Posts

Instrumentation Analog Versus Digital Outputs

Interface sells a wide variety of instruments designed to help take data measured on a load cell or torque transducer and convert it into a readable form. Within this expanding family of instrumentation offered by Interface, there are two types of output methods available: analog or digital.

By far, analog output for test and measurement instrumentation has been the most popular. Analog output is measurement represented in a continuous stream. Technologies have advanced a growing demand for more advanced data capture. Digital instrumentation uses digits as the output, providing greater measurement accuracy and digital resolution.

Understanding which output is best for your project is important in getting the right communication capabilities to use with the designated sensor components. It’s an important consideration whether you are designing a new testing system or working with an existing program and looking to add new instrumentation.  You can gain further insights by watching our Instructional on Instrumentation webinar here.

Here is a brief explanation on the difference between analog and digital instrumentation, along with advantages of each.

Benefits of Digital

Digital outputs are becoming more and more popular for several reasons. The first is that they often incur lower installation costs than their analog counterpart. Digital also works across existing networks. For instance, if you have ethernet IP you can interface directly into it as opposed to running analog signals.

Digital outputs are also far more scalable than analog because a lot of the time you can replace sensors without causing a disruption. Multiple sensors can also be daisy chained into a single cable run, meaning the user can piggyback into an existing network rather than running cables back to a controller. This is one reasons the installation cost is often lower.

There are also built-in error detections with digital outputs to detect things like open legs and bridges. And if you’re digitizing at the sensor, the system is less susceptible to noise because digital signals are natural noise immune.

Benefits of Analog

With all the benefits of digital, why would someone still choose the older output method of analog? Analog signals are still faster than digital and are much easier to work with. Additionally, analog systems take up far less bandwidth than digital. Therefore, if you’re in an area with low-bandwidth, digital output solutions may slow the network down, while analog will not.

It is important to note that many DAQs and PLCs accept analog signals, so if the user wants to stay with what they already have in house, analog may be the better option.

Choosing Analog or Digital

When deciding between analog and digital instrumentation output capabilities, it’s important to consider the following questions as well:

  • Are you connecting to an existing network? For instance, if its CAN bus, you may want to use CAN bus sensors. But, if it’s pure analog, you’re not going to want to convert everything over to digital unless there are other factors driving this move?
  • Are you connecting to an existing DAQ device? If your system has available analog input channels, you may be fine with analog output. If it doesn’t, you may have to add extra channels. Or say the system has an EtherCAT connection, you can use the same DAQ without adding channels by interfacing with it digitally.
  • What is your budget? If your network already has a lot of analog systems, the cost of staying with analog may be worth it. If you must add channels to your DAQ, but you have digital interfaces available, that may allow for cost savings based on how many channels and sensors you need.
  • How many sensors are you connecting? If you have a lot of sensors, the obvious answer is digital because of the flexibility it provides, and the limited cable runs needed. But if you don’t need many sensors, analog could make more sense.

There are several considerations to make when choosing digital versus analog.  You can learn more about which options suit your project requirements by reviewing the online specs of our range of instrumentation solutions.

There is also considerable detail in the many options available in our Instrumentation Overview here.

Additional Instrumentation InterfaceIQ Posts

Instrumentation Options in Test and Measurement

Instrumentation Application Notes

Force Measurement Instrumentation 101

Digital Instrumentation for Force Measurement

Recap of Instructional on Instrumentation Webinar

Interface recently hosted a new ForceLeaders event on the topic of instrumentation. The webinar experts, Keith Skidmore and Ken Bishop, shared insights and experience in different types of instrumentation. Along with detailing various features, they provided valuable tips for testing engineers, metrologists, and sensor users on how to choose the right instrumentation for your upcoming projects or new systems.

