are protected.
  • Automotive testing: Force sensors can be used to measure the forces applied to various components of a vehicle during crash testing, such as doors and seat belts, to ensure that they meet safety standards and provide adequate protection for the occupants.
  • Sports equipment: Force sensors can be used to measure the force applied to sports equipment, such as golf clubs, tennis rackets, and baseball bats, to ensure that they meet performance and safety standards.
  • Wearable devices: Force sensors can be used to measure the force applied to wearable devices, such as fitness trackers, to ensure that they are durable and can withstand the wear and tear of daily use.

Our specialty is building force measurement solutions for the testing and monitoring of parts and total systems, which is vital to manufacturers and designers of consumer packaged goods. Accurate measurement is necessary in design, prototyping and producing final consumer products across all industries for performance and safety. These solutions are ideal for consumer product stand-alone testing rigs, production equipment, as well as embedding into products to increase operability and reliability for end users.

Additional consumer products applications utilizing Interface quality measurement solutions include:

These are just a few examples of how force sensors are used in the consumer products industry to measure the force applied to a variety of products. The use of force sensors is essential for ensuring that consumer products meet safety and performance standards, and for providing consumers with a high-quality user experience.

To better illustrate and address our solutions designed for consumer products across sectors, we have developed a case study outlining the consumer product testing challenges and technology we offer for these customers.
Interface Delivers for Consumer Products Case Study

Enabling Internet of Things Capabilities

Interface’s new case study explores the demands for connecting products using sensors through the Internet to provide measured and accurate feedback, improving the user experience. The connected requirements for consumer products and industrial automation continue to grow as interconnectivity between devices increases usability, productivity and safety.

Interface Sensor Technologies Enables IoT Capabilities highlights products that are considered part of the Internet of Things (IoT) industry. What is IoT? It is often used to describe products and components with sensors, which are often embedded technologies, used to connect and share data with other devices and systems via the Internet.

Interface is a solutions provider for those that need quality, accurate measurement solutions for IoT enablement to create smart products. We provide a range of load cells, in various sizes and capacities, along with instrumentation and wireless telemetry systems for IoT applications, from home appliances and fitness equipment to manufacturing robotics and self checkout kiosks. The capabilities to utilize immediate sensor data make products smarter, allowing for engineers and consumers to better control the reliability and functions of the sensor-enabled components. IoT enablement uses force sensor measurement paired with data signal compatibility.

Our product and applications experts work with engineers, product designers, testing labs and manufacturers to find the right solution, whether it is for a single project or to actual use our sensors as an OEM for a new product that goes to market.

Accuracy in measurement is paramount to the functioning of IoT, as the data is used to measure the use and impact. Data from the measurement sensor, when connected cloud-enabled and Internet wireless devices, increases the ability for products to adjust in real-time. This can be seen in products like ice makers, as well as lifting heavy objects. The feedback of activity is sent through the sensor to the data output module, so that the information can be used and viewed by Internet connected devices.

Read the case study for more ideas and use cases for connecting products and components through sensor-based IoT solutions.

Interface Sensor Technologies Enables IoT Capabilities

New Interface Case Study Exams Weighing and Scales

Test and measurement are used in the development and monitoring of manufactured goods across all industries. With a history of producing force measurement solutions for more than five decades, Interface has supplied a myriad of sensor devices for hundreds of thousands of different use cases and applications.

From the scales we use in packaging centers to the enormous weigh check equipment used in transportation, weighing and scale measurement solutions are instrumental in the successful design, engineering, launch, and maintenance of products and components.

Many of the earliest force sensors were designed for the purpose of weighing objects, and they continue to be a large part of test and measurement today. As products evolve and new inventions enter the market, sensors must maintain their durability, quality, and accuracy for large and miniaturized uses. Therefore, you see inventors and innovators turn to Interface today for sensors that are designed for use in robotics, IoT, and factory automation equipment used for weighing.

Historically, the only difference between now and then is that Interface has perfected accuracy in measurement across with an extensive range of force sensors models, configurations, sizes, capacities, and specification requirements that can measure weight at “jumbo” scale, as well precisely measure exceedingly small, minute forces as an embedded sensor.

Determining accurate weight is a key data point manufacturers need throughout a product lifecycle. Whether they need the information for transporting an object, lifting the object, or just creating a specification sheet, accurate data for weight measurements is fundamental for safety and function. This includes weighing single and combined parts in early design, weighing the manufactured equipment during assembly and production, using scales for weighing output with exact measure, as well as obtaining real-time weight in distribution and transport.

To accomplish this, Interface provides a host of load cells and instrumentation devices. Since our first load cells were designed in 1968, we have built millions of these products for engineers and designers that require the highest precision force sensors for accurate and reliable data collection in test and measurement (T&M). Our customers represent a wide swath of industries, products, equipment types, tools, and electronics that depend on us for proving accuracy, consistency, and reliability in performance in T&M.

In our latest case study, we outline four weigh and scale use cases that utilize Interface sensor technologies. Defined weight as a product specification requires extreme accuracy in measurement. Utilizing precision force sensing solutions and instrumentation enables product engineers and manufacturers to collect data and use it as part of the product design.

Accuracy Matters for Scales and Weighing focuses on weighing and scale applications used with heavy machinery, medical devices, operational containers, and distribution solutions. In each of these instances, utilizing weight in the design, build, and supply of these products is fundamental to each use case and the success for the product.

Weighing and Scales Case Study

 

Force Sensing Keeps Factories Running Feature in Fierce Electronics

In the recent article, ‘May the force be with you: Force sensing keeps factories running, product quality high’ Dan O’Shea at Fierce Electronics writes about the growing demand for sensors in industrial automation applications.

