Posts

S-Type Load Cells 101

There are many different types of devices used in test and measurement from load cells to torque transducers and tension links to multi-axis sensors. In addition, there are sub-categories in each of these product types that are based on various specifications, capabilities, capacities, and application requirements.

Discussing load cells specifically, there are different models and configurations depending on the use case, the amount of force measurement or weighing requirements for a particular load, dimensions, and even test environment considerations. No matter what our customers need, we have standard and custom load cells up to the task. In our 101 series, we are highlighting the innovative miniature load cell sub-category of Interface S-Type Load Cells.

What Is an S-Type Load Cell and What Is It Used For?

S-type load cells, sometimes called s-beam, gets its nomenclature from the “S” looking model of the load cell. It is shaped this way because it is designed to measure well-controlled tension and compression forces. There are preferred by engineers and testing labs for the precision, size, material, and ability to fit in limited spaces. They are often used for weighing, in test machines as well as product designs for ongoing performance measurement by OEMs.

An s-type load cell will often be used within a system designed to stress test products in a controlled environment for fatigue and product testing to measure the way the product stands up to force over long periods of time. The benefit of Interface S-Type Load Cells is that they are very cost-effective, highly accurate, easy to mount, and offer flexibility because it can be used universally for tension and compression testing. They are also smaller than typical load cells, providing major benefits when there are limitations in space or for smaller test product dimensions.

Interface has a wide range of specialized miniature s-type load cells including sealed, micro-size, fatigue-rated, high-temperature ratings, low height, overload protected and intrinsically safe to meet all types of testing protocols and plans. You can see all the s-type models here.

An s-type load cell is generally used with eyebolts or rod-ends when used in tension and this can cause binding or the associated hardware to unthread. These uniquely designed load cells should not be used when weighing an object that can sway or rotate. Additionally, an s-type load cell is not recommended when the load cell will be used for both tension and compression, where accuracy in compression is critical. In this case we’d recommend a shear type of load cell.

S-Type Load Cell Applications

Prosthetic Load and Fatigue Testing

Prosthetic limbs must be tested for extreme loading that can occur during falls, accidents, and sports movements. Fatigue testing of prosthetic components determines the expected lifespan of the components under normal usage. Interface suggested a static load test apparatus using SSMF Fatigue Rated S-Type Load Cell attached to hydraulic actuators to apply and measure loads. The fatigue testing machine uses SSMF Fatigue Rated S-type Load Cell to apply and measure cyclic loads. During the fatigue test, the actuator repeatedly applies and removes the force to simulate activity such as walking. Tilt tables may also be used to apply forces at various angles to simulate the heel-to-toe movement of walking or running. Using this solution, engineers can determine whether prosthetic materials and designs will withstand the rigors of daily use and occasional high load situations. Read more here.

Furniture Fatigue Cycle Testing

To meet safety protocols in relation to the manufacturing of various furniture products, fatigue testing, shock testing, and proof testing must be rigorously performed before diffusion into the marketplace. Force testing simulations on furniture products are critical in determining the posted max loads to protect manufacturers from liability due to damages that might result from the misuse of those products and overloading. Using an Interface Model SSMF Fatigue Rated S-Type Load Cell along with Interface Model 9890 Strain Gage, Load Cell, & mV/V Indicator provides a solution that measures the force being applied in fatigue cycle testing of a furniture product, in this case testing the rocking mechanism in an office chair. Unlike other similar load cells, the Model SSMF is fatigue rated making it highly suitable for fatigue testing. No fatigue failure of any fatigue-rated Interface load cell, used within its ratings, has ever been reported. The furniture manufacturer was able to obtain accurate data about the rocking mechanism the office chair as it was fatigue cycled into failure. Adjustments were made to the design to improve the safety and life of the furniture, ensuring product quality and protecting the manufacturer from future liability. Read more here.

Interface S-Type Load Cells are highly effective, accurate and flexible products used for a wide variety of applications needing compression and tension force testing. To learn more about Interface’s S-Type Load Cells, you can also visit here or call us today to speak to an application engineer who can help you select the right product for your next project at 480-948-5555.

Considerations for Fatigue-Rated Load Cells

There are many products that are made to serve a single or limited use. Needs for these types of products, often consumable, are immediate and buying decisions usually require limited research or comparisons. On the other end of the spectrum, there are products that need to be extremely reliable, durable, and built to last a long time. The buying decisions for these types of products often require more research to make certain they are highly rated, safe, and made from sturdy and reliable materials.

How do original equipment manufacturers (OEMs) determine how long a product should last with consistent use? What design decisions need to be made to improve product reliability? The answer is often found in the defined fatigue requirements of a product. In the test and measurement and design phase of a product, answers to these questions frequently require product and component testing with fatigue-rated load cells.

Fatigue is the weakening of a material caused by repeatedly applied loads. Similar to if you repeatedly bend a paper clip, it will eventually weaken and then break. The only way to test fatigue is to put prototypes of the product through stress tests for long periods of time or use an apparatus that tests the lifetime “wear and tear” in a few hours. The tool that reports the data gathered from stress tests is the load cell.

With Interface fatigue-rated load cells, designers and engineers can predict the time and force it will take for wear and tear to take its toll on their products. They can then create safety instructions for customers or redesign the product for better results.

Interface Model 1000 series is a portfolio of fatigue-rated low profile load cells with 300% safe overload, extremely low moment sensitivity of 0.1%/in and higher fatigue life. If you need to measure 1 pound (4.45N) or 1 million pounds (4500kN) of force, Interface fatigue-rated load cells are built for this type of testing.

Interface fatigue-rated load cells are designed for an operational life of in excess of 100 million fully reversed cycles.

It’s also important to note that Interface fatigue-rated load cells are based on fully reversed load cycles, which means they are rated for two directions. This type of loading cycle is considerably more stringent than unidirectional loading. It is the more common application of load cells. If a fatigue load cell is repeatedly loaded in only one direction, it can be loaded to about 133% of the bidirectional fatigue-rated capacity with no degradation of its fatigue rating.

Interface works with customers to provide our fatigue-rated load cells for products that can’t fail. It is our mission to ensure precision products are safe, reliable and durable. If they do fail, it could result in significant harm.

Two examples of products dependent on fatigue-rated load cells for testing are aircraft wings and furniture stability. In aircraft wing testing, load cells test the materials used to build the wings to ensure they are strong and lightweight. The load cells are also used in wind tunnels to test the stress of high winds on the wings over time. Safety protocols manufacturing for furniture products require fatigue testing, seat testing, shock testing, and proof testing. These tests must be rigorously performed before entering the marketplace.

Force testing simulations using fatigue-rated load cells help the manufacturer define max loads in order to protect manufacturers from liability due to damages resulting in the misuse or overloading of their products. These types of applications require the most accurate data available provided by our load cells to ensure that testing results produce a quality product that lasts.

Fatigue-rated load cells are one of the many Interface force measurement tools available to help customers develop quality products. For information on all of the load cells we provide, please visit www.interfaceforce.com/product-category/load-cells/.

Contributor:  Jay Bradley, Sr. Electrical Engineer, Interface