The discussion featured a series of instrumentation types, benefits and uses cases. The types detailed during the webinar included:

  • Signal Conditioners
  • Indicators
  • Data Acquisition
  • Portable Load Cell Indicators
  • Weight Indicators
  • Junction Boxes
  • USB Interfaces
  • TEDS Ready
  • Wireless and Bluetooth Telemetry Systems

The experts offered guidance on the topic of analog versus digital and wireless versus Bluetooth. They also provided some simple criteria to review when deciding what type of instrumentation fits your exact requirements,

Basic Criteria for Selecting Digital or Analog

  • Is there an existing network you need to connect to?
  • Are you connecting to an existing DAQ device?
  • What is your budget?
  • How many sensors are you connecting?
  • Do you need to communicate through a bus?

For more insights into application use cases, frequently asked questions and top 10 tips, be sure to watch the event.  Here are just a few of the tips shared during the Instructional on Instrumentation presentation:

Tip #1 – Know your power supply requirements, amount of filtering that is fixed or adjustable, input range, scalability and zero adjustment range.

Tip #2 – The output signal from a load cell is expressed in terms of millivolt output per Volt of excitation, at capacity. 

Tip #3 – The output signal is directly affected by input voltage. It’s important to maintain a stable excitation voltage.

WATCH THE RECORDED LIVE EVENT: INSTRUCTIONAL ON INSTRUMENTION

If you have missed any of our ForceLeaders webinars, be sure to visit our YouTube Channel.  We have recorded all the events for your convenience.  Our experts are also here to help you get the exact instrumentation based on your unique requirements. Contact us here for questions or technical assistance.

Additional Resources:

Instrumentation Options in Test and Measurement

Digital Instrumentation for Force Measurement

Force Measurement Instrumentation 101

Force Measurement Solutions for Bolt and Screw Fastening

Among the many applications of force measurement devices, one that appears to be a simple application can have a big impact on worker safety, productivity, waste reduction, assembly and product performance. In this new animated application note highlight, we take a look at the tools used for bolt fastening measurement.

Bolts and screws are used to secure different pieces or components together for nearly every product imaginable, especially when it comes to large machinery and even automobiles. The success of these products and the manufacturing of these components requires a strict level of detail that goes into the tightness of a bolt. It’s not like your typical “do it yourself” furniture where you just tighten a screw or bolt until you can’t anymore. The precision needed for certain objects to be tightened to the exact measurement is mandatory.

Interface provides measurement solutions for all types of industrial automation and toolset testing used in thousands of applications that ultimately are utilized in the building of products. In the example below, we provided devices that are used to determine the exact bolt force and tightness necessary. The goal of measuring the tightness is to avoid under or overtightening. As you can imagine, under tightening can cause components to come apart. However, over tightness can also cause significant damage to the pieces being bolted together.

Bolt Fastening Application

To show the process of measuring bolt tightness, check out this latest use case video demonstration.

For this bolt fastening application, the customer used an Interface Model LWCF Load Washer along with an Interface Model INF-USB3 Single Channel PC Interface Module to monitor force being applied during bolt tightening. The data transferred from the bolt clamping force load cell load washer with a thru-hole, to the instrumentation is displayed, logged and graphed directly onto a computer for analysis and performance testing.

This is a basic example of the test and measurement process, however, Interface also contributed to a number of real-world projects and created applications notes to provide an illustration. One of our favorites is when an industrial automation company was building an automated assembly machine for an automotive manufactur­ing plant.

The product engineers and testing team needed to tighten all of the head bolts on an engine on their assembly line to a specific torque value. Having the head bolts precisely and consistently tightened to the engine block is critical to the operation of the engine.

To measure this force, several Interface Model T33 Spindle Torque Transducers were installed in their new machine to control torque and angle and ensure the head bolt was properly tight­ened. The square drive of the T33 allowed the customer to fix their tool directly to the end of the torque sensor, streamlining the installation.

Using this solution, the head bolts were correctly installed according to manufacturer specifications, producing an engine that meets performance and reliability expectations of the auto manufacturing plant.

Here are additional solutions that showcase how Interface load cells, torque transducers, instrumentation and custom solutions are used for various tools and manufacturing processes across various industries.