Following his interview with Interface’s Keith Skidmore, Dan writes:

‘While some sensors are more focused on monitoring equipment or measuring environmental conditions around a manufacturing process, force sensors measure mechanical forces occurring in the equipment and processes, and the products being manufactured. They measure things like load, tension, resistance, weight or total pressure applied. By employing this kind of sensing technology, manufacturers can monitor the health of their equipment and improve quality assurance for their products.’

“Testing things by applying a force to them is super common. Many products in lots of industries get tested this way, from aerospace to automotive, through to consumer goods. Chairs, furniture, mattresses, ladders–basically, anything that’s being manufactured, there can be a desire to figure out how strong the various parts of those products are.” Keith Skidmore, engineer and regional sales director at Interface

Read the entire Fierce Electronics article here.

Interface provides industrial automation and IoT solutions to manufacturers, equipment makers and factories around the world. Sensors play a pivotal role in production and optimization through tools and process improvements.

Industrial Robotic Arm

Robotic arms are frequently used in production facilities throughout the manufacturing process. Suppliers of these devices heavily rely on accurate and quality sensors to provide feedback. In this application, the designer needed to test the force of the arm apparatus to ensure it could safely secure packages on a moving conveyor belt without damaging any materials or products. This automated function helps to improve quality of packaging and increase productivity on the line.

Interface provided the model 6A40A 6-Axis Load Cell with model BX8-HD44 Data Acquisition Amplifier instrumentation. The 6-Axis load cell provides measurement of all forces and torques (Fx, Fʏ, Fz, Mx, Mʏ, Mz) and the BXB-HD44 Data Acquisition Amplifier logs, displays, and graphs these measurements while sending scaled analog output signals for these axes to the robot’s control system. Customer installed 6A40 6-Axis Load Cell between robot flange and robot grabber. The extensive data outputs from the multi-axis sensor provided the exact detailed measurements needed for the industrial robotic application.

Interface Sensors Used for Internet of Things

What is creating the increasing demands for sensor technologies today? One thing is just using sensors in things, putting sensors into things that didn’t use to utilize sensors. Advancing the use of data in objects, equipment, consumer goods, machines and tools is increasing the needs for advanced and reliable measurement devices. It’s why demand for Interface products used in Internet of Things applications are expanding rapidly.

Sensor data is being used through the entire life cycle of a product design, from early design to testing, through production and even aftermarket sales. The valuable insights that engineers and manufacturers gather from real-time user data and feedback in both test and actual market use is advancing iterations, use cases, and smart application types.  Interface is seeing this in the demands for miniature sensors used by OEMs and wireless technologies. The smarter the device, the better the sensor. That is why Interface is a preferred partner when IoT needs accurate information to make smart decisions.

Big data along with advancing IoT communication capabilities is presenting opportunities for manufacturing to use efficient, accurate, and cost-effective sensor solutions designed for making products and machines smarter. Users of IoT solutions and manufacturers of IoT products are using valuable sensory data to constantly measure applied forces, helping with innovation and redesigns. It’s being used for all types of smart devices, industrial automation robots, medical equipment, and even wireless mobile testing labs.

What type of products are being used in IoT?

We are seeing Interface load cells, torque transducers, multi-axis sensors, DAQ and instrumentation systems are designed for all kinds of advanced IoT applications. While many are taking advantage of our expanding line of wireless and Bluetooth load cells and instrumentation, we also see numerous requests for our Mini Load Cells to be designed into the actual product.

Interface has been supplying these sensor technologies for years. To capture some of growing demands miniaturized and wireless sensors, we’ve recently launched a new solutions area on our website, Internet of Things. We explore Industry 4.0 and wireless applications, offer a new Interface IoT Solutions brochure and highlight products that are used for IoT use cases.

Our solutions align with the requirements of IoT and Industry 4.0.  You see this in the array of capabilities in our products, including:

  • Wireless communications and enabled sensors for real-time collection
  • Miniature load cells and sensor technologies for modernization and innovation of product designs
  • Robotic sensor solutions for use in autonomous and mounted devices
  • OEM designed sensor solutions to use for stability and product intelligence
  • Intrinsically safe products used in harsh and changing environments
  • Safety and regulatory sensors for constant monitoring
  • Bluetooth and wireless telemetry system components used for monitoring and testing
  • Stainless steel and rugged designs for different temperatures and climates
  • Advanced instrumentation and software for accurate and reliable data capture
  • OEM engineered products for high-production counts

Whether you are using Interface measurement products for prototype testing, temperature testing, component and usability studies or small-scale testing machines, we have solutions that make your tests cordless, digital, and using internet speed to capture data.

Recent IoT Applications Using Interface Measurement Solutions

  • Smart factory tools and machines
  • Wireless testing equipment for labs
  • Autonomous vehicle components
  • Robots and robotic parts
  • Weighing and lifting apparatus
  • Safety regulation feedback and sensing devices
  • Predictive usability and durability testing
  • Fitness and health equipment use
  • Touch screen testing
  • Home health feedback sensors

To learn more about our products used for IoT applications, contact our application engineering experts.

Additional Resources

Wireless Telemetry System

WTS 1200 Standard Precision LowProfile® Wireless Load Cell

WTS Brake Pedal Force Testing

IoT Solution That Monitors Rigging and Lifting in Real-Time Showcased at OTC50

Advancements in Instrumentation Webinar Recap

Solutions to Advance Agriculture Smart Farming and Equipment