Posts

Top 10 Trends in Test and Measurement

As a leader in force measurement, Interface is privy to the evolving landscape of test and measurement. These top 10 trends also shape our future.  Interface constantly invests in new sensor designs, technology, and tools to support our market-defining, high accuracy, quality products.

Interface offers various standard and custom sensors, instrumentation, technical support, and services for customers across various industries worldwide. The feedback we gather from the market and customers defines our priorities.

Based on the current demands of our products, requests for solution support, and incoming inquiries to our application experts, we compiled some key trends for 2023.

  1. Miniaturization: Demand for smaller, lighter sensors is increasing across industries, from robotics and drones to medical devices and lifting technologies, and continues to be the top trend in T&M. Interface’s miniature load cells enable precise measurements in compact spaces. There is also a growing use of embedding our Mini sensors into OEM products for real-time feedback, like surgical robots and fitness equipment.
  2. Multi-Axis Measurements: Analyzing forces in multiple directions is becoming essential for complex testing scenarios. Interface’s Multi-Axis Sensors facilitate comprehensive data collection and a deeper understanding of force interactions.
  3. Wireless Data Acquisition: Eliminating cables simplifies testing setups and improves data access. Interface’s wireless load cells and data acquisition systems enhance data portability and streamline testing processes. These wireless systems, including sensors like our wireless load pins and tension links, provide immediate system monitoring and maintenance technologies without cables for machines, equipment, components, and consumer products.
  4. Smart Sensors and IoT Integration: The use of sensors to make smart decisions is rising, from use in smart city projects to automating production. Interface measurement devices with easy connectivity are revolutionizing test and measurement. Interface’s sensors with digital outputs and compatibility with IoT products enable real-time data analysis, remote monitoring, and predictive maintenance.
  5. Material Characterization: Interface’s force measurement solutions are increasingly used to characterize the mechanical properties of materials, crucial for optimizing product design and performance in industries like aerospace, automotive, and construction. Material testing is also used in circular economy applications, using old materials for new inventions.
  6. Testing in Harsh Environments: Interface’s rugged and environmentally sealed sensors are finding more applications in extreme conditions, from subsea exploration to high-temperature testing. These ATEX, submersible, high-temp, and stainless steel products allow testing in critical real-world scenarios.
  7. Complex Measurement Analysis: Advanced software tools and data analysis platforms are essential for effectively interpreting and utilizing force measurement data. Interface provides software packages such as our Log100 and BlueDAQ Software to facilitate deeper insights and decision-making.
  8. Efficiency and Cost Optimization: Test and measurement processes are refined for efficiency and cost savings in product designs, building new products, and retrofitting existing machinery and equipment. Interface’s solutions contribute by facilitating faster setup, accurate data collection, and improved product quality, leading to reduced testing costs and faster time to market.
  9. R&D Driving Sustainability and Efficiency: Interface has seen an increase in customers using our sensor technologies for products and processes that positively impact the environment. This includes using Interface sensors for applications that include recycling and waste management, restructuring infrastructure, renewable energy production, electric vehicles, and battery development. Interface devices are commonly used in designing long-lasting, low-maintenance consumer products.
  10. Advancing Possibilities in Measurement with Customized Solutions: The need for customized force measurement solutions with diverse industry applications is growing. Interface’s engineering expertise and wide range of products allow it to cater to specific testing requirements and develop bespoke solutions. This includes engineered-to-order load cells, transducers, and complete system configurations like Interface Data AQ Packs.

These are just some of the trends we are observing in 2023. These trends are in addition to priority of providing industry-leading technical expertise and application support to help every customer.

With our commitment to collaboration, innovation, and accuracy, we are well-positioned to work with you as we shape the future of force measurement and contribute to the advancements in various testing and measurement projects across industries.

Interface looks forward to helping you with your inventions, research, testing, and product designs requiring precision measurement technologies in the coming year. Let’s continue the journey together.

 

High Temperature Load Cells 101

The temperature rating of a strain gage type load cell is primarily dependent upon the materials selected for its construction. While the load bearing element is normally good for a wide temperature range, the non-metallic materials in a load cell are quite sensitive to temperature extremes and must be carefully selected to ensure they can withstand high or low temperatures.

Considerations in designing the right solution for high temperatures includes understanding requirements for the strain gage materials, adhesives, and insulations. With any set of materials, performance at temperature extremes is frequently compromised, relative to performance at nominal temperatures.

Most Interface standard load cell models are rated for an upper operating temperature limit of 200°F. Special models can be engineered to operate as high as 500°F by request for customization. We also carry a line of intrinsically safe load cells that are designed and used in harsh environments.

Interface offers a range of high temperature load cells in different form factors, from miniature to jumbo, including:

Compensated temperature range is the range of temperature over which the load cell is compensated to maintain output and zero balance within specified limits. Operating temperature range is the extremes of ambient temperature within which the load cell will operate without permanent adverse change to any of its performance characteristics.

There are four parameters to consider when examining temperature performance of high temperature load cells.

  • Temperature Effect on Zero: The change in zero balance that is due to a change in ambient temperature. It is normally expressed as the slope of a chord spanning the compensated temperature range.
  • Temperature Effect on Output: The change in output that is due to a change in ambient temperature. It is normally expressed as the slope of a chord spanning the compensated temperature range. Note that output is defined as a net value, as the zero-load signal is always subtracted from the loaded signal.
  • Creep: The change in load cell signal that occurs with time while under load, and with all environmental conditions and other variables remaining constant. It is normally expressed in units of % of applied load over a specified time interval.
  • Zero Return: The degree to which the initial zero balance is maintained after application and release of a load, while environmental conditions and other variables remain constant.

Interface load cells are temperature compensated for zero balance. By compensating for zero balance, we can flatten the curve in the relationship between temperature and zero balance. An uncompensated load cell has a much more severe curve, which impacts the accuracy and overall performance. Read more in Understanding Load Cell Temperature Compensation.

Another consideration for utilizing load cells in high temperature environments or exposing load cells to high temperatures is the use of cables. Since cable resistance is a function of temperature, the cable response to temperature change affects the thermal span characteristics of a load cell cable system.  Interface recommends consulting with your application engineer to see if a 6-wire system can eliminate concerns. Also, for non-standard cable lengths, there will be an effect on thermal span performance. For long cable runs or high accuracy applications, this can be a significant factor.

Additional Resources

Hazardous Environment Solutions from Interface

Ruggedized Test and Measurement Solutions Webinar Recap

Coil Tubing Load Cells

Load Pins, Tension Links, & Shackles

 

Ruggedized Test and Measurement Solutions Webinar

Interface force measurement engineers and solution experts host an online discussion focused on products used to withstand one or more conditions related to temperature, cycling, moisture, environmental stresses. Learn about Interface’s stainless steel load cells, environmentally sealed options, submersible test and measurement products, enclosures, wireless capabilities, load pins, intrinsically safe products. We detail solutions used for all types of applications used in industries that include medical device, aerospace and defense, industrial automation, infrastructure, maritime and general test & measurement. We discuss sensors models, capabilities, features and FAQs. We dive into use cases, tips, measurement know-how and OEM products.