Aircraft Screwdriver Fastening Control

Fastening Work Bench

Bolt Fastening Force and Torque

Interface Solutions for Robotics and Industrial Automation

Contact us to learn more how we can help you ensure the right fastening and machine control for your next projects.

 

 

 

Making the Case for Custom Solutions Webinar Recap

Interface application experts and custom solution pros, Ken Bishop and Keith Skidmore provided valuable insights in our latest virtual event as to how, when, and why, you should connect with our team for help in designing, engineering, and building custom sensor solutions.

Making the Case for Custom Solutions, an Interface ForceLeaders hosted webinar, delved into the scope of options across all types of technologies and devices used in test and measurement. The focus of the event highlighted the importance of early engagement in the design and conception process when evaluating whether you needed something beyond a standard product.

Custom Solutions go beyond engineered to order products, where you might need to change a thread adapter, connector, or mounting hole. Interface custom solution can range from single components designed for unique applications to multiple components configured as a system. Custom solutions are most frequently used for OEM products, as embedded pieces.

Interface offers fully designed load cells or load pins to meet the application requirements. Torque transducers‘ options include custom shaft sizes, outputs, temperature ranges, and other configurations to fit the application. Wireless is also a common consideration for custom solutions, giving a wider use for monitoring, reporting, and system support.

If we build it, we can customize it. This also applies to multi-axis sensors and various types of instrumentation. In the webinar, Keith and Ken dive into several systems and use cases that highlight multiple components configured to exact specifications from mobile force testing systems to monitoring bridges seismic activity with special waterproof casings.

Six Custom Solution Design and Specification Recommendations for Getting Started

    1. What do you want to measure?
    2. How will the sensor be used?
    3. Do you need multiple sensors or a single device?
    4. Is this embedded into an OEM application or solely for test and measurement?
    5. Do you have a cost target?
    6. How will you read the results?

The mechanics of getting something custom starts with the scope and determining what needs to be measured. Then our experienced engineers will design the product working with your team. Once designs are approved, the manufacturing process begins. Using our state-of-the-art machine shop world-class assembly and custom solution calibration experts, Interface confidently delivers the products that stand with our seal of quality, accuracy, and performance standards.

Here are the topics discussed in the Making the Case for Custom Solutions event.

  • What is Considered an Interface Custom Solution
  • Differences Between Engineered to Order and Custom
  • Design and Specification Recommendations
  • Customizations Options and Considerations
  • Building Systems
  • Tips for Engaging Custom Solutions Engineers
  • The World of Possibilities
  • FAQs

Watch the entire event here:

The benefits of engaging Interface Custom Solutions Engineers are that we become an extension of your engineering resources along with access to our models, drawings, and assets to help with your project success. Whether we are building solutions with our proprietary strain gages or finding Bluetooth instrumentation for read-outs on custom load cells, we work as your partner with ownership in your project’s success.  It’s what we know, it’s what we do, and we get custom solutions. We’ve been doing custom solutions for force and torque for 52 years.

When you are ready to engage our team, we stand ready to help. We’ve been building small and large volume custom solutions for innovative industry leaders in aerospace, industrial automation, automotive, agriculture, infrastructure, energy, and more.  In Making the Case for Custom Solutions, Keith and Ken Put our experts to the test and let’s explore the possibilities together.

Get started by letting us know what you have in mind.  Request a custom solution here.

Read more in our What’s New in Custom Solutions post.

Additional Events:

Use Cases for Load Pins

Load Cell Basics

 

Interface Explores Maritime Applications Near and Offshore

Land, air, and sea are all the places where Interface force measurement devices are used to test and confirm product designs and measure real-time functions of equipment. Interface has long been providing an array of sensor solutions for use in the maritime industry.

The solutions are diverse including hydrofoil watercraft testing, yacht rigging inspections, and safety weight monitoring on massive cranes used on shipping docks and offshore. Interface provides various load cells, load pins, tension links, load shackles, instrumentation, and wireless products for splash zone, offshore and underwater sites.

The reason we are a top choice for products in or around the water is because of our line of submersible and rugged load cells and sensors designed for underwater applications and use in harsh weather conditions. From rigs and docks to structural waterways and bridges, our load cells can survive through underwater submersions at different capacities, and still be able to relay reliable and accurate data to instrumentation and receivers at the surface level. Interface measurement technologies are helping customers regulate harsh maritime situations including underwater tension lines for commercial fishing, nearshore hoisting apparatus at shipyards, undersea energy exploration, as well as storm and tsunami monitoring.

Specifically, our wireless load pins, load shackles, and tension links are ideal for marine applications. These products can be paired with our different wireless sensor transmitters, receivers, and handheld displays. Our Wireless Crosby Bow Load Shackles have been used for line tension testing and rigging. Our load shackles are inter-changeable with our WTSTL Wireless Tension Link Load Cell. The WTS-BS-4 Wireless Industrial USB Base Station is also a popular transmitter that gives outstanding coverage and can be easily paired with one of our handheld displays such as the WTS-BS-1-HA Wireless Handheld Display for Multiple Transmitters or the WTS-BS-1-HS Wireless Handheld for Single Transmitters.

Check out a few of our applications notes to see how these products can be used for testing in the maritime industry:

Hydrofoil Testing in a Wave Tank

Hydrofoil design for watercraft is a delicate balance between performance and complexity. Finding the right shape without using overly complex angles to achieve the desired amount of lift is crucial when designing a successful hydrofoil. Once an engineer’s concepts are ready for testing, using the best force measurement equipment is required to sense the subtle differences between hydrofoil designs. Lift and drag are the most important characteristics of a hydrofoil. The Interface Model 3A120 3-Axis Load Cell is needed to read these forces. The Fz senses lift and the Fx and Fy sense the drag. Using a model BSC4D-USB bridge amplifier increases the visibility of the load cells output signals. When using the load cell and bridge amplifier, the engineers can record the real-world lift and drag forces the hydrofoils are having on the watercraft. This data allows a more in-depth comparison of proposed hydrofoil designs to find the best model for the job. Learn more.

Mooring Line Tension Testing 

Due to the changing weather conditions, mooring cable lines undergo wear and tear. Users want to ensure all mooring lines for ships or vessels are securely docked at the same loading tension so that they do not risk the mooring lines to break or cause damage. Interface WTSLTL Lightweight Wireless Tension Link can be attached to each mooring cable in use. Results are sent to the customers through the WTS-BS-4 USB Industrial Base Station when connected to the customer’s supplied PC computer or laptop. Data can also be transmitted to the WTS-BS-1-HA Handheld Display for Multiple Transmitters, giving the customer the option to view multiple mooring cable line tensions. Using these Interface products, the customer was able to verify the tensions to multiple mooring cable lines. Thus, resulting in the security of their ship being safely docked on shore. Check out the app note here.

WTS Yacht Rigging Inspection

For a customer who wants to have a complete rigging inspection to make sure the mast, still lines, and all movable hoisting lines are functional and meet the proper specifications for sailing, Interface has the products to help. To test the tension of the forestay, shroud, and backstay cables, and the tension of the movable lines when sailing, Interface provided a WTSSHK-B Wireless Crosby™ Bow Load Shackle paired with the WTS-BS-1 Wireless Handheld Display for Unlimited Transmitters. This allows customers to switch and view between multiple shackles being tested during the inspection. The WTS-BS-4 USB Industrial Base Station can also be attached to the customer’s PC or laptop to display real time measurements from the shackles and log data. With this combination of technology, the customer was able to conduct both a running and standing rigging inspection of their ship or vessel and was able to determine if all lines were functional and met safety standards. Learn more here.

Dock Crane Safety and Capacity Verification

It is essential that heavy equipment used on the dock can verify that their crane is strong enough to safely lift a heavy load. For productivity and timing, it also is helpful to constantly measure and rate maximum load capacity. In these environments, a wireless solution is needed to avoid long cables, and to have a faster installation time. Using the WTSLTL Lightweight Wireless Tension Link Load Cell, operators can measure the load’s maximum capacity. The WTS-RM1 Wireless Relay Output Receiver Modules also can trigger an alarm that can be set when the maximum capacity of weight and force. The data is transmitted and can be reviewed with the WTS-BS-1-HS Wireless Handheld Display, or, on the customer’s receiving technology. Read more here.

As you can see, Interface has got Maritime covered with a wide variety of products suitable for submersion and the harsh weather that can be found at sea. In addition, if our off-the-shelf products don’t quite meet your use case, Interface’s custom solutions team will work alongside you to create the most effective and efficient solution based on your needs.

How to Choose the Right Load Cell

Load cells are used to test and confirm the design of hardware, components, and fixtures used across industries and by consumers. From the structural integrity of an airplane to the sensitivity of a smartphone touchscreen, there’s a load cell available to measure force. In fact, here at Interface we have over tens of thousands of products used in force measurement, for all types of different applications.

How do engineers and product designers go about choosing the right load cell for a specific application or testing project?

Have no fear, Interface has put together a short guide on choosing the load cell that is right for you. This blog will cover the basic questions to answer when selecting a product, as well the most important factors affecting load cell choice.  Be sure to watch the online video, Load Cell Basics, that highlights key factors of consideration when choosing the right load cell for additional insights.

The basic questions you need to consider when selecting a load cell include:

  • What are the expected loads? What is the minimum and maximum load you’ll be measuring?
  • Is there any potential for higher peak loads than what you intend to measure? What are these expected peak forces?
  • Is it tension, compression, or both?
  • Will there be any off-axis loads? If so, what is their geometry? Do you want to measure them too?
  • Will it be a static, dynamic or fatigue measurement?
  • What is the environment in which you’ll be conducting your test? Will the load cell need to be sealed?
  • How accurate do your measurements need to be? Do they need to be at the highest accuracy of ±0.02-0.05% or within ±0.5-1%?
  • What additional features, accessories and instrumentation does your application require to complete a test?
  • Do you need standard electrical connectors or customized options? What about additional bridges or amplifiers?
  • How are you planning to collect and analyze the data output from the load cell?

Next, these are the most important factors affecting accuracy, which will have a heavy influence over the load cell you choose. It’s important to understand how your application and the load cell will be affected by each of the factors, which include:

  • Mechanical – Dimensions and Mounting
  • Electrical – Output and Excitation
  • Environmental – Temperature and Moisture

One of the most important factors in choosing the right load cell is understanding how it will be mounted for testing or as a component within a design. There are a wide variety of mounting types including threaded connections, inline, through hole or even adhesive. Understanding the mounting type that suits your application is critical to getting the correct data because a poorly mounted load cell will distort the results and can damage the load cell.

The mounting process also requires you to understand which direction the load is coming from, in addition to any extraneous loads that may be present. The load cell mating surface is also an important factor. For example, when using our LowProfile® load cells without a pre-installed base, the best practice is to ensure that the mating surface is clean and flat to within a 0.0002-inch total indicator reading and is of suitable material, thickness, and hardness (Rc 30 or higher). Also make sure that bolts are torqued to the recommended level.

If you’re conducting a fatigue measurement, it’s also important to address the frequency and magnitude of load cycles with your load cell provider. Factors to address include single mode versus reverse cycles, deflection versus output resolution, and material types. Interface offers a wide variety of fatigue-rated load cells that are perfect for these types of applications.

Another consideration in choosing the right load cell is the electrical signal. Load cells work by converting force into an electrical signal. Therefore, it’s important to understand the electrical output type necessary for your application, which could include millivolt, voltage, current or digital output. You can find the excitation voltage data on our website for each of our load cells. Additional considerations include noise immunity, cable length and proper grounding.

The environment is also a critical factor in ensuring accurate performance of your load cell. Interface provides load cells in a variety of material types including aluminum, steel, and stainless steel. Each material has a variety of properties that make them more suitable for different environments. For a more in-depth perspective on the different strengths and weaknesses of materials, please read our blog titled, Considerations for Steel, Stainless Steel and Aluminum Load Cells. For applications where load cells need to be submerged in liquid or enter an explosive environment, we also have a variety of harsh environment and IP rated load cells, in addition to load cells suitable for high humidity or splash resistance. Learn more about our intrinsically safe load cells here.

Learn more about choosing the right load cell in these online resources:

WATCH: Load Cell Basics with Keith Skidmore

WATCH: How to Choose a Load Cell with Design Engineer Carlos Salamanca

READ: Load Cell Field Guide

VISIT: Interface Technical Library

To learn more about choosing the right load cell for any application, connect with our applications engineers about the force measurement needs for your next project at 480-948-5555.

Trending at Interface

As in years past, the Interface team looks at trends in what products caught the greatest interest of our customers, along with those that are top sellers throughout the year.

We’ve gathered our key findings based on searches and purchases by industry-leading engineers, product designers, testing labs, manufacturers and T&M pros using Interface solutions. Here is a summary of the trends over the past 12 months.

TRENDING PRODUCT CATEGORES IN 2020

#1 LOAD CELLS – There is no surprise that topping the 2020 list is what we are best known for, our precision load cells. When quality, accuracy, and reliability matter Interface Models 1000, 1100, 1500 and 1600 in various capacities ranked highest in interest. What’s the top seller? The 1200 Standard Precision LowProfile® Load Cell ranks number one, with the 1000 Fatigue Rated Load Cell in second place.

#2 TORQUE TRANSDUCERS – Torque is definitely trending, taking the number two spot. Hot picks are the MRT Miniature Flange Style Reaction Torque Transducer, T8, T25 and our proprietary AxialTQ. Read Torque 101 here.

#3 INSTRUMENTATION – One of the most popular adds to any purchase is instrumentation like the DMA2, SGA, 9320 or 9840.

#4 MULTI-AXIS SENSORS – Watch Dimensions of Multi-Axis Sensors to learn more about why multi-axis is trending, including the popular 3AXX 3-Axis Force Load Cell.

#5 MINIATURE LOAD CELLS – Interface’s expertise for engineering force measurement applies to a wide range of capacities and sizes, including Interface Mini best sellers: SSM and SSM2 Sealed S-Type Load Cells, SM-S Type and SMT Miniature Load Cells followed closely by MB, MBP, WMC Stainless Steel Miniature Load Cell and SMTM models.

#6 CALIBRATION SYSTEMS – These Interface systems are growing in popularity. Read why here.

#7 CALIBRATION SERVICES AND REPAIR ­­­– Our customers can depend on us for our services. Click here to request service today.

#8 DIGITAL INSTRUMENTATION – Interface has expanded our line of digital instrumentation based on growing demands. See what’s hot here, like our BX8.

#9 LOAD PINS, LOAD SHACKLES AND TENSION LINKS – A new entry to the trends list this year based on the high interest for these specialty products including the wireless options.

#10 LOAD BUTTON LOAD CELLS – Robotics, automation and testing in confined and compact spaces has raised greater interest in highly-accurate load button load cells, including our new ConvexBT and our popular LBM and LBS models.

Based on feedback and our analysis of trends, we know that getting exactly what you want is as important as the product category selection. Engineered to order, custom solutions and complete systems are rapidly growing in demand as Interface customers evaluate ways to embed sensor technologies into products or utilize advances sensor technologies, along with wireless and Bluetooth communication capabilities.

Take a look at why Interface Engineered to Order Solutions continue to be in high demand by helping our customers get exactly what they need.

Interface has played an important role in shaping the test and measurement industry and though we know our standard catalog is robust, we are always here to get the exact product for our customer’s exact requirements. How can we help you get what you want in 2021 and beyond?  Reach out and let’s start the conversation now.

Interface Load Cell Indicators

At Interface, our claim to fame is that we offer the most accurate and reliable force measurement devices on the market, from load cells to torque transducers and everything in-between. However, no test is complete without the system used to gather the data to evaluate performance results. That’s why we provide a wide variety of instrumentation solutions that include signal conditionersoutput moduleshigh speed data loggersportable load cell indicators, and weight indicators to complete any testing system.

Among the Interface instrumentation products, the most frequently purchased with a force measurement devices are our load cell indicators in various models including handheld, digital, wireless, multichannel, programmable, output modules, analog and bidirectional.

What is a load cell Indicator?

A load cell indicator is a high-accuracy device connected to the output of a load cell to amplify and display the value of the measured load force and weight. Load cell indicators are often needed where the force, load, or weight measurement needs to be visually displayed for the user and displaying the results on a PC is not feasible or desired in the testing environment. For example, testing in the field or confined spaces can make it impossible to connect directly to a PC. In these situations, indicators are used to quickly review and capture force data in real-time.

A few key benefits of load cell indicators include that they provide stable excitation voltage and converts force measurement sensor signals to a digital display. Commonly available features include analog or digital output, selectable digital filtering, peak and valley monitoring and set-point outputs. Additionally, each load cell indicator can be used to connect to four (or more) digital load cells and can display individual readings or the sum of all connected load cells.

Need a load cell indicator?

Interface offers a wide variety of load cell indicators in multiple configurations. Interface indicators come in single to multi-channel weight transmitters and can be found in handheld and portable designs. Things to consider when selecting an indicator are internal sample rate and update rate of the output. A few of our most popular indicators include:

9890 Strain Gage, Load Cell, & mV/V Indicator

Model 9890 is a powerful multipurpose digital load cell meter ideal for weight and force measurement applications. With a max current of 350 mA at 10 V, it can support up to 12 load cells making it perfect for multipoint weight measurement purposes. The dual-scale capability allows for displays in two different units of measure. See a demonstration video here.

9320 Battery Powered Portable Load Cell Indicator

Model 9320 is a bipolar 7-digit handheld meter featuring two independently scalable ranges, peak and valley monitoring, display hold, mV/V calibration, and a power save feature. Typical battery life exceeds 45 hours of continuous use and 450 in low power mode. IEEE1451.4 TEDS Plug and Play compliant.

482 Battery Powered Bidirectional Weight Indicator

Model 482 is battery powered, bidirectional, and comes in a NEMA 4X stainless enclosure. Standard options include 523,000 internal counts, 0.8-inch LCD 6-digit display and a measurement rate that goes up to 40 Hz. Available options include analog and relay outputs.

1280 Programmable Weight Indicator and Controller

The Interface 1280 Series programmable digital weight indicator with color touchscreen, web server view and multiple protocol types delivers uncompromising speed for today’s operations and expansive options for tomorrow’s requirements.

INF4-Ethernet IP Weight Transmitter and Indicator

The Interface INF4-Ethernet IP weight transmitter and indicator has a six-digit red LED display (8 mm height), space-saving compact design, four buttons for the system calibration, and a six-indicator LED.

See all the indicator options here.

Load Cell Indicator Application Note

The application note below provides an example of the benefit of a load cell indicator in real-world use within the medical industry.

A pharmaceutical tablet producer wanted to monitor the forces applied by the tablet forming machine to understand the relationship between raw material, die set, forming force, and motor-cycle speed. The goal was to improve productivity and efficiency of the tablet forming process while reducing losses, such as cracked tablets or voids, by adding a dimension of feedback that could be used to assign specific press adjustment criteria for given inputs.

An Interface Model WMC Sealed Stainless Steel Mini Load Cell (10K lbf Capacity) was mounted in the section of the downward press bar. The machine was modified to accomplish this. The load cell was then connected to a Model 9320 Portable Load Cell Indicator to collect the needed data.

The indicator was selected as the data collection device because a laptop could have interfered with the test cycle due to space restrictions. The output of the load cell was connected to the 9320 Portable Load Cell Indicator and set aside so that the cable did not interfere with the cycle and no snagging would occur. A cable tie was used to stow aside the cable and to ensure there was enough clearance for the entire cycle.

After analyzing the data, the tablet producer was able to quantify adjustment levels by monitoring which forces produced the most optimal results for a given cycle speed, die set, and raw material. Productivity and efficiency were greatly improved by the enhancement of the data feedback.

To learn more about Interface load cell indicators and for a complete list of products, you can download our instrumentation brochure here. You can also read more about instrumentation options in test and measurement in this post.

Test Stand Applications for Force and Torque

In the world of test and measurement, test stands are essential equipment for manufacturers and testing engineers. The test stand provides a host of different testing products in a single “cabinet-like” structure. These systems have been used for a long time to gather data on various functions of products during the product test phase.

Test stands works like a mobile test lab, hosted by a frame and containing one or more force or torque sensor components, software, and data acquisition instrumentation and accessories. Force stands are typically motorized or manual.  Motorized test stands, also known as mechanical or electrical, have the advantages of controlling performance by applying modes such as speed, cycles, and time into the testing procedure. The more advanced testing stands are frequently used for repetitive high-performance testing requirements, validating accuracy and quality. Manual test stands are used for simple testing protocols and frequently used in education programs.

There are a wide variety of testing devices and sensor products that are used as part of the entire test process. As parts roll off the production line, the test stand will sit at the end of the line where the test engineer can immediately load the product into the test rig. Test stands help to streamline the test process by providing all available test functions in a single, mobile application.

Interface is a supplier of choice for precision components of various capacities and dimensions for test stand configurations requiring precision and accuracy in performance. Interface load cells, torque transducers, and instrumentation equipment are commonly used in numerous product test applications by engineers, metrologists, testing professionals and product designers around the world.

Included below are a few examples of specific test applications and the Interface components used in the different style testing stands.

Linear Test Stand

In this example, an Interface customer wanted to add a crush test to their test stand to measure the force it took to deform a piece of material. Interface provided an Model 1210 Load Cell with an internal amplification of 0-10VDC output.

The load cell was installed into the load string of the customer’s load frame, and the scaled analog output from the load cell was connected to the customer’s test stand instrumentation. When the force levels reached the crushing point, the customer’s software was able to read the output of the amplified load cell and record the value.

See the application note for the Linear Test Stand here.

Motor Test Stand

In the quality control lab at a major automotive manufacturing company, a test engineer needed to test, record, and audit the torque produced by a new motor design under start load. Interface supplied the new AxialTQ® Rotary Torque Transducer that connected between the motor and the differential, on the drive shaft, that could measure and record these torque values.

Based on the data collected using the AxialTQ transducer, along with the AxialTQ Output Module, and a laptop, the test engineer was able to make recommendations to optimize the amount of torque created by the new motor design.

See the application note for the Motor Test Stand here.

Verification Test Stand

In this application, a customer needed a test stand application to verify that its load cell was in good, working order. Interface helped to create a solution that used a load cell to verify the customer’s load cell. The solution involved the customer’s supplied verification load frame and an Interface Model 1210 Precision LowProfile® Load Cell connected with a Model SI-USB 2-Channel PC Interface Module.

The customer was able to install their load cell and Model 1210 Precision LowProfile Load cell into the verification load frame. Applied forces were displayed and recorded by Model SI-USB PC Interface Module for review and record keeping on customer’s computer. This allows the customer to have a proven load cell verification test stand at their disposal to ensure its test load cell is always in working order.

See the application note for the Verification Test Stand here.

These are just a few examples of the different types of test stands that Interface can provide off-the-shelf or custom force measurement solution components. If your project involves a mechanical test stand and you are interested in learning more about adding force sensors, please contact our application engineers.